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PHASE FUNCTIONS AND CENTRAL
DISPERSIONS IN THE THEORY OF
LINEAR FUNCTIONAL EQUATIONS

JITKA LAITOCHOVÁ

ABSTRACT. The terms introduced in this paper, like phase
function, conjugate numbers induced by a phase function,
fundamental numbers and fundamental orbits, fundamental
central dispersion of the phase function and central dispersions
of higher orders, were studied by Bor̊uvka and Neuman in
connection with properties of solutions of linear differential
equations.

A new direction is taken in this paper in order to remove
the explicit dependence of the ideas upon differential equa-
tions. The theory presented here begins by defining anew the
terms aforementioned, based only on properties of continuous
functions, rather than by means of solutions to differential
equations. The central idea for the generalized definitions is
in a cyclic group of continuous functions, which effectively
replaces the differential equation, giving a new direction to
the original ideas of Bor̊uvka and Neuman. The direction is
similar to, but different than, the unrestricted n-parameter
family theory introduced by Hartman, which generalizes so-
lution properties of nth order linear differential equations to
an abstract setting devoid of differential equations.

Some applications are given for using phase function ideas
to solve certain linear functional equations of higher order
and special linear difference equations with constant coeffi-
cients. These examples do not have an underlying differential
equation and therefore the Bor̊uvka-Neuman theory does not
apply.

1. Introduction. The theories of phase functions and central
dispersions have been treated by Bor̊uvka [1] for solution spaces of
second-order homogeneous linear differential equations in the Jacobi
form. In [7], Neuman considered the same theories for nth order
linear differential equations. In [3], Hartman considered conjugate
point theory for nth order linear differential equations and generalized
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to function spaces called unrestricted n-parameter families, some of
the interesting properties found for solutions of differential equations.
Additional solution properties for linear nth order differential equations
appears in papers of Sherman [8, 9].

A new direction is taken in this paper, different than that of Hart-
man, Bor̊uvka and Neuman, in order to generalize the notion of phase
function and central dispersion to spaces of continuous functions. The
setting, like Hartman’s unrestricted n-parameter families, will be inde-
pendent of differential equations. The theory applies directly to oscil-
lation problems arising in purely functional equations or in difference
equations, both settings lacking an underlying differential equation.
But perhaps the central reason for the development of the theory is to
strip off the purely differential equation ideas and leave exposed the
algebraic structure.

The central, unifying idea is in an infinite cyclic group of functions,
called the determining group, which makes this work distinct from
the earlier studies in [5] and [6]. This cyclic group will replace the
underlying differential equation found in earlier studies.

The determining group is defined in Section 1, the phase function in
Section 2, conjugate numbers in Section 3, fundamental numbers and
fundamental orbits in Section 4, fundamental central dispersions of the
phase functions in Section 5 and higher order central dispersions in
Section 6. An application of the theory from the earlier sections appears
in Section 7 for the explicit expression of solutions of higher order linear
functional and difference equations with constant coefficients.

Notation. The following notation is used. N is the set of natu-
ral numbers 1, 2, . . . , Z the set of integers 0,±1,±2, . . . , R the set
of real numbers, J the ordered set of real numbers (−∞,∞), C0(J )
the set of continuous real functions defined on J , αφ the compos-
ite function αφ(t) = α[φ(t)], φ(s+), φ(s−) defined by limt→s+ φ(t) and
limt→s− φ(t), α(+∞), α(−∞) defined by limt→+∞ α(t) and
limt→−∞ α(t), {φµ(t)}+∞

µ=−∞, a sequence of functions in C0(J ). Func-
tions referenced here are assumed to be continuous on the interval J ,
that is, they belong to C0(J ).
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FIGURE 1. Determining group for φ(t) = t + π.

1. Determining group. The infinite cyclic group to be called the
determining group can be illustrated by the example φ(t) = t+π. The
determining group for t + π turns out to be the set of all π-translates
of φ, that is, the graphs of t+ nπ, n = 0,±1,±2, . . . , see Figure 1.1.

The determining group in the subsequent theory is used to define
certain crossings of group element graphs with another monotonic
function α, which is for the purpose of intuition thought of as the
polar coordinate angle variable in an oscillation problem. In a classical
differential equations setting, the crossings implicitly determine zeros
of solutions, through some Prüfer transformation formula like α =
arctan(v/u). The project here is to extend the crossing ideas to settings
which are outside the scope of application of differential equation
theory, such as purely functional equations, or difference equations.

Definition 1.1. The sequence {fµ(t)}+∞
µ=−∞ is called increasing on

J if, for any t ∈ J and any µ ∈ Z,

fµ(t) < fµ+1(t).

A sequence is decreasing if its negative is increasing.

Definition 1.2. The sequence {fµ(t)}+∞
µ=−∞ is called normal if it is

increasing or decreasing on J and lim|µ|→∞ |fµ(t)| = ∞ for each t̄ ∈ J .

Iterations. Let f ∈ C0(J ) be an increasing function mapping the
interval J onto itself. Then f has an inverse mapping f−1 ∈ C0(J )
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which maps J onto itself. Define f1 = f(t), f0 = t and for n = 1, 2, . . . ,
let fn+1 = f1(fn(t)), f−n = f−1

n where f−1
n denotes the inverse function

to the function fn. The iterations fn(t) ∈ C0(J ) map the interval J
onto itself.

Definition 1.3. A function φ satisfying the following properties is
called a p-function:

(p)

⎧⎨
⎩

1. φ ∈ C0(J ),
2. φ increases on J from −∞ to + ∞,

3. φ(t) > t for any t ∈ J .
The determining group G(φ) is the infinite cyclic group under compo-
sition of functions defined by the generator φ1(t) = φ(t) with identity
element φ0(t) = t, see Theorem 1.1.

Theorem 1.1. Let φ be a p-function and define the iterations of
φ1(t) = φ(t) by φµ = φµ(t), µ ∈ Z. Then the functions φµ(t),
µ ∈ Z, form a cyclic group G(φ) under composition of functions. The
generating element is φ1 = φ(t) and the identity element is φ0(t) = t.
The sequence {φµ(t)}+∞

µ=−∞ has infinitely many elements and it is
increasing in J .

Proof. It is routinely verified that, for each µ ∈ Z, the µth iteration φµ

of the function φ1(t) = φ(t) satisfies (p). Therefore, the set of functions
φµ(t), µ ∈ Z, under composition of functions is a cyclic group with
generating element φ1 = φ(t) and identity element φ(t) = t. Property 3
gives

(1.1) φ1(t) > φ0(t) = t

and replacing t by φ1(t) repeatedly gives φn+1(t) > φn(t) > · · · >
φ0(t) = t, n ∈ N. From (1.1) we have φ−1(t) < φ0(t) = t and therefore
φ−(n+1)(t) < φ−n(t) < · · · < φ0(t) = t, n ∈ N. Thus {φµ(t)}+∞

µ=−∞ is
an increasing sequence in J . The increasing property implies that the
cyclic group is infinite.

2. Phase function. A phase function in Bor̊uvka [1] is given by
α(t) = arctan(v(t)/u(t)) where the functions u, v form a basis for the
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solution space of the second order linear differential equation. In this
classical differential equations setting, oscillation on [a, b] is detected
by the angle variable α having an image interval α([a, b]) of length at
least π.

In the theory to be developed here, differential equations will be
stripped from the theory and replaced by some essential monotonic-
ity and continuity properties of α, see below. Nevertheless, for the
purpose of intuition, it is useful to think of an illustration like α(t) =
arctan(v(t)/u(t)) and φ(t) = t+ π.

Definition 2.1. Let G(φ) be a determining group. A phase function
in C0(J ) for G(φ), or briefly a phase function in C0(J ), is a function
α(t) defined on J such that α ∈ C0(J ) and α is strictly monotonic on
J .

The continuity and monotonicity of phase functions imply that they
have limits at all points of J and limits in the extended sense at the
endpoints.

Definition 2.2. The extended numbers cα = α(−∞) and dα =
α(∞) are called the left and right boundary values of the phase function
α in J . Define ωα to be the left endpoint of the image interval α(J );
then ωα = cα for α increasing and ωα = dα for α decreasing.

The extended number O(α) = |cα −dα| is called the oscillation value
of the phase function α on the interval J .

Theorem 2.1. Let φ be a p-function and G(φ) its determining
infinite cyclic group. The set M of all phase functions on J can be
decomposed into the following classes, organized by the values of the
oscillation function O(α).

Class I. Finite oscillation value O(α). For some index m ∈ N,

I(a) φm−1(ωα) − φ0(ωα) < O(α) < φm(ωα) − φ0(ωα)

I(b) O(α) = φm(ωα) − φ0(ωα).
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Class II. Infinite oscillation value O(α). Here, ± means + when α
increases and − when α decreases on J .

II(a) cα is finite and dα = ±∞
II(b) dα is finite and −cα = ±∞
II(c) −cα = ±∞ and dα = ±∞.

Proof. The routine details are omitted.

We will use the following notation for the classes of phase functions
for G(φ).

Definition 2.3. Let M denote the set of all phase functions. For
each m ∈ N, denote by Mmg and Mms the phase functions satisfying
I(a) and I(b), respectively. Denote by Mrg, Mlg and Mg the phase
functions satisfying II(a), II(b) and II(c), respectively. In more detail,

M = All phase functions α ∈ C0(J )
Mmg = {α ∈M : φm−1(ωα) < φ0(ωα) +O(α) < φm(ωα)}
Mms = {α ∈M : O(α) = φm(ωα) − φ0(ωα)}
Mrg = {α ∈M : |cα| �= ∞, dα = ±∞}
Mlg = {α ∈M : |dα| �= ∞, −cα = ±∞}
Mg = {α ∈M : −cα = dα = ±∞}

where ± means + when α increases and − when α decreases. The
subscripts other than m are acronyms: l = left, r = right, g = general,
s = special, as in [1].

3. Conjugate numbers induced by a phase function. The
notion of conjugate numbers in the interval J for a phase function,
studied by Bor̊uvka and Neuman for differential equations, will be
extended to phase functions on the space of continuous functions
C0(J ).

Definition 3.1. Let G(φ) be a determining group. Let α ∈ M be a
phase function. Let t0 ∈ J be an arbitrary number. The µth conjugate
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number tµ to the number t0 for phase function α, provided it exists, is
defined by the equation

(3.1)
α(tµ) = φµα(t0), α increasing,
α(tµ) = φ−µα(t0), α decreasing.

If t0 has at least one conjugate number different from t0 in the interval
J , then we say that the phase function induces conjugate numbers in
J . When counting conjugate numbers to the number t0, we also count
t0 itself.

Theorem 3.1. If µ �= 0, µ ∈ Z, then the µth conjugate number to
the number t0 lies on the right of t0 for µ > 0 and to the left for µ < 0.

Proof. Let α increase on J . Then (3.1) yields tµ = α−1φµα(t0) and
therefore tµ < α−1φµ+1α(t0) = tµ+1. Hence, for µ = 0, 1, 2, . . . , the
numbers t1, t2, . . . lie on the right of t0 and for µ = −1,−2, . . . , they
lie on the left of t0. The details when α decreases on J are similar.

Definition 3.2. Let tµ, µ ∈ Z, be the µth conjugate number to a
number t0 ∈ J for the phase function α. If µ > 0, then tµ is called
the µth right conjugate number to the number t0 in the interval J for
the phase function α. Similarly, if µ < 0, then tµ is called the |µ|th left
conjugate number.

Theorem 3.2. Let α ∈ M be a phase function, and let G(φ) be a
determining group. If S is a set of conjugate points to the point t0,
then no subset of S can have a finite limit point. In particular, each
conjugate point in S is isolated and the only possible cluster points of
S are at ±∞.

Proof. Assume S has a finite limit point A and that α increases; the
decreasing case is similar. Then in S there is a sequence of points
tn and increasing indices µn such that α(tn) = φµn

α(t0), n ≥ 1,
and limn→∞ tn = A. Continuity of α gives limn→∞ α(tn) = α(A),
which implies that the sequence {φµn

α(t0)}∞n=1 is bounded above. The
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properties of φ imply that the entire sequence {φnα(t0)}∞n=1 is bounded
above and increasing, hence convergent. Limiting gives

α(A) = lim
n→∞φφµn−1α(t0) = φ(α(A)).

This equality contradicts the property φ(t) > t, hence S has no finite
cluster point.

Theorem 3.3. Let α ∈ Mg be a phase function, and let G(φ) be a
determining group. Then, for each t0 ∈ J , α has in J infinitely many
left conjugate numbers and infinitely many right conjugate numbers,
which cluster at ±∞, respectively.

Proof. Assume α increases; the decreasing case is similar. Since
α(J ) = (−∞,∞), then φµ(α(t0)) ∈ α(J ), hence the µth conjugate
exists. Apply Theorem 3.2.

4. Fundamental numbers and orbits. It is assumed in this
section that the phase function α has finite oscillation O(α): α belongs
to Class I in Theorem 2.1. Defined here are fundamental numbers and
fundamental orbits of numbers induced by the phase function α.

Theorem 4.1. Let G(φ) be a determining group. Let α belong to
Mmg or Mms for some m ≥ 2. Let cα and dα be the left and right
boundary values of the phase function α. Then there exist numbers αµ

and b−µ, µ = 1, 2, . . . ,m− 1, in J such that

(4.1)
α(aµ) = φµ(cα), α increasing,
α(aµ) = φ−µ(cα), α decreasing,

(4.2)
α(b−µ) = φ−µ(dα), α increasing,
α(b−µ) = φµ(dα), α decreasing.

Proof. The proof is completed by applying the intermediate value
theorem for continuous functions after showing that the values on the



PHASE FUNCTIONS AND CENTRAL DISPERSIONS 611

right in equations (4.1) and (4.2) belong to image integral J = α(J ),
the set of all values of the phase function α on the interval J .

When α increases on J , then

cα = φ0(cα) < φ1(cα) < · · · < φm−1(cα) < dα ≤ φm(cα),
φ−m(dα) ≤ cα < φ−m+1(dα) < · · · < φ−1(dα) < φ0(dα) = dα.

When α decreases on J , then

cα = φ0(cα) > φ−1(cα) > · · · > φ−m+1(cα) > dα ≥ φ−m(cα),
φm(dα) ≥ cα > φm−1(dα) > · · · > φ1(dα) > φ0(dα) = dα.

These relations show that the right sides of equations (4.1) and (4.2) are
points in the image α(J ). Continuity and monotonicity of the phase
function α imply that the interval J contains exactly m− 1 points αµ,
µ = 1, 2, . . . ,m − 1, which satisfy (4.1). Similarly, there are exactly
m− 1 points b−µ, µ = 1, 2, . . . ,m− 1, which satisfy (4.2).

t

y

α

dα

cα
b−1b−2

a1 a2

φ α1 c( )

φ α2 c( )
φ α− ( )1 d

φ α− ( )2 d

FIGURE 4.2. The ordering of the points aµ, b−µ for m = 3 and α increasing.

There is considerably more detailed information in the proof of
Theorem 4.1. Some of this detail appears in Figure 4.2, which is just
for the special case m = 3.

In particular, Figure 4.2. shows the finiteness of the endpoints cα, dα

of the image interval α(J ). The numbers aµ and b−µ are found from the
crossings of the curve y = α(t) with the horizontal lines y = constant,
where the constant is one of φ1(cα), φ2(cα), φ−1(dα) or φ−2(dα).
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Definition 4.1. Let G(φ) be a determining group. If α belongs
to Mmg or Mms for some m ≥ 2, then the finite sequence of numbers
{αµ}m−1

µ=1 defined by (4.1) is called the left fundamental orbit of numbers
induced by the phase function α in the interval J . Similarly, {b−µ}m−1

µ=1

defined by (4.2) is called the right fundamental orbit of numbers
induced by the phase function α in the interval J .

Definition 4.2. The number r = a1 defined by (4.1) is called the left
fundamental number induced by the phase function α in the interval
J . The number s = b−1 defined by (4.2) is called the right fundamental
number induced by the phase function α in the interval J . See [2].

As shown in Figure 4.2, a1 is the infimum of all points in J which
have a right conjugate number and b−1 is the supremum of all points
in J which have a left conjugate number.

Definition 4.3. Let α belong to Mmg or Mms for some m ≥ 2.
Denote by {aµ}m−1

µ=1 and {b−µ}m−1
µ=1 the left and right fundamental orbits

of numbers induced by the phase function α. The orbit elements aµ

and b−µ divide the interval J into subintervals Jµ and Iν , where

Jµ = (aµ, b−(m−1−µ)), µ = 0, 1, 2, . . . ,m− 1,(4.3)
Iν = (b−(m−ν), aν), ν = 1, 2, . . . ,m− 1.(4.4)

The ordered sequence

J0, I1,J1, . . . , Im−1,Jm−1

is called the fundamental decomposition of the interval J .

Properties of conjugate numbers. Let α belong to Mmg or Mms

for some m ≥ 2. Denote by {aµ}m−1
µ=1 and {b−µ}m−1

µ=1 the left and right
fundamental orbits of numbers induced by the phase function α. The
following assertions are routinely verified:

1. The left orbit and the right orbit each have exactlym−1 elements.

2. The orbit elements a1, . . . , am−1 are conjugate numbers. The
same is true for b−1, . . . , b−(m−1).
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3. Orbit elements aµ and b−ν satisfy the inequalities

a1 < a2 < · · · < am−1,(4.5)
b−1 > b−2 > · · · > b−(m−1).(4.6)

4. Let a0 = −∞, b0 = +∞, then orbit elements are ordered as
follows:

a0 < b−(m−1) ≤ a1 < b−(m−2) ≤ · · · < b−1 ≤ am−1 < b0.

If α ∈Mmg, then in (4.7) all inequalities are strict.

If α ∈ Mms, then in (4.7) all inequalities are equalities and the
fundamental sequences of numbers are identical.

5. The left and right fundamental numbers r = a1 and s = b−1 are
conjugate for α ∈Mms and not conjugate for α ∈Mmg.

6. If α ∈Mmg, then for µ = 1, 2, . . . ,m− 1,

0 < |α(b−(m−µ))−α(aµ)| < |φµ−1(cα)−φµ(cα)|, α increasing,
0 < |α(b−(m−µ))−α(aµ)| < |φ−(µ−1)(cα)−φ−µ(cα)|, α decreasing.

If α ∈Mms, then for µ = 1, 2, . . . ,m− 1,

|α(b−(m−µ)) − α(aµ)| = 0.

7. If α ∈Mms, then the fundamental intervals Iν , ν = 1, 2, . . . ,m−1
are empty sets and for a0 = −∞, b0 = ∞ the fundamental
intervals Jµ are given by

Jµ = (aµ, aµ+1), 0 ≤ µ ≤ m− 2,(4.8)
Jm−1 = (am−1, b0).(4.9)

8. Let α ∈ Mmg, m ≥ 2. Let t0 ∈ Jµ for one of the indices
µ = 0, 1, . . . ,m − 1. Each other interval Jµ contains just one
conjugate number to the number t0, making together with t0
precisely m conjugate numbers in J .
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Let t0 ∈ Iν for one of the indices ν = 1, 2, . . . ,m− 1. Each other
interval Iν contains just one conjugate number to the number t0,
making together with t0 exactly m− 1 conjugate numbers in J .

9. Let α ∈ Mms, m ≥ 2. Let t0 ∈ Jµ for one of the indices
µ = 0, 1, . . . ,m − 1. Each other interval Jµ contains just one
conjugate number to the number t0, making together with the
number t0 exactly m conjugate numbers in J .

Theorem 4.2. If α ∈ Mmg or α ∈ Mms and O(α) ≤ φ1(ωα) − ωα,
then in the interval J there are no conjugate numbers induced by the
phase function α.

Proof. Apply the definition of conjugate numbers.

Theorem 4.3. Let α ∈ Mmg, m ≥ 2. Then to each t0 ∈ J there
are together with t0 either exactly m − 1 conjugate numbers or else t0
belongs to an open interval in which each point has exactly m conjugate
numbers.

Proof. The assertion follows directly from 8 and 2. If we choose
t0 ∈ Jµ for one of the indices µ = 0, 1, . . . ,m − 1, then α induces
exactly m conjugate numbers in J . If we choose t0 ∈ Iν for one of
the indices ν = 1, 2, . . . ,m − 1, or t0 is an endpoint of one of these
intervals, then α induces exactly m− 1 conjugate numbers in J .

Theorem 4.4. Let α ∈ Mms, m ≥ 2, t0 ∈ J . If t0 is not one
of the orbit numbers a1, . . . , am−1, then in J there are together with
t0 exactly m conjugate numbers to the number t0. If t0 equals one of
a1, . . . , am−1, then there are exactly m − 1 conjugate numbers to the
number t0.

Proof. The assertion follows directly from 9 and 2. If we choose
t0 ∈ Jµ for one of the indices µ = 0, 1, . . . ,m − 1, then α induces m
conjugate numbers in J . If t0 is one of a1, . . . , am−1 (they are identical
to b−1, . . . , b−(m−1)), then α induces for t0 exactly m − 1 conjugate
numbers in J .
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5. Fundamental central dispersion. The objective is to define
a function called the fundamental central dispersion of the phase func-
tion. It could also be called the first conjugate function, according to
its history in differential equation literature.

Definition 5.1. Let G(φ) be a determining group. Let α ∈ M be a
phase function. Let J ∗ be the set of all numbers t0 ∈ J which have a
conjugate number on the right. The fundamental central dispersion Φ
is the function on J ∗ whose value Φ(t0) is the first conjugate number
to the right of t0.

Now we derive explicit formulas for the fundamental central disper-
sion of the phase function in the classes Mg, Mmg, Mms. For these
classes, the domain of Φ will be shown to be a nonvoid open subinter-
val of J .

Theorem 5.1. Let G(φ) be a determining group and let α be a phase
function in Mg. The fundamental central dispersion Φ is defined for
all t ∈ J and it is given by

(5.1)
Φ(t) = α−1φ1α(t), t ∈ J , α increasing,
Φ(t) = α−1φ−1α(t), t ∈ J , α decreasing.

Proof. For α ∈Mg, there are infinitely many right conjugate numbers
for each point t ∈ J ; therefore, the domain of φ is J itself. Apply
equation (3.1) for µ = 1 to get, for each t ∈ J ,

(5.2)
αΦ(t) = φ1α(t), α increasing,
αΦ(t) = φ−1α(t), α decreasing.

Since α ∈Mg, it is continuous, strictly monotonic and maps J onto J .
Thus there is an inverse function α−1 to the function α which maps the
interval J onto J . Applying the inverse function to (5.2) gives (5.1).

Theorem 5.2. Let G(φ) be a determining group, and let α be a phase
function in Mg. The fundamental central dispersion Φ exists on all of
J and has the following properties:
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1. Φ ∈ C0(J ),

2. Φ increases in J ,

3. Φ(−∞) = −∞, Φ(+∞) = +∞,

4. Φ(t) > t for t ∈ J .

Proof. As argued in the previous proof, α has an inverse function
α−1.

Property 1 is valid because the continuous functions α, α−1 and φ1α
(or φ−1α) map J onto J . Thus the composite function Φ given by
(5.1) is continuous on J .

Property 2 is valid because α, α−1 and φ±1α simultaneously increase
or decrease. Thus the composite function Φ given by (5.1) increases on
J .

Property 3 will be verified. Assume α increases, then

lim
t→−∞α(t) = −∞, lim

t→−∞φ1α(t) = −∞, lim
t→−∞α−1(t) = −∞,

lim
t→+∞α(t) = +∞, lim

t→+∞φ1α(t) = +∞, lim
t→+∞α−1(t) = +∞.

Thus the composite function Φ given by (5.1) satisfies

lim
t→−∞Φ(t) = −∞, lim

t→+∞Φ(t) = +∞.

Assume next that α decreases, then

lim
t→−∞α(t) = +∞, lim

t→−∞φ−1α(t) = +∞, lim
t→−∞α−1(t) = +∞,

lim
t→+∞α(t) = −∞, lim

t→+∞φ−1α(t) = −∞, lim
t→+∞α−1(t) = −∞.

Thus the composite function Φ given by (5.1) satisfies

lim
t→−∞Φ(t) = −∞, lim

t→∞Φ(t) = +∞.

Property 4 will be verified. Since φ1 = φ(t) > 1, then also φ1α(t) >
α(t). Since φ−1(t) < t, then also φ−1α(t) < α(t). Let α increase, then
α−1 increases and (5.1) yields Φ(t) = α−1φ1α(t) > α−1α(t) = t. Let
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α decrease, then α−1 decreases and (5.1) yields Φ(t) = α−1φ−1α(t) >
α−1α(t) = t.

Theorem 5.3. Let G(φ) be a determining group. Let α ∈ Mmg or
α ∈ Mms, m ≥ 2, and denote by b−1 the right fundamental number
induced by α on J .

Then the fundamental central dispersion Φ has domain −∞ < t < b−1

and it is given for such t by

(5.3) Φ(t) =
{
α−1φ1α(t) α increasing,
α−1φ−1α(t) α decreasing.

Proof. Assume first that α ∈Mmg. Let α be increasing, m ≥ 2. The
case for α decreasing is similar.

The fundamental decomposition of the interval J is defined in terms
of the fundamental orbits of numbers {aµ}m−1

µ=1 and {b−µ}m−1
µ=1 given in

formulas (4.1) and (4.2) and the completions a0 = −∞, b0 = ∞:

(5.4)
Jµ = (aµ, b−(m−1−µ)), µ = 0, 1, . . . ,m− 1,
Iν = (b−(m−ν), aν), ν = 1, 2, . . . ,m− 1.

The idea of the proof is to examine Φ on the subintervals in (5.4). The
details will be explained for J0; the other cases are similar. Given
t ∈ J0, then define x = φ1(α(t)); it will be established that x ∈ α(J1);
thus, α(t∗) = x for some t∗ ∈ J1. In this way, Φ(t) = t∗ is shown to
exist, belong to J1 and satisfy α(Φ(t)) = x = φ1(α(t)).

The inequality α(t) < α(bm−1) = φ−(m−1)(dα) follows from α
increasing on J0, hence equations (4.1) (4.2) imply x = φ1(α(t)) <
φ−(m−2)(dα) = α(b(m−2)). Similarly, cα ≤ α(t) implies α(a1) =
φ1(cα) < φ1(α(t)). Hence x belongs to the range interval α(J1).
By continuity of α, choose t∗ ∈ J1 such that α(t∗) = x. Then t∗

satisfies α(t∗) = φ1(α(t)) and t∗ is the first right conjugate number
to number t. Hence Φ(t) = t∗ is defined, belongs to J1, and satisfies
α(Φ(t)) = φ1(α(t)).

The endpoint t = b−(m−1) of J0 is treated separately by showing
that t∗ = b−(m−2) is its right conjugate number, m ≥ 3 to make sense.
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Indeed, equation (4.2) gives α(t) = φ−(m−1)(dα), hence φ1(α(t)) =
φ1(φ−(m−1)(dα)) = α(t∗), which says that t∗ is the right conjugate
number of t.

The above reasoning applies for intervals Jn, n = 0, . . . ,m − 2.
No points in the last interval Jm−1 have right conjugates because
b−1 < am−1 and b−1 is the supremum of all points t0 in J which
have a right conjugate. Therefore, Φ(t) is undefined for t ≥ b−1 and a
fortiori for t ≥ am−1.

A similar analysis can be carried out for intervals I1, . . . , Im−2,
showing that Φ is defined on In with values in In+1, 1 ≤ n ≤ m−2, and
in fact Φ maps endpoints to endpoints. There are no right conjugates
to t for points t ∈ Im−1.

Applying such details to each subinterval, the fundamental central
dispersion Φ is shown to exist for −∞ < t < b−1 and map points and
intervals as follows:

(5.5)
a1 → a2, . . . , am−2 → am−1,

b−(m−1) → b−(m−2), . . . , b−2 → b−1

(5.6)
J0 → J1,J1 → J2, . . . ,Jm−2 → Jm−1,

I1 → I2, I2 → I3, . . . , Im−2 → Im−1.

Assume now that α ∈Mms, m ≥ 2. The preceding proof applies, except
that the intervals Iµ are empty and therefore they are not considered
in the proof.

Theorem 5.4. Let G(φ) be a determining group and let α ∈ Mmg

or α ∈ Mms, m ≥ 2. Define r = a1 and s = b−1 to be the left and
right fundamental numbers for α. The fundamental central dispersion
Φ given by (5.3) has the following properties:

1. The domain of Φ is J ∗ = (−∞, s) and Φ ∈ C0(J ∗),

2. Φ increases in (−∞, s),

3. Φ(−∞) = r, Φ(s−) = +∞,

4. Φ(t) > t for t ∈ (−∞, s).

Proof. The details will be done for α ∈ Mmg; details for α ∈ Mms

are similar.
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Property 1 follows from formula (5.3) which yields the definition of
the function Φ.

Property 2 follows from the fact that both components of the com-
posite function Φ, given by (5.3), simultaneously increase or decrease
on the relevant interval.

Property 3 can be derived from equation (5.3), properties of α and
φ, plus reference to Figure 4.2.

Property 4 will be verified. If α increases, then Φ(t) = α−1φ1α(t) >
α−1α(t) = t holds on (−∞, s) because α−1 increases and φ1(t) > t. If
α decreases, then Φ(t) = α−1φ−1α(t) > α−1α(t) = t holds on (−∞, s)
because α−1 decreases and φ−1(t) < t.

6. Central dispersions of higher orders.

Definition 6.1. Let G(φ) be a determining group and α ∈ Mg a
phase function. The µth central dispersion is the function Φµ = Φµ(t),
t ∈ J , µ ∈ Z, defined implicitly by the Abel functional equations

(6.1)
αΦµ(t) = φµα(t), α increasing,
αΦµ(t) = φ−µα(t), α decreasing.

For differential equations, the Abel functional equation for central
dispersions is defined in references [1] and [5]. Functions α ∈ Mg

are invertible; therefore, (6.1) can be rewritten as

(6.2)
Φµ(t) = α−1φµα(t), α increasing,
Φµ(t) = α−1φ−µα(t), α decreasing.

Theorem 6.1. Let G(φ) be a determining group and α ∈ Mg.
The central dispersion Φµ = Φµ(t), t ∈ J , µ ∈ Z, forms an infinite
cyclic group with generating element Φ1 and unit element Φ0 with group
operation composition of functions.

Proof. Let ∗ denote the group operation of composition of func-
tions. Assume α is increasing. Equation (6.2) yields that Φµ ∗
Φν = α−1φµαα

−1φνα(t) = α−1φµ+να(t), Φ1 = α−1φ1α(t), Φ0 =
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α−1φ0α(t) = t. Thus Φµ(t)∗Φ0(t) = α−1φµαα
−1φ0α(t) = α−1φµα(t) =

Φµ(t), µ ∈ Z. The proof for α decreasing is analogous.

Definition 6.2. The group G(Φ) = {Φµ(t)}+∞
µ=−∞ consists of the

central dispersions Φµ given by (6.2).

Theorem 6.2. Let G(φ) be a determining group and α ∈Mg a phase
function. The µth central dispersion Φµ = Φµ(t) given by (6.2) has the
following properties:

1. Φµ ∈ C0(J ),

2. Φµ increases on J ,

3. Φµ(−∞) = −∞, Φµ(+∞) = +∞,

4. Φµ(t) > 1 for t ∈ J and µ = 1, 2, 3, . . . , Φµ(t) < t for t ∈ J and
µ = −1,−2,−3, . . . .

5. If α increases on J , then {Φµ(t)}+∞
µ=−∞ is an increasing sequence

on J . If α decreases on J , then it is a decreasing sequence.

6. The sequence {Φµ(t)}+∞
µ=−∞ of central dispersions induced by the

phase function α ∈Mg for the determining group G(φ) is normal.

Proof. Property 1. The functions Φµ = Φµ(t), µ ∈ Z, expressed
by formula (6.2), are compositions of continuous functions, each one
mapping the interval J into itself. Hence the same is true of each Φµ.

Property 2. On interval J , the functions α, α−1 simultaneously
either increase or decrease and the functions φµ and φ−µ both increase.
Therefore, the composite functions Φµ, µ ∈ Z, expressed by formula
(6.2) increase on the interval J .

Property 3. If α increases on J , then Φµ(−∞) = α−1φµα(−∞) =
−∞, since α(−∞) = −∞, φµ(−∞) = −∞ and α−1(−∞) = −∞.
Furthermore, Φµ(+∞) = α−1φµα(+∞) = +∞ because α(+∞) = +∞,
φµ(+∞) = +∞ and α−1(+∞) = +∞. If α decreases on J , then
Φµ(−∞) = α−1φ−µα(−∞) = −∞ since α(−∞) = ∞, φ−µ(∞) = ∞
and α−1(−∞) = ∞.

Property 4. Given Φ(t) > t, then Φ2(t) = ΦΦ(t) > Φ(t) > t and,
in general, Φµ(t) > t for µ = 1, 2, 3, . . . . Inequality Φ(t) > t implies
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ΦΦ−1(t) > Φ−1(t) and hence Φ−1(t) < t, Φ−2(t) = Φ−1Φ−1(t) <
Φ−1(t) < t and, in general, Φµ(t) < t for µ = −1,−2, . . . .

Property 5. Let {φµ(t)}+∞
µ=−∞ be increasing on J . Let α increase

on J . Since φµ−1(t) < φµ(t), t ∈ J , µ ∈ Z, then φµ−1α(t) <
φµα(t). Because α−1 increases, then α−1φµ−1α(t) < α−1φµα(t) or
Φµ−1(t) < Φµ(t). The sequence {Φµ(t)}+∞

µ=−∞ is thus increasing on J .
If α decreases on J , then the details are similar, except α and α−1

decreasing causes the reversal of inequalities.

Property 6. According to Property 5, the sequence {Φµ}+∞
µ=−∞ is

either an increasing or decreasing sequence. If it increases and t̄ ∈ J is
given, then the sequence of functional values {Φµ(t̄)}+∞

µ=−∞ is increasing
and unbounded both above and below. For instance, if it was bounded
above, then it would have a finite limit A. Then A = limµ→∞ Φµ(t̄) =
Φ(lim Φµ−1(t̄)) = Φ(A), which contradicts Φ(t) > t, see Property 4.
The other details follow similarly. Thus the sequence {Φµ(t)}+∞

µ=−∞ is
normal.

7. Linear functional equations. Given constants a0, . . . , an and
distinct points t0, . . . , tn, the equation

(7.1) a0f(tn) + a1f(tn−1) + · · · + anf(t0) = 0

is called a linear functional equation. The objective is to find the
unknown function f(t). Included in (7.1) are linear difference equations,
in which only the values f(ti), i = 0, . . . , n, are required to be found.

Euler’s method for nth order linear differential equations can be
applied to (7.1), which assumes f(t) = ept for some p. Then (7.1)
holds provided

(7.2) a0ω
tn + a1ω

tn−1 + · · · + anω
t0 = 0, ω = ep.

Equation (7.2) is a characteristic equation for variable ω. Given a
solution ω of (7.2), then a solution of (7.1) is given by

(7.3) f(t) = ωt.

General dispersion theory as developed in this paper contributes to this
problem by offering a different solution pair

a0λ
n + a1λ

n−1 + · · · + anλ
0 = 0,(7.4)

f(t) = λα(t),(7.5)
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for some increasing function α(t). The contribution is nontrivial,
because (7.4) is technically routine to solve, compared to (7.2) and
(7.5) is a more general solution than (7.3). The tradeoff made is that
something has to be assumed about the distinct points t0, t1, . . . , tn,
and that is where central dispersions enter the discussion.

Determining group. The group G(φ) with group operation compo-
sition of functions will have generator φ(t) = t + 1. Then the identity
in G(φ) is φ0(t) = t and the iterates are defined by φµ(t) = t + µ,
µ ∈ Z. This choice produces the polynomial equation (7.4) as will be
seen below.

Phase function. Choose an increasing phase function α ∈Mg. The
determining group G(φ) with phase function α induces successive con-
jugate points t0, t1, . . . , tn that satisfy for i = 0, 1, . . . , n the relations

α(ti) = φi(α(t0))
= α(t0) + i.

The last calculation φi(α(t0)) = α(t0) + i is justified below in Theo-
rem 7.1.

Central dispersion solution. The function f(t) = λα(t) satisfies
for the constant C = λα(t0) the equations

f(ti) = λα(ti)

= λφiα(t0)

= λα(t0)+i see Theorem 7.1,

= Cλi because C = eα(t0).

Therefore, f(t) = λα(t) will solve (7.1) provided (7.4) holds; see the
proof of Theorem 7.2 for details.

Extensions. It may be possible to solve (7.1) for a function
f(t) = λα(t) where α is increasing and has finite oscillation O(α). All of
this depends upon representation of the points t0, . . . , tn as successive
conjugate points in group G(φ) for some increasing function α ∈Mms.
Some other directions are given in Theorems 7.3 and 7.4.
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Theorem 7.1. Let α ∈ Mg be an increasing phase function.
Let Φ = Φ(t) be a solution of the Abel functional equation (6.1) for
φ1 = t+ 1, which is a solution of the functional equation

(7.6) αΦ(t) = α(t) + 1.

The µth central dispersion Φµ(t) induced by the phase function α = α(t)
for the group G(φ), φ(t) = t+ 1, satisfies

(7.7) αΦµ(t) = α(t) + µ, t ∈ J , µ ∈ Z.

Proof. The assertion follows from formula (6.1).

Theorem 7.2. Let Φµ = Φµ(t), µ ∈ Z, be the µth central dispersion
induced by an increasing phase function α ∈ Mg for the group G(φ),
φ(t) = t + 1. Consider the homogeneous linear functional equation of
the nth order with constant coefficients ai ∈ R, i = 0, 1, . . . , n, to be
solved for unknown f(t), given by

(7.8) a0fΦn(t) + a1fΦn−1(t) + · · · + an−1fΦ1(t) + αnfΦ0(t) = 0.

Let λ be a root of the characteristic equation

(7.9) a0λ
n + a1λ

n−1 + · · · + an−1λ+ an = 0.

Then (7.8) has a continuous solution

(7.10) f(t) = λα(t).

Proof. If we substitute (7.10) into (7.8) then, according to (7.7),
we obtain a0λ

αΦn(t) + a1λ
αΦn−1 + · · · + an−1λ

αΦ1(t) + anλ
αΦ0(t) =

a0λ
α(t)+n + a1λ

α(t)+n−1 + · · · + an−1λ
α(t)+1 + anλ

α(t) = λα(t)(a0λ
n +

a1λ
n−1 + · · ·+ an−1λ+ an) = 0, since λ in the formula (7.10) is a root

of the characteristic equation (7.9), see [4].

Theorem 7.3. Let G(φ) and G(ψ) be determining groups and α ∈Mg

an increasing phase function. Let Φµ, µ ∈ Z, be central dispersions
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induced by the phase function α for the group G(φ). Let the generating
functions φ and ψ of the determining groups be connected by the Abel
functional equation

(7.11) βφ = ψβ,

where β is an arbitrary phase function from Mg. Then

(7.12) βαΦµ(t) = ψµβα, µ ∈ Z.

Proof. We know that central dispersions Φµ satisfy the Abel equation

(7.13) αΦµ = φµα, µ ∈ Z.

Equations (7.11) and (7.13) imply the following steps for µ ∈ Z:

βφµ = ψµβ

φµα = β−1ψµβα

αΦµ = φµα

= β−1ψµβα

βαΦµ = ψµβα.

The last equation is (7.12).

If in Theorem 7.3 the determining group G(ψ) has generator ψ(t) =
t+ 1, then (7.12) is of the form

(7.14) βαΦµ(t) = βα(t) + µ, µ ∈ Z.

This formula can be used for explicit solution of a linear functional
equation (7.1). Techniques of the previous theorems can be applied to
prove the following result.

Theorem 7.4. Let Φµ = Φµ(t), µ ∈ Z, be the µth central dispersion
induced by an increasing phase function α ∈ Mg for the group G(φ).
Let β be a solution of the Abel functional equation

βφ(t) = β(t) + 1.
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Then the homogeneous linear functional equation of the nth order with
constant coefficients ai ∈ R, i = 0, 1, . . . , n,

a0fΦn(t) + a1fΦn−1(t) + · · · + an−1fΦ1(t) + anfΦ0(t) = 0,

has a solution in the form

f(t) = λβα(t),

where λ is a root of the characteristic equation

a0λ
n + a1λ

n−1 + · · · + an−1λ+ an = 0.

REFERENCES

1. O. Bor̊uvka, Linear differential transformations of the second order, The
English University Press, London, 1971.

2. A.O. Gelfond, The method of finite differences, State Publisher of Technical
Literature, Moscow-Leningrad, 1952.

3. P. Hartman, Unrestricted n-parameter families, Rend. Circ. Mat. Palermo (2)
7 (1958), 123 142.

4. M. Laitoch, To the theory of linear difference equations, Acta Univ. Palacky
Olomouc, F.R.N. 97 (1984), 11 24.
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