ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 35, Number 2, 2005

GOING-DOWN IMPLIES GENERALIZED GOING-DOWN

DAVID E. DOBBS AND ANDREW J. HETZEL

ABSTRACT. It is proved that if a unital homomorphism f of commutative rings satisfies the going-down property GD, then f also satisfies the infinitistic variant, the generalized going-down property GGD (that is, f exhibits going-down behavior for prime ideal chains of arbitrary cardinality).

1. Introduction. All rings considered below are commutative with identity; all ring homomorphisms are unital. Adapting notation for ring extensions in [9, p. 28], we let GU, GD, and LO denote the going-up, going-down and lying-over properties, respectively, for ring homomorphisms. As in [5], respectively [6], we let GGD, respectively GGU, denote the generalized going-down, respectively generalized going-up, property. Intuitively, GGD, respectively GGU, is the generalization of the usual GD, respectively GU, property when predicated for chains of prime ideals of arbitrary cardinality. Evidently, $GGD \Rightarrow GD$, respectively $GGU \Rightarrow GU$, and it is natural to ask if the converse is valid. A partial converse was obtained in [2, Remark (a)], respectively [2, Theorem], where it was shown that $GD \Rightarrow GGD$, respectively $GU \Rightarrow$ GGU, for ring extensions $A \subseteq B$ such that each chain of prime ideals of A is well-ordered by reverse inclusion, respectively by inclusion. Subsequently, [5] identified many other contexts in which $GD \Rightarrow GGD$. Additional positive evidence appeared in [3, Theorem 2.4], in which the implications $GD \Rightarrow GGD$ and $GU \Rightarrow GGU$ were shown to hold for ring homomorphisms satisfying the strong going-between property SGB (a lifting property for chains that had been introduced by G. Picavet in [11]). It was also shown that SGB is equivalent to its infinitistic variant, GSGB [3, Corollary 2.3]. Then, at a conference in Venice in June 2002, Kang and Oh announced that $GU \Rightarrow GGU$ for unital ring extensions; it then follows via standard homomorphism theorems that $GU \Rightarrow GGU$ for arbitrary ring homomorphisms. We have benefited from access to the Kang-Oh result [8, Corollary 12] in preprint form.

Received by the editors on October 8, 2002, and in revised form on December 3, 2002.

Copyright ©2005 Rocky Mountain Mathematics Consortium

D.E. DOBBS AND A.J. HETZEL

Indeed, the main purpose of this note is to resolve the nature of GGD by proving that $GD \Rightarrow GGD$ for arbitrary ring homomorphisms.

The proof of Theorem 2.2 shows, in effect, that the implications GD \Rightarrow GGD and GU \Rightarrow GGU are logically equivalent. The main agent that we use in establishing Theorem 2.2 is the connection between the Zariski topology and the flat topology, as in [4]. An interesting characterization of the flat topology identifies it as the result of applying the "opposite-order topology" of Hochster [7, Proposition 8] to the Zariski topology, cf. also [10, p. 88], [4, Remark 2.3 (a)]. However, order does not determine spectral topologies except in special cases, cf. [7, pp. 57–58], and so one needs a mixture of order-theoretic and topological reasoning to pass between going-down behavior and goingup behavior. The passage is effected in the proof of Theorem 2.2, with the key technical step isolated in Lemma 2.1 (c). For the sake of completeness, Lemma 2.1 contains ample supporting material on the flat topology.

We next summarize some notational conventions. Let A be a ring. Then $X := \operatorname{Spec}(A)$ describes the *set* of all prime ideals of A; and X_F denotes the topological space in which the set X is endowed with the flat topology, as described in Lemma 2.1 (a). Following [1], we let $V(I) := V_A(I) := \{P \in X \mid I \subseteq P\}$ for any ideal I of A; $X_g := \{P \in X \mid g \notin P\}$ for any $g \in A$; and af : $\operatorname{Spec}(B) \to \operatorname{Spec}(A)$ the canonical function, $Q \mapsto f^{-1}(Q)$, for any ring homomorphism $f: A \to B$. As in [7], a spectral space is a topological space that is homeomorphic to $\operatorname{Spec}(A)$, endowed with the Zariski topology, for some ring A; and a spectral map is a continuous function between spectral spaces for which the inverse image of each quasi-compact open set of the codomain is quasi-compact in the domain.

2. Results. We begin by collecting some elementary but useful facts about the flat topology. Lemma 2.1 (c) is needed for the key step in the proof of Theorem 2.2. Although Lemma 2.1 (c) may be known, its proof is included for lack of a convenient reference.

Lemma 2.1. (a) Let A be a ring and X := Spec(A). Then the sets of the form X_q , where $g \in A$, form a subbasis for the closed sets of X_F .

480

(b) Let A be a ring and X := Spec(A). Then the quasi-compact open sets of X_F are the sets of the form $\cup V(I_i)$, where $\{I_i\}$ is a finite set of finitely generated ideals of A.

(c) Let $f : A \to B$ be a ring homomorphism, with X := Spec(A) and Y := Spec(B). Then ${}^{a}f : Y_{F} \to X_{F}$ is a spectral map.

Proof. (a) According to [4, Theorem 2.2], the flat topology on X is the coarsest topology on X for which X_g is closed for each $g \in A$. Thus, the typical closed set in X_F is the intersection of arbitrarily many sets of the form $X_{g_1} \cup \cdots \cup X_{g_n}$, for $g_i \in A$, and we have inferred a reformulation of the assertion.

(b) By [4, Theorem 2.2], the typical open set U in X_F is of the form $U = \bigcup V(I_i)$, where $\{I_i\}$ is a set of finitely generated ideals of A. As each $V(I_i)$ is open in X_F , it follows that if U is quasi-compact in X_F , the open subcover of U by $\{V(I_i)\}$ has a finite subcover, thus yielding finitely many indexes i_1, \ldots, i_n such that $U = V(I_{i_1}) \bigcup \cdots \bigcup V(I_{i_n})$. Conversely, to show that any such finite union is quasi-compact in X_F , we need only consider the case n = 1, for the union of finitely many quasi-compact subsets is necessarily quasi-compact. We shall show, in fact, that if I is any ideal of A, then V(I) is quasi-compact in X_F .

Consider the ring $\overline{A} := A/I$, the set $Z := \operatorname{Spec}(\overline{A})$, and the bijection $\sigma : V_A(I)_F \to Z_F$, given by $\sigma(Q) = Q/I$ for all $Q \in V(I)$. (The notation $V_A(I)_F$ refers to the subspace topology inherited by $V_A(I)$ from X_F .) It is enough to show that σ is a homeomorphism, for Z_F is quasi-compact, cf. [7, Proposition 8], [4, Remark 2.3 (a)]. Thus, it suffices to prove that σ sends the typical basic closed set K in $V_A(I)_F$ to the typical basic closed set L in Z_F .

Now, by (a) and the definition of the subspace topology, $K = V_A(I) \cap (\cup X_{g_i})$, where $\{g_i\}$ is a finite subset of A. On the other hand, [4, Theorem 2.2] allows us to write $L = Z \setminus V_{\overline{A}}(\sum \overline{A}h_i)$, for some finite set $\{h_i\} \subseteq \overline{A}$. For each i, write $h_i = g_i + I$, with $g_i \in A$. By [1, (2) p. 98], $L = Z \setminus \cap V_{\overline{A}}(\overline{A}h_i) = \cup (Z \setminus V_{\overline{A}}(\overline{A}h_i)) = \cup Z_{h_i}$. To show that $\sigma(K) = L$, it suffices (since σ commutes with unions) to observe that $\sigma(V_A(I) \cap X_{g_i}) = \{Q/I \in Z \mid Q \in X, I \subseteq Q, g_i \notin Q\} = \{\mathfrak{Q} \in Z \mid h_i \notin \mathfrak{Q}\} = Z_{h_i}$, for each i.

(c) Recall, cf. [7, Proposition 8], [10, p. 88], [4, Remark 2.3 (a)], that Y_F and X_F are spectral spaces. Moreover, it is easy to see that

D.E. DOBBS AND A.J. HETZEL

 ${}^{a}f: Y_{F} \to X_{F}$ is continuous, cf. [4, Remark 2.3 (e)]. Thus, it remains to show that if U is a quasi-compact open set in X_{F} , then $({}^{a}f)^{-1}(U)$ is a quasi-compact subset of Y_{F} . As $({}^{a}f)^{-1}$ commutes with unions, (b) permits us to assume that U = V(I), where $I = \sum Ag_{i}$ for some finite set $\{g_{i}\} \subseteq A$. Put $h_{i} := f(g_{i}) \in B$. It now suffices to repeat the essential calculation in the proof of [1, Proposition 13, p. 101]. Indeed, observe that

$${}^{(a}f)^{-1}(U) = \left\{ Q \in Y \mid (^{a}f)(Q) \in V_{A}\left(\sum Ag_{i}\right) \right\}$$
$$= \left\{ Q \in Y \mid \sum Ag_{i} \subseteq f^{-1}(Q) \right\}$$
$$= \left\{ Q \in Y \mid f(g_{i}) \in Q \text{ for all } i \right\} = V_{B}\left(\sum Bh_{i}\right),$$

which is quasi-compact by (b). The proof is complete. \Box

We next present our main result.

Theorem 2.2. Let $f : A \to B$ be a ring homomorphism. Then f satisfies GGD if and only if f satisfies GD.

Proof. The "only if" assertion is trivial. Conversely, assume that f satisfies GD. Let $\mathcal{C} := \{P_{\alpha} \mid \alpha \in I\}$ be an increasing chain in $X := \operatorname{Spec}(A)$; that is, $P_{\alpha} \subseteq P_{\beta}$ whenever $\alpha \leq \beta$ in I. Let $P \in X$ be such that $P_{\alpha} \subseteq P$ for all $\alpha \in I$; let $Q \in Y := \operatorname{Spec}(B)$ be such that $f^{-1}(Q) = P$. Our task is to find an increasing chain $\mathcal{D} := \{Q_{\alpha} \mid \alpha \in I\}$ in Y such that $f^{-1}(Q_{\alpha}) = P_{\alpha}$ and $Q_{\alpha} \subseteq Q$ for each $\alpha \in I$.

First, we reduce to the case in which f also satisfies LO. To do so, replace $f: A \to B$ with the canonically induced ring homomorphism $A_P \to B_Q$. Of course, the latter map satisfies LO since $A \to B$ satisfies GD and Q lies over P, cf. [9, Exercise 38, p. 45]; moreover, $A_P \to B_Q$ evidently inherits GD from $A \to B$. If we show that a suitable increasing chain \mathcal{E} in Spec (B_Q) covers $\{P_\alpha \mid \alpha \in I\}$, then it suffices to take \mathcal{D} to be the canonical chain in Y that is the image of \mathcal{E} . By *abus de langage*, we replace (A, B) with (A_P, B_Q) and, thus, suppose henceforth that f satisfies (GD and) LO.

By Lemma 2.1 (c), ${}^{a}f : Y_F \to X_F$ is a spectral map. Since f satisfies LO, ${}^{a}f$ is also surjective. Thus, a realization result of Hochster

[7, Theorem 6 (a)] yields a ring homomorphism $g : C \to D$ such that, when Spec (C) and Spec (D) are each endowed with the Zariski topology, one has homeomorphisms $h_1 : X_F \to \text{Spec}(C)$ and $h_2 : Y_F \to \text{Spec}(D)$ satisfying $({}^ag) \circ h_2 = h_1 \circ ({}^af)$.

Recall from [7, p. 53] that any T_0 -topological space Z has an intrinsic partial order \leq_Z defined as follows: for $u, v \in Z, u \leq_Z v \Leftrightarrow v$ is in the closure of $\{u\}$. (For instance, if Z = Spec(R) with the usual Zariski topology, then \leq_Z is just inclusion, \subseteq , on Z.) It follows easily that any homeomorphism of spectral spaces induces an order isomorphism of posets. We claim that it now follows that $g: C \to D$ satisfies GU. To prove this claim, we need only observe that "going-up" behavior is exhibited (with respect to \leq_{Y_F} and \leq_{X_F}) in ${}^af: Y_F \to X_F$; and this, in turn, follows from the hypothesis that f satisfies GD, in view of the fact [7, Proposition 8] that the intrinsic partial order \leq_{Y_F} , respectively \leq_{X_F} , is the opposite of the Zariski-induced intrinsic partial order on Y, respectively X.

Observe that $\{P_{\alpha}\}$ is a decreasing chain with respect to \leq_{X_F} ; that is, $P_{\alpha} \geq_{X_F} P_{\beta}$ whenever $\alpha \leq \beta$ in *I*. Hence, $\{h_1(P_{\alpha}) \mid \alpha \in I\}$ forms a decreasing chain in Spec (*C*); in particular, $h_1(P_{\alpha}) \supseteq h_1(P_{\beta}) \supseteq h_1(P)$ whenever $\alpha \leq \beta$ in *I*. Moreover, since *g* satisfies GU, the result of Kang-Oh [8, Corollary 12] that was mentioned in the Introduction ensures that *g* satisfies GGU. Therefore, there exists a decreasing chain $\{W_{\alpha} \mid \alpha \in I\}$ in Spec (*D*) such that $g^{-1}(W_{\alpha}) = h_1(P_{\alpha})$ and $W_{\alpha} \supseteq h_2(Q)$ for each $\alpha \in I$. Using the homeomorphism h_2^{-1} , we may construct the chain $\{h_2^{-1}(W_{\alpha}) \mid \alpha \in I\}$. Observe that $\binom{af}{h_2^{-1}(W_{\alpha})} = (h_1^{-1} \circ \binom{ag}{Q})(W_{\alpha}) = P_{\alpha}$ for each $\alpha \in I$; since \leq_{Y_F} is \supseteq , that $h_2^{-1}(W_{\alpha}) \subseteq Q$ for each $\alpha \in I$; and, similarly, that $h_2^{-1}(W_{\alpha}) \subseteq h_2^{-1}(W_{\beta})$ whenever $\alpha \leq \beta$ in *I*. Therefore, it suffices to take $\mathcal{E} := \{h_2^{-1}(W_{\alpha}) \mid \alpha \in I\}$, viewed as a chain in *Y*. \Box

Acknowledgments. The authors wish to thank Marco Fontana for conversations about GGD and GGU; Gabriel Picavet for correspondence concerning the possibility of adapting the methods of [8] to studying the GGD property; and Byung Gyun Kang and Dong Yeol Oh for helpful criticism.

REFERENCES

1. N. Bourbaki, Commutative algebra, Addison-Wesley, Reading, 1972.

2. D.E. Dobbs, A going-up theorem for arbitrary chains of prime ideals, Comm. Algebra 27 (1999), 3887–3894; corrigendum 28 (2000), 1653–1654.

3. ———, On the strong going-between and generalized going-down properties of ring homomorphisms, Internat. J. Commutative Rings **2** (2003), 73–81.

4. D.E. Dobbs, M. Fontana and I.J. Papick, On the flat spectral topology, Rend. Mat. 1 (4) (1981), 559–578.

5. D.E. Dobbs, M. Fontana and G. Picavet, *Generalized going-down homomorphisms of commutative rings*, in *Commutative ring theory and applications*, Lecture Notes in Pure and Appl. Math., vol. 231, Dekker, New York, 2002.

6. A.J. Hetzel, Generalized going-up homomorphisms of commutative rings, in Commutative ring theory and applications, Lecture Notes in Pure and Appl. Math., vol. 231, Dekker, New York, 2002.

7. M. Hochster, *Prime ideal structure in commutative rings*, Trans. Amer. Math. Soc. **142** (1969), 43–60.

8. B.G. Kang and D.Y. Oh, Lifting up a tree of prime ideals to a going-up extension, J. Pure Appl. Algebra 182 (2003), 239–250.

9. I. Kaplansky, Commutative rings, rev. ed., Univ. Chicago Press, Chicago, 1974.

10. G. Picavet, Autour des idéaux premiers de Goldman d'un anneau commutatif, Ann. Univ. Clermont-Ferrand 44 (1975), 73–90.

11. ——, Universally going-down rings, 1-split rings and absolute integral closure, Comm. Algebra 31 (2003), 4655–4681.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TENNESSEE, KNOXVILLE, TENNESSEE 37996-1300

 $E\text{-}mail\ address:\ \texttt{dobbs}\texttt{Qmath.utk.edu}$

 $E\text{-}mail\ address:\ \texttt{hetzel}@ulm.edu$