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NIMLIKE GAMES
WITH GENERALIZED BASES

ARTHUR HOLSHOUSER AND HAROLD REITER

ABSTRACT. In several earlier papers [4] and [5], we dis-
cussed single pile games of Nim in which the number of coun-
ters that can be removed varies during the play of the game.
In [6] we showed how to effectively play the single-pile game in
which the number of counters that can be removed is a func-
tion of the number removed on the previous move. In that
paper we constructed a number base and showed that in the
winning strategy, the winning player can reduce the number
of summands in a certain representation of the current pile
size. In this paper, we reverse the situation by starting with
an arbitrary base, and then construct a game whose winning
positions are determined by the base. In particular, the win-
ning strategy for such games consists of reducing the number
of summands in the representation, with respect to this base,
of the current pile size. In the Appendix we have worked
through an example that illustrates all of the concepts given
in this paper.

1. Definition. A number base is a strictly increasing sequence
B = (b0 = 1, b1, b2, . . . ) of positive integers. B can be finite or infinite.

In this paper we will consider B to be infinite. The reader can prove
analogous results when B is finite. The following theorem is well known.
The proof is given for the sake of completeness.

Theorem. Let B be an infinite number base. Then each positive
integer N can be represented as N = bi1 + bi2 + · · · + bit

, where
bi1 ≤ bi2 ≤ · · · ≤ bit

and each bij
belongs to B, by the following

recursive algorithm.

First, we represent the number 1 by 1 = b0. If 1, 2, 3, . . .m − 1
have been represented by the algorithm, then m can be represented as
follows: Let bk denote the largest element of B not exceeding m. That
is, bk ≤ m < bk+1. Then m = (m − bk) + bk and m − bk < bk+1. If
m − bk = 0 then the algorithm is finished.
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If 1 ≤ m− bk then, since m− bk is less than m, it follows that m− bk

has been represented by the algorithm as m−bk = bi1 +bi2 + · · ·+bit−1 ,
where bi1 ≤ bi2 ≤ · · · ≤ bit−1 ≤ bk and each bij

belongs to B. Note that
bit−1 ≤ bk since bit−1 < bk+1 and bk is the member of B that comes
right before bk+1. Then m = bi1 + bi2 + · · · + bit

where bit
= bk and

bi1 ≤ bi2 ≤ · · · ≤ bit
and each bij

belongs to B.

As an example, let B = (1, 5, 20, 60, 90, . . . ). Then 89 = 1 + 1 + 1 +
1 + 5 + 20 + 60 = b0 + b0 + b0 + b0 + b1 + b2 + b3.

Definition. Let B = (b0 = 1, b1, b2, . . . ) be an infinite number
base. For any positive integer N , let N = bi1 + bi2 + · · · + bik

,
bi1 ≤ bi2 ≤ · · · ≤ bik

, be the representation of N in B that is given
by the above algorithm. Then we define ḡ(N) = bi1 . Thus, in the
example above, ḡ(89) = 1. For convenience, we define ḡ(0) = ∞. More
examples are given in the Appendix.

Remark. The material that follows is also a solution to the problem
we alluded to in the Introduction of the paper, namely the finding of
a game for a given base. We state this problem in Section 3 of the
paper because many readers will understand the concepts much better
at that time. However, a few readers, depending on their background,
may prefer to turn to the end of the paper and read the problem first.

Definition. Let Z+ denote the set of positive integers, and B is
any infinite number base. Let f : Z+ → {0} ∪ Z+ be any function
that satisfies the following two conditions. For all N ∈ Z+, let
N = bi1 + bi2 + · · · + bit

, bi1 ≤ bi2 ≤ · · · ≤ bit
be the representation of

N in B that is computed by the algorithm. Then

1. bi1−1 ≤ f(N) < bi2 when t ≥ 2, and

2. bi1−1 ≤ f(N) < ∞ when t = 1.

If bi1 = b0 = 1, then we agree that b0−1 = b−1 = 0. Note that bi1−1

is the member of B that comes just before ḡ(N) = bi1 .

Thus in the base B = (1, 5, 20, 60, 90, . . . ) used earlier, we must have
0 = b−1 = bi1−1 ≤ f(89) < bi2 = b0 = 1 since bi1 = bi2 = b0 = 1. This
means that f(89) = 0. As another example, let B = (1, 2, 4, 8, 16, . . . ).
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Now 12 = 4 + 8 = b2 + b3 = bi1 + bi2 . Therefore, b1 = bi1−1 ≤ f(12) <
bi2 = b3 which means 2 ≤ f(12) < 8.

2. General framework of the game. Let B = (b0 = 1, b1, b2, . . . )
be an infinite number base, and let f : Z+ → {0} ∪ Z+ be a function
satisfying the two conditions above. Two players alternate removing
a positive number of counters from a single pile of counters with the
winner being the player who makes the last move in the game. An
ordered pair of nonnegative integers (N, x) is called a position in the
game. The number N represents the current pile size, and x represents
the greatest number of counters that can be removed on the next, i.e.,
current, move. Thus if the moving player were facing a position (10, 4),
then he could remove 1, 2, 3 or 4 counters. If the moving player were
facing (3, 7), then he could remove 1, 2, or 3 counters. A position
(N, x) is a terminal position if and only if N = 0 or x = 0, and the
winner is the first player to move to a terminal position.

Specific rules of the game. A move in this game is defined as
an ordered pair of positions (N, x) �→ (N − k, f(N)), where 1 ≤
k ≤ min(N, x). If we call the move after the current move the
succeeding move, then we see that f determines the maximum size
of the succeeding move in terms of the current pile size. The initial
position, (N0, x0) will be given.

As an example, suppose (N0, x0) = (100, 79). If the player moving
first removes k = 15 counters and f(100) = 5, then the new position
becomes (100, 79) �→ (100− 15, f(100)) = (85, 5). This means the next
player can remove from the 85 counter pile either 1, 2, 3, 4 or 5 counters.
Suppose the next player removes 4 counters and f(85) = 3. Then the
new position becomes (85, 5) �→ (85 − 4, f(85)) = (81, 3). The next
player can remove 1, 2 or 3 counters from the 81 counter pile. This
continues until a player cannot move, and the winner is the player who
makes the last move.

Suppose we play the game that we have just specified.

Definition. A position (N, x) is called unsafe if it is unsafe to move
to it. Since the player who moves to an unsafe position loses with best
play, the player who moves from an unsafe position can always win.
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Similarly, a position is safe if it is safe to move to it. For every positive
integer N , we define g(N) to be the positive integer such that the
position (N, x) is unsafe if g(N) ≤ x and (N, x) is safe if 0 ≤ x < g(N).
Also, we agree that g(0) = ∞. This means that for a pile size of N ≥ 1
counters, g(N) is the smallest winning move size. That is, g(N) is the
smallest number of counters the moving player can remove to get to
a safe position. Of course, this means the removal of any x counters,
1 ≤ x < g(N), would result in an unsafe position. It is obvious that
1 ≤ g(N) ≤ N .

Note. Some authors use the terminology “P -positions,” “N -positions,”
respectively, for the terms safe and unsafe positions.

Observation. Note that the function g : Z+ → Z+, g(0) = ∞ can
be computed recursively as follows. First note that g(1) = 1. Also,
suppose g(1), g(2), . . . , g(N − 1), N ≥ 2 have been computed. Then
g(N) is the smallest i ∈ {1, 2, 3, . . . , N} such that f(N) < g(N − i).
Note that g(N − N) = g(0) = ∞. We deal with this more in the
Appendix.

Theorem. Let B = (b0 = 1, b1, b2, . . . ), and f : Z+ → {0} ∪ Z+

satisfy conditions 1 and 2 above. Let ḡ and g be the functions defined
earlier. Then for all N ∈ Z+, g(N) = ḡ(N).

Proof. We will prove this by mathematical induction on N . Now
g(1) = 1 and also ḡ(1) = 1. So the induction is started. Suppose that,
for all k ∈ {1, 2, 3, . . . , N − 1}, g(k) = ḡ(k) where N − 1 ≥ 1. We now
show that g(N) = ḡ(N).

Let N = bi1 +bi2 + · · ·+bit
, bi1 ≤ bi2 ≤ · · · ≤ bit

be the representation
of N in B that is computed by the algorithm. We need to show that
g(N) = ḡ(N) = bi1 . By the observation, we know that g(N) =
g(bi1 + bi2 + · · · + bit

) is the smallest i ∈ {1, 2, 3, . . . , N} such that
f(N) < g(N − i) = g(bi1 + bi2 + · · ·+ bit

− i) = ḡ(bi1 + bi2 + · · ·+ bit
− i)

since, by induction, g(N − i) = ḡ(N − i) when i ∈ {1, 2, 3, . . . , N}.
Now when i ∈ {1, 2, 3, . . . , bi1 − 1}, it follows from the definition of the
algorithm that ḡ(N − i) = ḡ(bi1 + bi2 + · · · + bit

− i) = ḡ(bi1 − i). The
reader might like to use a specific example to see this more easily.
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Also, when i ∈ {1, 2, 3, . . . , bi1 −1} we see that ḡ(bi1 −i) ≤ bi1−1 since
bi1 − i < bi1 . Of course, when i = bi1 − bi1−1 we have ḡ(bi1 − i) = bi1−1.
This means equality can occur, and this fact is needed in the proof of
the converse theorem. Now by the definition of f , we know that f(N) =
f(bi1 +bi2 + · · ·+bit

) ≥ bi1−1. Therefore, when i ∈ {1, 2, 3, . . . , bi1 −1},
we have f(N) ≥ bi1−1 ≥ ḡ(bi1 − i) = ḡ(N − i) = g(N − i). That is,
f(N) ≥ g(N − i). Let us next suppose t ≥ 2. Now when i = bi1 , we
have by induction g(N − i) = ḡ(N − i) = ḡ(bi2 + bi3 + · · · + bit

) = bi2 .

Now f(N) = f(bi1 + bi2 + · · · + bit
) < bi2 . Therefore, when i =

bi1 , f(N) < bi2 = g(N−i) = g(N−bi1). Therefore, g(N) = bi1 = ḡ(N).
Of course, if N = bi1 , the proof is trivial to finish.

3. The converse theorem.

Converse theorem. Suppose B = (b0 = 1, b1, b2, . . . ) is an infinite
number base, ḡ is defined for B as above, and f : Z+ → {0} ∪ Z+ is
a function. Suppose we play this game with f and define g as we did
previously. Finally, suppose g = ḡ. Then f must satisfy conditions 1
and 2 above. We leave this proof to the reader.

The material in this paper is a solution to the following problem.

Problem. Let B denote an infinite number base (b0 = 1, b1, b2, . . . ).
For every positive integer N, ḡ(N) is defined for N using this base
B. We wish to specify the rules of a nontrivial game that has the
following properties. Two players alternate removing a positive number
of counters from a single pile of counters with the winner being the
player who makes the last move in the game. An ordered pair of
nonnegative integers (N, x) is called a position in the game. The
number N represents the current size of the pile of counters, and x
represents the greatest number of counters that can be removed on the
next, i.e., current, move. Thus a move in the game is an ordered pair
of positions (N, x) �→ (N − k, x̄), where 1 ≤ k ≤ min(N, x) and where
x̄ is specified by the rules of the game. A position (N, x) is a terminal
position if and only if N = 0 or x = 0, and the winner is the first
player to move to a terminal position. We wish to devise the rules
of the game so that for any positive integer N , the position (N, x) is
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unsafe if ḡ(N) ≤ x and is safe if 0 ≤ x < ḡ(N). Also, when ḡ(N) ≤ x,
we would like the removal of ḡ(N) counters from a pile of N counters
to be a winning move.

Acknowledgement. The game studied in this paper, although dif-
ferent from, was nevertheless influenced by a game studied by James
Rudzinski, a UNC Charlotte undergraduate. The authors also acknowl-
edge the referee, who made some valuable suggestions.

Appendix

If x ≤ y are integers, then [x, y) = {x, x + 1, x + 2, . . . , y − 1}. Thus
[x, x) is empty. Let B = (1, 3, 7, . . . ). Then 1 = 1, 2 = 1 + 1, 3 = 3, 4 =
1 + 3, 5 = 1 + 1 + 3, 6 = 3 + 3, 7 = 7. As always, g(N) is the smallest
i ∈ {1, 2, 3, . . . , N} such that f(N) < g(N − i),

N 0 1 2 3 4 5 6 7
f(N) [0,∞) 0 [1,∞) [0,3) 0 [1,3) [3,∞)
ḡ(N) ∞ 1 1 3 1 1 3 7
g(N) ∞ 1 1 3 1 1 3 7

The table and the results of the paper show, for example, that the
positions (7, i) are safe for 1 ≤ i ≤ 6. Similarly, (6, i) is safe for
i ∈ {1, 2}, and unsafe for i ≥ 3. It follows that the only winning
move from (6, 3) is to (3, f(6)).
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