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QUANTUM PROJECTIVE 3-SPACES WHICH
EMBED WEIGHTED QUANTUM PLANES

GEOFFREY D. DIETZ, RYAN S. HIGGINBOTTOM

AND D.R. STEPHENSON

ABSTRACT. Let A be an Artin-Schelter regular algebra of
global dimension 3 having 3 generators of weights (1, 1, 2). All
such algebras have been classified. We use these classification
results to study some Artin-Schelter regular algebras of global
dimension 4 having 4 generators and 6 quadratic defining
relations.

To be precise, the 2-Veronese ring A(2) has 4 generators
and 7 quadratic defining relations. We study certain Artin-
Schelter regular algebras S of global dimension 4 which have
A(2) as a graded quotient algebra. Thus, the defining rela-
tions of S are obtained by finding appropriate 6-dimensional
subspaces of the space of defining relations of A(2). In this
article, we focus on the case where A is an Ore extension of
the algebra kq [x, y] = k〈x, y | yx − qxy〉.

We study the geometry of these regular algebras of dimen-
sion 4 by determining the associated varieties of point mod-
ules.

1. Introduction. In recent years, a notion of projective geometry
for noncommutative graded rings has grown out of work of Artin, Tate
and Van den Bergh [2, 3]. In the classical, commutative theory of
projective geometry, graded polynomial rings k[x0, . . . , xn] play an
important role as homogeneous coordinate rings of projective linear
spaces. In the theory of quantum projective geometry, this role is
played by the Artin-Schelter regular, or simply regular, algebras. An
interesting aspect of the associated quantum projective spaces is that
they often contain fewer points than their commutative counterparts.

Throughout this paper, the term algebra is used to denote an asso-
ciative algebra with unity over an algebraically closed field k. We work
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with N-graded algebras; that is, we assume the algebra A has a k-
vector space decomposition A = ⊕i≥0Ai such that AiAj ⊆ Ai+j for all
i, j. We work only with algebras which are locally finite, meaning that
each Ai is a finite dimensional k-vector space, and connected graded,
meaning that A0 = k.

A regular algebra is a graded k-algebra A satisfying a series of
properties originally given in [1]. In particular, we require A to have
finite global (homological) dimension d and polynomial growth and to
satisfy the following version of the Gorenstein condition:

Exti
A(Ak, A) =

{
0 if i �= d

kA(e) for some e ∈ Z if i = d.

Here, Ak, respectively kA, denotes the field k considered as a left,
respectively right, A-module.

If S is a regular algebra of global dimension n+1 with n+1 generators
of degree 1 and n(n + 1)/2 quadratic defining relations, then it is
natural to think of the noncommutative scheme defined by S as a
quantum projective space of dimension n, denoted Pn

q . For generalities
on quantum schemes defined by noncommutative graded rings, see [4].

Regular algebras of global dimension 2 are easy to classify completely,
and examples of P1

q are well understood. Regular algebras of global
dimension 3 that are generated by elements of degree one were classified
by Artin and Schelter [1], and a corresponding classification for algebras
not generated in degree one was completed by Stephenson [10, 11]. A
regular algebra of global dimension 3 with 3 generators, not all of which
are in degree 1, can be thought of as determining a ‘weighted quantum
plane.’

This paper is concerned with examples of P3
q which arise from em-

beddings of weighted quantum planes. This is meant to mimic the
following commutative situation. Consider the commutative polyno-
mial ring A = k[x, y, z] with grading induced by deg (x, y, z) = (1, 1, 2).
The grading on A induces an action of k∗ on the open affine A3 \ {0}
defined by (a1, a2, a3) �→ (λa1, λa2, λ

2a3), and the resulting quotient
space is the weighted projective plane P(1, 1, 2). The 2-Veronese ring
A(2) may be presented with 4 generators (w0 = x2, w1 = xy, w2 = y2

and w3 = z) and 7 quadratic relations. There are six relations of the
form wiwj = wjwi, and the other relation is w2

1 = w0w2. In this way
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we see that P(1, 1, 2) is embedded in P3 = Projk[w0, w1, w2, w3] as the
singular quadric cone defined by the vanishing of w2

1 − w0w2. The ho-
mogeneous coordinate ring of this cone with respect to this embedding
is precisely A(2).

We study the analogous process in the noncommutative setting in or-
der to produce regular algebras of global dimension 4 with 4 generators
and 6 quadratic relations. Our starting point is a regular algebra A of
global dimension 3 with three generators of weights (1, 1, 2). Such an al-
gebra is known to be an Ore extension A = R[z; σ, δ], where R = k〈A1〉
is a regular algebra of global dimension 2 and deg (z) = 2 [10, Proposi-
tion 3.10]. Here, σ is a graded automorphism of R and δ is a graded left
σ-derivation of degree 2. The 2-Veronese algebra A(2) has 4 generators
of degree 1 and 7 quadratic defining relations, and A(2) = R(2)[z; σ, δ].
The goal is to find regular algebras of global dimension 4 as quotients
of the free algebra on A2 by factoring out appropriate 6-dimensional
subspaces of the space of relations of A(2).

We should remark that this process is similar to that employed in
[5], in which the authors study 4-dimensional regular algebras mapping
onto the 2-Veronese of certain regular algebras of global dimension 3.
The main difference is that in [5], the authors started with regular
algebras which were generated by two elements of degree 1, whereas our
starting point is a regular algebra minimally generated by 3 elements in
degrees (1, 1, 2). Intuitively, the regular algebras of dimension 4 studied
in [5] arise from embeddings of a quantum nonsingular quadric P1×P1,
whereas our regular algebras of dimension 4 arise from embeddings of
a (singular) quantum cone.

In Section 2, we introduce the notion of the twist of a graded algebra;
see [17]. We use this to show that there is a natural choice for a regular
algebra C of global dimension 3 with 3 generators of degree 1 and 3
quadratic relations which maps onto R(2).

Let HS(t) =
∑

i dimk(Si)ti be the Hilbert series of the graded ring
S. In the remainder of the paper, we determine Noetherian regular
algebras S of global dimension 4 with 4 generators of degree 1 and 6
quadratic defining relations such that HS(t) = (1− t)−4, C is a graded
subring of S, and S maps onto A(2). Thus, we are classifying certain
quadratic regular algebras S of global dimension 4 which fit into the
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following commutative diagram of graded algebras:

C

�

�

� � S

�

�

R(2)
� � A(2) = R(2)[z; σ, δ]

Theorem 1.1. With the above notation and assumptions, the algebra
S is Noetherian and regular with HS(t) = (1 − t)−4 if and only if S
is isomorphic to an Ore extension S = C[z; σ′, δ′] for some graded
automorphism σ′ of C and some graded left σ′-derivation δ′ on C of
degree 1.

See Theorem 2.9 for the full statement of this result. It is known that,
in some cases, there are regular algebras of global dimension 4 mapping
onto A(2) which do not have C as a graded subring. The classification
of such algebras is not dealt with in this paper but is a valid avenue for
further work.

In [13], a list of all possible regular algebras of global dimension 3
having weight (1, 1, 2) is given, and we will use this as our starting
point. Due to the scope of this task, in this article we focus only on
the case where R = kq[x, y] = k〈x, y | yx− qxy〉. We compute both the
relations of the ring A(2) and the ring C, and we then use Theorem 1.1
to determine all of the graded rings S.

We end the paper by studying the geometry of the quantum spaces
P3

q given by the regular algebras S we have defined. As in [2], it is
natural to think of the points of the quantum space in terms of isomor-
phism classes of certain graded S-modules called point modules. The
isomorphism classes of point modules over S are in natural bijection
with the closed points of the graph of an automorphism of a subscheme
V of P3, [16, Theorem 1.10].

The standard approach is to determine this graph as a subscheme of
P3 × P3 by multilinearizing the defining relations of S, and then to
determine V by projecting the graph onto a single copy of P3. We
accomplish this by a process that is easier to handle computationally
using the following result.
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Theorem 1.2. Let C be a regular algebra of global dimension 3 which
is isomorphic to a graded twist of the polynomial ring k[w0, w1, w2] with
the usual gradation. Let σ′ be a graded automorphism of C and let δ′

be a graded left σ′-derivation on C of degree 1. Then the scheme of
points in the noncommutative scheme P3

q defined by S = C[z; σ′, δ′]
is the subscheme of P3 defined by the vanishing of three specific cubic
polynomials.

See Theorem 3.1 for the precise form of the cubic polynomials.

For most of the algebras S in our classification, we describe the
varieties, i.e. reduced schemes, given by the associated scheme of points.
Because of the number of special cases involved, we leave cases where
qn = 1 for n ∈ {1, 2, 3} for future work.

Remark 1.3. We produce quadratic regular algebras of global dimen-
sion 4 with the following point varieties:

P3

quadric cone

quadric cone + 1 line (intersecting either at the vertex or in 2 distinct points)

smooth quadric surface + 1 line

1 plane + n lines, where n ∈ {0, 1, 2, 3}
2 planes + 1 line

n lines, where n ∈ {2, 3, 4, 5, 7}

The precise results of this analysis are given in a table at the end of
the article.

Some of the quantum P3s we generate appear elsewhere. For exam-
ple, when the point variety is P3, the associated algebra S is a graded
twist of k[w0, w1, w2, w3]. The algebras S in our work whose associated
point variety is a smooth quadric surface union with a line are graded
twists of the algebras in [16, Proposition 2.10(b)] with α = −1. Also,
twists of the algebras S appearing here whose point variety is a cone
or a cone union with a line appear in [15, Proposition 2.6(b),(b′′),(c)].



420 G.D. DIETZ, R.S. HIGGINBOTTOM AND D.R. STEPHENSON

2. An explicit description of the algebras in question. In
order to give the required definitions, we introduce several facts about
graded modules over a graded k-algebra A. By a graded A-module we
will mean a left, respectively right, A-module M with a vector space
decomposition M = ⊕i∈ZMi such that AiMj ⊆ Mi+j , respectively
MjAi ⊆ Mi+j , for all i and j. If M is any graded A-module, we define
a tail of M to be any graded module of the form M≥j = ⊕i≥jMi.
For any integer n we define the shift of M by n to be the graded
module M(n) = ⊕M(n)i where M(n)i = Mn+i. We denote the one-
dimensional graded A-bimodule A/A≥1 by either Ak or kA depending
on whether we are considering its left or right A-module structure.

There are two notions of regularity for noncommutative algebras that
are applicable in the present situation.

Definition 2.1. A graded algebra A is Artin-Schelter regular, or
simply regular, if:

• A has finite global dimension d, meaning that the projective
dimension of the module Ak is a natural number d,

• A has polynomial growth, meaning that there exist r ∈ N and
c ∈ R such that dimk An ≤ cnr for all n ≥ 0,

• A is Artin-Schelter Gorenstein, meaning that

Exti
A(Ak, A) =

{
0 if i �= d

kA(e) for some e ∈ Z if i = d.

See [3] for a discussion of the functors Exti
A(−,−) on the category of

graded A-modules.

The second notion of regularity can be defined for algebras which are
not necessarily graded.

Definition 2.2. A noncommutative ring A of finite global dimension
is Auslander regular if for every finitely generated A-module M and
every submodule N ⊆ Ext i

A(M, A) we have Ext j
A(N, A) = 0 for all

j < i.

In the graded case every known Artin-Schelter regular algebra is Aus-
lander regular, but it is not known if the two notions are actually iden-
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tical. It is known that any connected graded, Noetherian, Auslander
regular algebra is also Artin-Schelter regular [8, Theorem 6.3], [14,
Theorem 2.4].

Definition 2.3. Let A be a regular algebra of global dimension d
which is minimally generated by d elements in degrees q = (q1, . . . , qd).
We will refer to A as a quantum polynomial ring in d variables of
weight q.

Definition 2.4. Let R be a graded ring, and let τ be a graded
automorphism of R. Define a new multiplication ∗ on the underlying
graded vector space of R in the following way: for all a ∈ Rn and
b ∈ Rm, let a ∗ b = a · bτn

, where · is the original multiplication on R.
This new multiplication defines a graded ring Rτ called a graded twist
of R by τ .

The noncommutative scheme defined by a twist of a graded algebra
is isomorphic to that defined by the original algebra [17, Theorem 1.1].

Definition 2.5. Let M be a locally finite, graded module over a
graded k-algebra R, such that Mi = 0 for i << 0. The Hilbert series of
M is the formal power series HM (t) =

∑
i dimk(Mi)ti.

Definition 2.6. Let R be a k-algebra. Let σ be a k-linear
automorphism of R, and let δ be a k-linear mapping from R to R
such that δ(xy) = δ(x)y + σ(x)δ(y) (δ is called a (left) σ-derivation).
The ring R[z; σ, δ] generated by R and an indeterminate z satisfying
zr = σ(r)z + δ(r) for all r ∈ R is called a skew polynomial ring or an
Ore extension.

In our case, R is a graded ring, and σ and δ are restricted so that they
will respect the grading on R, i.e. for all i, σ(Ri) = Ri, and there exists
j > 0 such that for all i, δ(Ri) ⊆ Ri+j . This implies that R[z; σ, δ] is
a graded ring with deg (z) = j. In this case, we will say that δ is a
σ-derivation of degree j.

We begin with a quantum polynomial ring A in three variables
of weight (1, 1, 2). By [10, Proposition 3.10], A is isomorphic to
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an Ore extension R[z; σ, δ], where R is a regular algebra of global
dimension 2, σ is a graded automorphism of R, and δ is a graded
σ-derivation of degree 2. As k is algebraically closed, R is isomorphic
to either kq[x, y] = k{x, y}/〈yx − qxy〉 for some q ∈ k∗ or kJ [x, y] =
k{x, y}/〈yx− xy − x2〉. In either case, R is a graded twist of k[x, y] by
a graded automorphism τ .

Proposition 2.7. Let R = k[x, y]τ be a graded twist of k[x, y]
with the usual gradation by a graded automorphism τ . The vector
space automorphism τ2 of R2 induces a graded automorphism of the
symmetric algebra S(R2) which we will also denote by τ2. Let C =
S(R2)τ2

.

(1) The algebra C is regular of dimension 3.

(2) The identification of R2 with itself induces a graded surjection
g : C � R(2).

(3) ker g is the ideal of C generated by one nonzero normal element
f ∈ C2.

Proof. (1) The algebra C is a regular Noetherian domain by [17,
Theorem 1.3].

(2) Both C and R(2) are generated as algebras by R2. Using ∗ to
represent the multiplication in C, the defining relations of C can be
written as r ∗ sτ−2 − s∗ rτ−2

for all r, s ∈ C1 = R2. Using juxtaposition
to denote the multiplication in R, the quantities rsτ−2 − srτ−2

are zero
in R(2) ⊂ R = k[x, y]τ , since r and s are of degree 2 in R. Therefore,
R(2) and C are generated by the same set, and the relations of C can
be identified with a subset of the relations of R(2). The result follows.

(3) Let K = ker g. We have HC(t) = (1 − t)−3 and HR(2)(t) =
(1+ t)/(1− t)2. Thus HK(t) = HC(t)−HR(2)(t) = t2/(1− t)3, showing
that dimK2 = 1. Let f be a basis for K2. We have fC ⊆ K, and since
C is a domain, we have HfC(t) = t2HC(t) = t2/(1 − t)3. Therefore,
fC = K. A similar argument shows Cf = K, showing that f is normal.

Let A = R[z; σ, δ], where R = k[x, y]τ , σ is a graded automorphism
of R, and δ is a graded σ-derivation of degree 2. Let C be as in
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Proposition 2.7. We classify graded algebras S such that

• S is Noetherian and regular of dimension 4,

• S can be presented with 4 generators and 6 quadratic relations,

• HS(t) = (1 − t)−4

• there is a graded inclusion i : C ↪→ S,

• there is a graded surjection h : S � A(2),

• the following diagram commutes:

(2.8)

C

�

�

g

� �
i S

�

�

h

R(2)
� �

i A(2)

Theorem 2.9. Let R, A and C be as above. Let S be a graded
algebra with 4 generators and 6 quadratic relations such that there is
a commutative diagram of graded ring homomorphisms of the form
(2.8). Then S is a Noetherian regular algebra of global dimension 4
with Hilbert series HS(t) = (1 − t)−4 if and only if S is isomorphic to
an Ore extension C[z; σ′, δ′], where σ′ is a graded automorphism of C
and δ′ is a graded left σ′-derivation on C of degree 1.

Let f ∈ C2 be the generator of ker g as in Proposition 2.7. In the
case that S is Noetherian and regular with HS(t) = (1 − t)−4, i(f) is
normal in S and generates the ideal kerh.

Proof. We consider R(2) as a subring of A(2) and C as a subring
of S. Assume S = C[z; σ′, δ′], where σ′ and δ′ are as in the theorem
statement. The algebra C is Noetherian and Auslander regular since
it is a graded twist of a polynomial ring [17, Theorem 1.3]. This
implies S is Noetherian and that S is Auslander regular of global
dimension 4 [9, Lemma]. We have HC(t) = (1 − t)−3, and it follows
that HS(t) = (1 − t)−4. This implies that S has polynomial growth,
and thus S is Artin-Schelter regular [8, Theorem 6.3].

Now, assume that S is Artin-Schelter regular of global dimension 4,
is Noetherian, and has Hilbert series (1− t)−4. Then S is a domain by
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[3, Theorem 3.9]. A Hilbert series argument similar to that given in
the proof of Proposition 2.7 shows that kerh is the ideal generated by
one nonzero normal element s ∈ S2. Because (2.8) commutes, we may
take s = i(f).

A basis for S1 = A2 can be chosen in the form {w0, w1, w2, z}, where
{w0, w1, w2} generates C. Thus, we consider both C and R(2) as
quotients of the free algebra k{w0, w1, w2} and both A(2) and S as
quotients of k{w0, w1, w2, z}. Let {f1, f2, f3} be the defining relations
of C. We can take defining relations of R(2) of the form {f1, f2, f3, F},
where F is a quadratic relation arising from the fact that g(f) = 0 in
R(2). Defining relations of A(2) may be identified with the 4 defining
relations of R(2), along with three relations of the form

fi+4 = zwi − wσ
i z − wδ

i where i = 0, 1, 2.

Because C embeds in S and S maps onto A(2), we can take a set of
defining relations of S of the form

{f1, f2, f3, f4 + α0F, f5 + α1F, f6 + α2F},
where αi ∈ k.

By looking at the relations of S, one can see that S =
∑

i∈N Czi.
Because HC(t) = (1 − t)−3 and HS(t) = (1 − t)−4, we see that
S = ⊕i∈NCzi. Thus, every s ∈ S can be uniquely written as a finite
sum

∑
i∈N ciz

i for some ci ∈ C. If s �= 0, define

deg z(s) = max{i | ci �= 0}.
Given nonzero s, t ∈ S, we have deg z(st) = deg z(s) + deg z(t). Hence,
S is isomorphic to an Ore extension C[z; σ′, δ′] by [6, Theorem 9.3.1].

Let R = kq[x, y] = k{x, y}/〈yx − qxy〉. Then R is a twist of k[x, y]
by the automorphism τ where xτ = x and yτ = q−1y. For the
moment, we use ∗ to denote the multiplication in R and · to denote
the multiplication in k[x, y]. (Later, multiplication will be denoted
by juxtaposition when the ring involved is clear.) The vector space
automorphism τ2 of

R2 = span {w0 = x · x, w1 = x · y, w2 = y · y}
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gives an algebra automorphism of k[w0, w1, w2] of the form

wτ2

0 = w0, wτ2

1 = q−2w1, wτ2

2 = q−4w2.

The natural graded homomorphism g from C = k[w0, w1, w2]τ
2

to R(2)

is given by

g(w0) = x · x = x ∗ xτ−1
,

g(w1) = x · y = x ∗ yτ−1
,

g(w2) = y · y = y ∗ yτ−1
.

The defining relations for C as a quotient of k{w0, w1, w2} are
wiw

τ−2

j = wjw
τ−2

i for {i, j} ⊂ {0, 1, 2}. The normal element f ∈ C2

generating ker g, see Proposition 2.7, is given by any nonzero scalar
multiple of w0w

τ−2

2 − w1w
τ−2

1 because

g(w0w
τ−2

2 − w1w
τ−2

1 ) = x ∗ xτ−1 ∗ yτ−2 ∗ yτ−3− x ∗ yτ−1 ∗ xτ−2 ∗ yτ−3

= x ∗ xτ−1 ∗ yτ−2 ∗ yτ−3− x ∗ xτ−1 ∗ yτ−2 ∗ yτ−3

= 0.

These computations are summed up in the following result.

Proposition 2.10. Suppose R = kq[x, y] for some q ∈ k∗. Then the
algebra C given by Proposition 2.7 is

C = k〈w0, w1, w2 |w1w0 − q2w0w1, w2w0 − q4w0w2, w2w1 − q2w1w2〉.

The mapping g : C → R(2) is given by g(w0) = x2, g(w1) = qxy and
g(w2) = qy2. The normal element f generating ker g is q2w0w2 − w2

1.

Remark 2.11. For the remainder of Section 2, we fix the following
notation, hypotheses and strategy.

• R = kq[x, y], with a graded automorphism σ and a graded σ-
derivation δ of degree 2.

• C is the graded algebra, with surjective graded homomorphism
g : C � R, described in Proposition 2.10.



426 G.D. DIETZ, R.S. HIGGINBOTTOM AND D.R. STEPHENSON

• ker g is generated by the nonzero normal element f = q2w0w2 −
w2

1 ∈ C2.

• We will use a part of [3, Lemma 8.4], stated herein as Lemma 2.12,
in order to show that σ gives rise to a unique automorphism σ′ of C.

• We classify all algebras S = C[z′; σ′, δ′] satisfying the equivalent
conditions of Theorem 2.9. It suffices to determine all σ′-derivations δ′

on C such that g ◦ δ′ = δ ◦ g.

• Because R4 = C2/(f), the map δ : R2 → R4 gives rise to infinitely
many linear maps from C1 to C2 satisfying g ◦ δ′ = δ ◦ g. These can be
defined in the following way. For i = 0, 1, 2, let ŵδ

i be a fixed element

of C2 such that g(ŵδ
i ) = [g(wi)]δ. Choose scalars α0, α1, α2 ∈ k. Define

wδ′
i = ŵδ

i + αif for i = 0, 1, 2, and let δ′ : C1 → C2 be the linear
transformation given by linear extension. Our goal is to determine
which, if any, of these maps δ′ extend to give σ′-derivations on C.

• δ′ will extend to a σ′-derivation on C if and only if δ′ sends the
quadratic defining relations of C to zero in C. The fact that δ is a
σ-derivation on R implies that, for any defining relation fi of C, the
image of fδ′

i in C is an element of ker g. Thus, the image of fδ′
i in

C is of the form Lif for some Li ∈ C1. The fact that C is a domain
implies that δ′ extends to a σ′-derivation on C if and only if Li = 0 for
i = 1, 2, 3.

• We divide the problem into 5 cases determined by the classification
of quantum polynomial rings of weight (1, 1, 2). In each case, we give
formulas for wσ′

i and ŵδ
i . We assume that δ′ has the form given above,

and we compute necessary and sufficient conditions on the scalars αi

for δ′ to be a σ′-derivation on C. These computations are detailed in
subsections 2.1 through 2.5.

In order to show that the given automorphisms of R(2) give rise to
automorphisms of C, we need the following fact from [3, Lemma 8.4].

Lemma 2.12. Let σ and τ be automorphisms of a vector space V .
Let S[V ] be the symmetric algebra of V . If στ = τσ, then σ extends to
an automorphism of S[V ]τ .
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We now give the details of the classification of quantum polynomial
rings of weight (1, 1, 2) that are Ore extensions of R = kq[x, y]. The
article [13] gives a complete list of all possible defining relations, and
[12] gives a list of the isomorphism classes of these algebras. The
classification of these algebras can be divided into the 5 cases below.
The study of the cases in which R = kJ [x, y] = k〈x, y | yx − xy − x2〉
requires a lengthy analysis in itself, and we leave this for future work.
The 5 cases in the theorem below can be further broken down into
isomorphism classes, but it is more convenient to deal with them in
the more general form at present. Each algebra can be represented as
kq[x, y][z; σ, δ], and we give the possible forms of σ and δ below. The
matrix for σ gives its action on the basis {x, y} of the 2-dimensional
space kq[x, y]1, and the 2 × 4 matrix for δ gives the map kq[x, y]1 →
kq[x, y]3 for the respective bases {x, y} and {x3, x2y, xy2, y3}.

Theorem 2.13 [12], [13, Propositions 1.3, 1.4, 1.7]. Let A be
a quantum polynomial ring of weight (1, 1, 2) that can be written as
kq[x, y][z; σ, δ]. Then, by a change of generators, we may assume σ
and δ satisfy one of the following :

Case 1.

σ =
(

a 0
0 b

)
, δ =

(
p3 p2 p1 p0

t3 t2 t1 t0

)
,

where q, a, b ∈ k∗ and pi, ti ∈ k satisfy

(q − b)p0 = 0
(q2−i − a)ti = (1 − bqi)pi+1 for i = 0, 1, 2
(q−1 − a)t3 = 0.

Case 2. q = −1,

σ =
(

0 b
1 0

)
, δ =

(
0 0 0 0
0 0 0 0

)
,

where b ∈ k∗.

Case 3. q = −1,

σ =
(

0 −1
1 0

)
, δ =

(−1 0 0 0
1 0 0 0

)
,
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Case 4. q = 1,

σ =
(

b 1
0 b

)
, δ =

(
0 0 0 0
0 0 0 0

)
,

where b ∈ k∗.

Case 5. q = 1,

σ =
(

1 1
0 1

)
, δ =

(
1 0 0 0
0 0 0 0

)
.

Proposition 2.14. Let σ be as in Theorem 2.13, and let C be as
in Proposition 2.10. The action of σ on R2 = C1 extends to a graded
automorphism σ′ of C.

Proof. We have C = k[w0, w1, w2]τ
2
, where τ =

(
1 0

0 q−1

)
. One

can check that τ2 commutes with σ in each of the 5 cases. Apply
Lemma 2.12.

The key question in each case is whether the given σ-derivation δ of
R(2) gives rise to one or more σ′-derivations δ′ on C. We address that
problem in the next series of results.

2.1 The algebras in Theorem 2.13, Case 1. Let R = kq[x, y],
and let σ and δ be as in Theorem 2.13, Case 1. From the action of σ
and δ on R, we compute the following:

wσ′
0 = a2w0, wσ′

1 = abw1, wσ′
2 = b2w2

ŵδ
0 = p0(q + aq−2)w1w2 + p1(q + aq−1)w0w2 + p2(1 + aq−1)w0w1

+ p3(1 + a)w2
0

ŵδ
1 = q−1p0w

2
2 + q−1(p1 + at0)w1w2 + q−2(p2 + at1)w2

1

+ (p3 + at2)w0w1 + aqt3w
2
0

ŵδ
2 = t0(q−1 + q−1b)w2

2 + t1(q−1 + b)w1w2 + t2(1 + q2b)w0w2

+ t3(1 + q3b)w0w1.
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Theorem 2.1.1. Let q ∈ k∗, and let σ and δ be as in Theorem 2.13,
Case 1. Retain the notation and hypothesis given in Remark 2.11. Then
there exists an Ore extension S = C[z; σ′, δ′] such that (2.8) commutes
if and only if one of the four conditions below is satisfied.

(1) xδ ∈ xR and yδ ∈ yR

(2) xδ �∈ xR, yδ ∈ yR, b = q, a = ±q3

(3) xδ ∈ xR, yδ �∈ yR, a = q−1, b = ±q−3

(4) xδ �∈ xR, yδ �∈ yR, a = q−1, b = q, q8 = 1.

In the case that such an Ore extension exists, δ′ is defined by wδ′
i =

ŵδ
i + αif for the expressions given above, but the following conditions

hold :

α0 = 0 or (a, b) ∈ {(q2, 1), (−q2,−1)}
α1 = 0 or (a, b) ∈ {(q, q−1), (q,−q−1), (−q, q−1), (−q,−q−1)}
α2 = 0 or (a, b) ∈ {(1, q−2), (−1,−q−2)}

Proof. As outlined above, we set wδ′
i = ŵδ

i + αif , where f =
q2w0w2 − w2

1. We compute the value of δ′ on the defining relations
of C given in Proposition 2.10.

(w1w0 − q2w0w1)δ′
= wδ′

1 w0 + wσ′
1 wδ′

0 − q2wδ′
0 w1 − q2wσ′

0 wδ′
1

= [α1(q4 − a2q2)w0 + α0(ab − q2)w1

+ p0(q − q−5a2)w2]f.

(w2w0 − q4w0w2)δ′
= wδ′

2 w0 + wσ′
2 wδ′

0 − q4wδ′
0 w2 − q4wσ′

0 wδ′
2

= [α2q
4(1 − a2)w0 + α0(b2 − 1)w2]f.

(w2w1 − q2w1w2)δ′
= wδ′

2 w1 + wσ′
2 wδ′

1 − q2wδ′
1 w2 − q2wσ′

1 wδ′
2

= [t3(b2q6 − 1)w0 + α2(1 − q2ab)w1

+ α1(b2 − q−2)w2]f.

In order for δ′ to extend to a σ′-derivation on C, all of the linear
terms that are multiplied by f in the expressions above must vanish.
This forces p0(q−q−5a2) = t3(b2q6−1) = 0, leading to the 4 conditions
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in the theorem statement. The remaining equations imply:

α1(q2 − a2) = α0(ab − q2) = α2(1 − a2) = α0(b2 − 1) = α2(1 − q2ab)
= α1(b2 − q−2) = 0.

These force the conditions given on the scalars αi in the theorem
statement.

2.2 The algebras in Theorem 2.13, Case 2. Let R = kq[x, y]
where q = −1, and let σ and δ be as in Theorem 2.13, Case 2. From
the action of σ and δ on R, we compute the following:

wσ′
0 = −b2w2, wσ′

1 = −bw1, wσ′
2 = −w0

ŵδ
0 = 0, ŵδ

1 = 0, ŵδ
2 = 0.

The relations of C are wiwj = wjwi, and the normal element mapping
to zero in R(2) is f = w0w2 − w2

1.

Theorem 2.2.1. Let R = kq[x, y] where q = −1, and let σ and δ
be as in Theorem 2.13, Case 2. Then there exists an Ore extension
S = C[z; σ′, δ′] such that (2.8) commutes.

In this case, δ′ is defined by wδ′
i = ŵδ

i + αif for some α0, α1, α2 ∈ k.
For δ′ to be a σ′-derivation, it is necessary and sufficient that α1 =
(b + 1)α0 = α2 − α0 = 0.

Proof. We check the value of δ′ on the defining relations of C.

(w1w0 − w0w1)δ′
= wδ′

1 w0 + wσ′
1 wδ′

0 − wδ′
0 w1 − wσ′

0 wδ′
1

= [α1w0 − α0(b + 1)w1 + b2α1w2]f.

(w2w0 − w0w2)δ′
= wδ′

2 w0 + wσ′
2 wδ′

0 − wδ′
0 w2 − wσ′

0 wδ′
2

= [(α2 − α0)w0 + (b2α2 − α0)w2]f.

(w2w1 − w1w2)δ′
= wδ′

2 w1 + wσ′
2 wδ′

1 − wδ′
1 w2 − wσ′

1 wδ′
2

= [−α1w0 + α2(b + 1)w1 − α1w2]f.

The map δ′ extends to a σ′-derivation on C if and only if all of the
coefficients on the linear terms above vanish. This proves the result.
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2.3 The algebras in Theorem 2.13, Case 3. Let R = kq[x, y]
where q = −1, and let σ and δ be as in Theorem 2.13, Case 3. From
the action of σ and δ on R, we compute the following:

wσ′
0 = −w2, wσ′

1 = w1, wσ′
2 = −w0

ŵδ
0 = −w2

0 + w0w1, ŵδ
1 = 0, ŵδ

2 = −w2
0 + w0w1

The relations of C are wiwj = wjwi, and the normal element mapping
to zero in R(2) is f = w0w2 − w2

1.

Theorem 2.3.1. Let R = kq[x, y] where q = −1, and let σ and δ
be as in Theorem 2.13, Case 3. Then there exists an Ore extension
S = C[z; σ′, δ′] such that (2.8) commutes.

In this case, δ′ is defined by wδ′
i = ŵδ

i + αif for some α0, α1, α2 ∈ k.
For δ′ to be a σ′-derivation, it is necessary and sufficient that α1 =
α0 − α2 = 0.

Proof. We check the value of δ′ on the defining relations of C.

(w1w0 − w0w1)δ′
= wδ′

1 w0 + wσ′
1 wδ′

0 − wδ′
0 w1 − wσ′

0 wδ′
1

= [α1w0 + α1w2]f.

(w2w0 − w0w2)δ′
= wδ′

2 w0 + wσ′
2 wδ′

0 − wδ′
0 w2 − wσ′

0 wδ′
2

= [(α2 − α0)w0 + (α2 − α0)w2]f.

(w2w1 − w1w2)δ′
= wδ′

2 w1 + wσ′
2 wδ′

1 − wδ′
1 w2 − wσ′

1 wδ′
2

= [−α1w0 − α1w2]f.

The map δ′ extends to a σ′-derivation on C if and only if all of the
coefficients on the linear terms above vanish. This proves the result.

2.4. The algebras in Theorem 2.13, Case 4. Let R = k[x, y],
and let σ and δ be as in Theorem 2.13, Case 4. From the action of σ
and δ on R, we compute the following:

wσ′
0 = b2w0 + 2bw1 + w2, wσ′

1 = b2w1 + bw2, wσ′
2 = b2w2

ŵδ
0 = 0, ŵδ

1 = 0, ŵδ
2 = 0.
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The relations of C are wiwj = wjwi, and the normal element mapping
to zero in R(2) is F = w0w2 − w2

1.

Theorem 2.4.1. Let R = k[x, y], and let σ and δ be as in
Theorem 2.13, Case 4. Then there exists an Ore extension S =
C[z; σ′, δ′] such that (2.8) commutes.

In this case, δ′ is defined by wδ′
i = ŵδ

i + αif for some α0, α1, α2 ∈ k.
For δ′ to be a σ′-derivation, it is necessary and sufficient that α0 =
α1 = α2 = 0.

Proof. We check the value of δ′ on the defining relations of C.

(w1w0 − w0w1)δ′
= wδ′

1 w0 + wσ′
1 wδ′

0 − wδ′
0 w1 − wσ′

0 wδ′
1

= [α1(1 − b2)w0 + (α0(b2 − 1) − 2bα1)w1

+ (bα0 − α1)w2]f.

(w2w0 − w0w2)δ′
= wδ′

2 w0 + wσ′
2 wδ′

0 − wδ′
0 w2 − wσ′

0 wδ′
2

= [α2(1 − b2)w0 − 2bα2w1 + (α0(b2 − 1) − α2)w2]f.

(w2w1 − w1w2)δ′
= wδ′

2 w1 + wσ′
2 wδ′

1 − wδ′
1 w2 − wσ′

1 wδ′
2

= [α2(1 − b2)w1 + (α1(b2 − 1) − bα2)w2]f.

The map δ′ extends to a σ′-derivation on C if and only if all of the
coefficients on the linear terms above vanish. This proves the result.

2.5 The algebras in Theorem 2.13, Case 5. Let R = k[x, y],
and let σ and δ be as in Theorem 2.13, Case 5. From the action of σ
and δ on R, we compute the following:

wσ′
0 = w0 + 2w1 + w2, wσ′

1 = w1 + w2, wσ′
2 = w2

ŵδ
0 = 2w2

0 + w0w1, ŵδ
1 = w0w1, ŵδ

2 = 0.

The relations of C are wiwj = wjwi, and the normal element mapping
to zero in R(2) is f = w0w2 − w2

1.

Theorem 2.5.1. Let R = k[x, y], and let σ and δ be as in
Theorem 2.13, Case 5. Then there exists no Ore extension S =
C[z; σ′, δ′] such that (2.8) commutes.
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Proof. We define δ′(wi) = ŵδ
i + αif for some scalars α0, α1, α2. We

check the value of δ′ on the relation w1w0 − w0w1.

(w1w0 − w0w1)δ′
= wδ′

1 w0 + wσ′
1 wδ′

0 − wδ′
0 w1 − wσ′

0 wδ′
1

= [2w0 − 2α1w1 + (α0 − α1)w2]f.

The linear expression above cannot vanish because of the 2w0 term.
This proves the result.

3. Points of Quantum P3. In this section, we determine the point
varieties for some of the regular algebras of dimension 4 defined in
Section 2. Because of the number of special cases involved, we include
only the cases where qn �= 1 for n ∈ {1, 2, 3}.

Let S be a Noetherian regular algebra of global dimension 4 defined
by 4 generators and 6 quadratic relations with Hilbert series HS(t) =
(1 − t)−4. Let GrModS be the category of graded S-modules, and let
Fdim S be the full subcategory consisting of direct limits of finite di-
mensional modules. The quotient category Tails S = GrModS/Fdim S
can be considered as the space of quasi-coherent sheaves on a noncom-
mutative projective 3-space P3

q. There is not an actual geometric object
defined as P3

q, but rather, we define P3
q intuitively by the convention

mod P3
q = TailsS, and we study geometry in terms of the category

Tails S; see [4], for example.

The points of P3
q are defined in terms of isomorphism classes of

certain graded S-modules. A graded S-module M = ⊕i∈ZMi is a
point module if M is generated by M0 and HM (t) = (1 − t)−1. As
in [2], each isomorphism class of point modules M defines a point
p(M) of the infinite product P = P3 × P3 × · · · , and thus the set
of all point modules over S becomes a subscheme W of P defined by
the vanishing of multilinearized forms of the relations of S. By [16,
Theorem 1.10], W is isomorphic to its projection onto the first two
copies of P3, and thus the set of isomorphism classes of point modules
over S can be identified with a subscheme W ′ ⊆ P3 ×P3. (The points
of W ′ parameterize isomorphism classes of truncated point modules of
length two; see [2].) The ‘shifted truncation’ M(1)≥0 of a point module
is again a point module, uniquely determined by M up to isomorphism.
Thus, W ′ takes on the structure of the graph of an automorphism τ of
a subscheme V ⊆ P3.
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In the remainder of this article, we determine the variety, i.e. reduced
scheme, associated to the scheme V . The standard way to determine
the subscheme of P3 parameterizing the point modules of S is to
“multilinearize” the relations of S by adding a subscript of 0 or 1 to each
variable depending on whether it occurs in the first or second position,
respectively. The vanishing of these multilinearized relations defines
W ′ as a subscheme of P3 × P3. Then, V is defined as a subscheme
of P3 by the vanishing of 15 quartic polynomials, which are the 4 × 4
minors of a 6× 4 matrix of linear forms. See [16] for a full description
of this process.

For the algebras dealt with in this article, we may simplify this process
considerably using the following result.

Theorem 3.1. Let C be a twist of k[w0, w1, w2] by a graded
automorphism ρ. Let S = C[w3; σ′, δ′] be an Ore extension of C by
a graded automorphism σ′ of C and a graded σ′-derivation δ′ on C of
degree 1. Write wδ′

i =
∑

v divwv, where div ∈ C1.

Let V be the subscheme of P3 parameterizing the isomorphism classes
of point modules over S. Then V is defined as a subscheme of P3 =
Proj k[w0, w1, w2, w3] by the vanishing of the 3 cubic forms

rij = wσ′
i

(
w3w

ρ
j −

∑
v

djvwρ
v

)
− wσ′

j

(
w3w

ρ
i −

∑
v

divwρ
v

)
where ij ∈ {01, 02, 12}.

Proof. The defining relations of S as a quotient of k{w0, w1, w2, w3}
may be written as

wρ
1w0 = wρ

0w1

wρ
2w0 = wρ

0w2

wρ
2w1 = wρ

1w2

w3w0 = wσ
0 w3 +

∑
v

d0vwv

w3w1 = wσ
1 w3 +

∑
v

d1vwv

w3w2 = wσ
2 w3 +

∑
v

d2vwv.
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Multilinearizing, and writing these relations in the form M

(w01

w11

w21

w31

)
= 0

yields a matrix M of the form

M =

⎛⎜⎜⎜⎜⎜⎝
wρ

1 −wρ
0 0 0

wρ
2 0 −wρ

0 0
0 wρ

2 −wρ
1 0

d00 − w3 d01 d02 wσ
0

d10 d11 − w3 d12 wσ
1

d20 d21 d22 − w3 wσ
2

⎞⎟⎟⎟⎟⎟⎠
where we have replaced wi0 by wi to avoid excessive notation.

Three of the 15 quartic 4 × 4 minors of M are identically zero. Let
J be the ideal of P = k[w0, w1, w2, w3] generated by the remaining 12
4× 4 minors of M . Let I be the ideal of P generated by {r01, r02, r12}.
By [7, Exercise II.5.10], I and J define the same subscheme of P3 if
and only if Isat = J sat, where Isat and J sat are the saturations of I and
J .

Direct computation shows that the generators of J are

wρ
0r01, wρ

0r02, wρ
0r12, wρ

1r01, wρ
1r02, wρ

1r12, wρ
2r01, wρ

2r02, wρ
2r12

w3r01 − d22r01 + d12r02 − d02r12,

w3r02 + d21r01 − d11r02 + d01r12,

w3r12 − d20r01 + d10r02 − d00r12.

It is evident that J ⊆ I, showing J sat ⊆ Isat.

The set {wρ
0 , wρ

1 , wρ
2} is a basis for the span of {w0, w1, w2}, and thus

we see that wkrij ∈ J for all ij and all k ≤ 2. This implies that
duvrij ∈ J for all uv and ij. From the last three generators of J , we
can now see that w3rij ∈ J for all ij. This shows that P1rij ⊆ J , and
thus rij ∈ J sat for all ij. Therefore, I ⊆ J sat, and thus Isat = J sat.

We now give the varieties of points for many of the regular algebras
S classified in Section 2. Because of the complexity of the relations, it
is useful to use a refined version of Theorem 2.13, Case 1; see [12].
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Theorem 3.2. Let A be one of the algebras described in Theo-
rem 2.13. Suppose that qn �= 1 for n ∈ {1, 2, 3}. Then A is isomorphic
to an algebra R[z; σ, δ], where σ and δ are one of the following :

(1) σ =
(

a 0

0 b

)
, δ = 0, where a, b ∈ k∗,

(2) σ =
(

a 0

0 q

)
, δ =

(
0 0 0 1

0 0 0 0

)
, where a ∈ k∗,

(3) σ =
(

q−1 0

0 q

)
, δ =

(
0 0 0 1

1 0 0 0

)
,

(4) σ =
(

q2 0

0 1

)
, δ =

(
0 0 1 0

0 0 0 λ

)
, where λ ∈ k,

(5) σ =
(

q 0

0 q−1

)
, δ =

(
0 1 0 0

0 0 λ 0

)
, where λ ∈ k,

(6) σ =
(

1 0

0 q−2

)
, δ =

(
1 0 0 0

0 0 0 0

)
.

In the subsections that follow, we describe the point variety VS of S
(for the algebras S determined in Section 2, except in the cases qn = 1
for n ∈ {1, 2, 3}). We also give the point variety VA of A(2). These
results are summarized in a table at the end of this article. We should
remark that the varieties VA are essentially the same as those given in
[13, Section 5].

Theorem 3.2. Case 1. The 3 cubic polynomials defining the point
scheme of S are

r01 = (q2b − a)w0w1w3 + (aα1w0 − bα0w1)(w0w2 − w2
1)

r02 = q−2(q2b − a)(q2b + a)w0w2w3 + (a2α2w0 − b2α0w2)(w0w2 − w2
1)

r12 = q−2(q2b − a)w1w2w3 + (aα2w1 − bα1w2)(w0w2 − w2
1).

If a �= ±q2b, all αi must be zero, and VS is the union of a plane and 3
lines:

VS = V(w3) ∪ V(w0, w1) ∪ V(w0, w2) ∪ V(w1, w2).

The three lines intersect in a single point not on the plane.

If a = −q2b and all αi = 0, then

VS = V(w3) ∪ V(w1) ∪ V(w0, w2),
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two planes union with a line. The line is disjoint from the intersection
of the two planes.

If a = q2b and all αi = 0, VS = P3.

If a = q2b and at least one αi �= 0, we have,

VS = V(w0w2−w2
1)∪V(q2α1w0−α0w1, q

4α2w0−α0w2, q
2α2w1−α1w2),

a quadric cone and a line. When α2
1 �= α0α2, the line meets the quadric

cone only at the vertex (0 : 0 : 0 : 1). In the case where α2
1 = α0α2,

the line is embedded in the cone (and, hence, from the perspective of
varieties, the point variety is simply the quadric cone).

If a = ±q, b = ∓q−1, α0 = α2 = 0, and α1 �= 0,

VS = V(2w1w3 − α1(w0w2 − w2
1)) ∪V(w0, w2),

a smooth quadric surface union with a line which meets the quadric in
two distinct points.

The point scheme of A(2) is the subscheme of P3 given by the three
cubic polynomials rij listed above, together with

w0Q, w1Q, w2Q, w2
3(aw2

1 − bq2w0w2)

where Q = w2
1 − w0w2. The variety VA associated to this scheme is

defined by V(Q) (the quadric cone) when a = q2b, and by

VA = V(w0, w1) ∪ V(w1, w2) ∪ V(w3, w
2
1 − w0w2)

when a �= q2b (two lines and a smooth curve).

Theorem 3.2. Case 2. In this case, b = q and a = ±q3 by
Theorem 2.1.1. If a = q3, the three cubic forms defining the point
scheme of S are

r01 = w2(w0w2 − 2w2
1) + (q3α1w0 − qα0w1)(w0w2 − w2

1)
r02 = −2w1w

2
2 + (q5α2w0 − qα0w2)(w0w2 − w2

1)
r12 = w3

2 + (q3α1w2 − q5α2w1)(w0w2 − w2
1).

If a = q3 and all αi = 0, the variety VS is the plane V(w2).
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If a = q3 and q2 = −1, α1 can be nonzero. If α1 �= 0, then VS is the
subvariety of P3 defined by the vanishing of the three polynomials

w2(w0w2−2w2
1)−qα1w0(w0w2−w2

1), w1w
2
2, w2(w2

2−qα1(w0w2−w2
1)).

Thus VS is three lines, intersecting in a point.

If a = q3 and q3 = −1, α2 can be nonzero. If α2 �= 0, then VS is
defined by

w2(w0w2−2w2
1), 2w1w

2
2+q2α2w0(w0w2−w2

1), w3
2+q2α2w1(w0w2−w2

1).

The resulting variety VS is 4 lines, intersecting in a point.

When a = q3, the point variety VA of A(2) consists of one line.

If a = −q3, the three cubic forms are

r01 = w0(w2
2 − 2q3w1w3) + (qα0w1 + q3α1w0)(w0w2 − w2

1)
r02 = (q4α2w0 − α0w2)(w0w2 − w2

1)
r12 = w2(w2

2 − 2q3w1w3) + (q3α1w2 + q5α2w1)(w0w2 − w2
1).

If a = −q3 and all αi = 0, the variety VS is defined by

w0(w2
2 − 2q3w1w3), w2(w2

2 − 2q3w1w3)

and so is the union of a line and a quadric cone. The line meets the
cone in 2 distinct points.

If a = −q3 and q2 = −1, α1 can be nonzero. In this case VS is defined
by

w0(w2
2 − 2q3w1w3 − qα1(w0w2 − w2

1))
w2(w2

2 − 2q3w1w3 − qα1(w0w2 − w2
1)).

Thus, VS is a line union with a nonsingular quadric surface. The line
meets the surface in 2 distinct points.

When a = −q3, the point variety VA is given by a line union with a
smooth cubic curve. The line and the curve meet (transversely) in one
point.
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Theorem 3.2. Case 3. In this case, q4 = ±1 by Theorem 2.1.1.
Since we are assuming that qi �= 1 for i ∈ {1, 2, 3}, q must be a
primitive fourth or eighth root of 1, and also α0 = α2 = 0 (again
by Theorem 2.1.1). If q4 = −1, we also must have α1 = 0.

If q4 = −1, the three cubic polynomials defining VS are

r01 = w0(−2q3w1w3 + w2
2 − qw2

0)
r02 = 0
r12 = w2(−2q3w1w3 + w2

2 − qw2
0).

Here,
VS = V(w0, w2) ∪ V(2w1w2 − q2w2

0 + qw2
2)

the union of a nonsingular quadric surface and a line, meeting in
two distinct points. In this case, the points of A(2) form a singular,
irreducible curve.

If q2 = −1, VS is defined by the cubic forms

r01 = −2w2
1w2 + w0(w2

2 + qw2
0 − qα1(w0w2 − w2

1))
r02 = w1(w2

0 + qw2
2)

r12 = 2w0w
2
1 + w2(qw2

2 − w2
0 + α1(w0w2 − w2

1)).

If α2
1 �= −4q, VS is the union of 7 lines, all meeting in a common point.

If α2
1 = −4q, VS is a plane union with 2 lines. The two lines intersect

at a point on the plane.

In either case, the variety VA consists of 4 distinct lines.

Theorem 3.2. Case 4. We note that the restrictions we have placed
on q force α1 = 0 and either α2 = 0 or q2 = −1. The variety VS is
defined by the polynomials

r01 = w1((q2λ − 1)w0w2 − α0q(w0w2 − w2
1))

r02 = (2q2λ − 2)w0w
2
2 + (α2q

5w0 − α0qw2)(w0w2 − w2
1)

r12 = w1((q2λ − 1)w2
2 + α2q

5(w0w2 − w2
1)).

If λ = q−2 and α0 = α2 = 0, then VS = P3.

If λ = q−2 and at least one αi is nonzero, then VS = V(w1, (α2q
5w0−

α0qw2)) ∪ V(w0w2 − w2
1). If α0α2 = 0, then VS is just the cone
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V(w0w2 − w2
1). If α0α2 �= 0, then VS is the cone union with a line

intersecting it in the vertex.

If λ �= q−2, there are several special cases where VS can be a plane,
a plane union with a line, or a union of between 2 and 5 distinct lines.
These results are summarized in the table at the end of the paper.
When VS is a union of several lines, all of the lines intersect in one
common point.

The variety VA is the cone V(w0w2 − w2
1) in the case λ = q−2, and

consists of 2 lines otherwise.

Theorem 3.2. Case 5. Due to the restrictions on q, we must have
α0 = α2 = 0. The three cubic polynomials defining VS are

r01 = w0((qλ − 1)w2
1 + α1q

2(w0w2 − w2
1))

r02 = (qλ − 1)w0w1w2

r12 = w2((qλ − 1)w2
1 − α1q

2(w0w2 − w2
1)).

If λ = q−1 and α1 = 0, then VS is P3. If λ = q−1 and α1 �= 0, then

VS = V(w0, w2) ∪ V(w0w2 − w2
1),

a quadric cone with a line intersecting it at the vertex. In both cases,
VA = V(w0w2 − w2

1).

If λ �= q−1, then VS is generically 3 lines. However, if α1 ∈
{0,±(q−2 − λq−1)}, then VS is a plane union with a line. In both
cases, VA = V(w1, w0) ∪ V(w1, w2) (two lines).

Theorem 3.2. Case 6. In this case, we must have α1 = 0, and
either α0 = 0 or q2 = −1. The cubic polynomials defining VS are

r01 = w1(q2w2
0 + α0(w0w2 − w2

1))
r02 = −2q2w2

0w2 + (α2q
4w0 − α0w2)(w0w2 − w2

1)
r12 = w1(−w0w2 + α2q

2(w0w2 − w2
1))

If α0 = 0, then VS is generically two lines

VS = V(w0, w1) ∪V(w1, w2).
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However, if α2 = 0, then VS is a plane union with a line, and if
α2 = 2q−2, then VS is just a plane.

If α0 �= 0 and q−2 = −1, then VS consists of 3, 4 or 5 lines, all meeting
in a common point.

In all of these cases, VA consists of the two lines V(w0, w1) and
V(w1, w2).

We summarize the results in the following table. We use the following
notation:

Qs = V(w0w2 − w2
1) (quadric cone)

Q′
s = a quadric cone with a different defining polynomial

Qn = a nonsingular quadric surface

qs = nodal curve

qn(d) = smooth curve of degree d (isomorphic to P1)

3.2 point variety point variety

Case of VS of A(2) Condition

1 1 plane ∪ 3 lines 2 lines ∪ qn(2) a �= ±q2b, αi = 0

2 planes ∪ 1 line 2 lines ∪ qn(2) a = −q2b, αi = 0

Qn ∪ 1 line 2 lines∪ qn(2) a = −b−1 = ±q, α1 �= 0,

α0 = α2 = 0

P3 Qs a = q2b, αi = 0

Qs ∪ 1 line Qs a = q2b, α0α2 �= α2
1

Qs Qs a = q2b, α0α2 = α2
1

2 1 plane 1 line a = q3, αi = 0

3 lines 1 line q2 = −1, a = −q, α1 �= 0,

α0 = α2 = 0

4 lines 1 line q3 = a = −1, α2 �= 0, α0 = α1 = 0

Q′
s ∪ 1 line qn(3)∪ 1 line a = −q3, αi = 0

Qn ∪ 1 line qn(3)∪ 1 line q2 = −1, a = q, α1 �= 0,

α0 = α2 = 0

3 Qn ∪ 1 line qs q4 = −1, αi = 0

7 lines 4 lines q2 = −1, α2
1 �= −4q, α0 = α2 = 0

1 plane ∪ 2 lines 4 lines q2 = −1, α2
1 = −4q, α0 = α2 = 0
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3.2 point variety point variety

Case of VS of A(2) Condition

4 P3 Qs λ = q−2, αi = 0

Qs ∪ 1 line Qs λ = q−2, α1 = 0, α0α2 �= 0

Qs Qs λ = q−2, α1 = 0, α0α2 = 0

(α0 and α2 not both zero)

1 plane 2 lines λ �= q−2, 2qλ − 2q−1 = α0,

α1 = α2 = 0

2 lines 2 lines λ �= q−2, 2qλ − 2q−1 �= α0,

α1 = α2 = 0

3 lines 2 lines q2 = −1, λ �= −1, α2 �= 0,

α0 = q(λ + 1), α1 = 0

4 lines 2 lines q2 = −1, λ �= −1, α2 �= 0,

α0 = 2q(λ + 1), α1 = 0

5 lines 2 lines q2 = −1, λ �= −1, α1 = 0,

α2 �= 0 general

1 plane∪ 1 line 2 lines λ �= q−2, αi = 0

5 P3 Qs λ = q−1, αi = 0

Qs ∪ 1 line Qs λ = q−1, α1 �= 0, α0 = α2 = 0

1 plane ∪ 1 line 2 lines λ �= q−1, α1 ∈ {0,±(q−2 − λq−1)},
α0 = α2 = 0

3 lines 2 lines λ �= q−1, α1 �∈ {0,±(q−2 − λq−1)},
α0 = α2 = 0

6 1 plane 2 lines α0 = α1 = 0, α2 = 2q−2

1 plane ∪ 1 line 2 lines αi = 0

2 lines 2 lines α0 = α1 = 0, α2 �∈ {0, 2q−2}
3 lines 2 lines q2 = −1, α0 �= 0, α1 = 0, α2 = −1

4 lines 2 lines q2 = −1, α0 �= 0, α1 = 0, α2 = −2

5 lines 2 lines q2 = −1, α0 �= 0, α1 = 0,

α2 �∈ {−1,−2}
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