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FINITENESS OF INFINITESIMAL DEFORMATIONS
AND INFINITESIMAL RIGIDITY OF HYPER-

SURFACES IN REAL EUCLIDEAN SPACES

CHUNG-KI CHO AND CHONG-KYU HAN

1. Introduction. We are concerned in this paper with the finite di-
mensionality of the space of infinitesimal deformations of embeddings.
We study the following two cases: isometric embeddings of Riemannian
n-manifolds, n ≥ 3, into Rn+1 and conformal embeddings of Rieman-
nian n-manifolds, n ≥ 5, into Rn+1. In each case, embeddings are
defined by an overdetermined system of nonlinear partial differential
equations of first order.

Generically, an overdetermined system admits prolongation to a
complete system of finite order, that is, we can solve for all the
partial derivatives of the unknown functions of a certain order as
functions of lower order derivatives of the unknown functions after
differentiating the original equations sufficiently many times. This
occurs when the coefficients to the highest order partial derivatives
satisfy the nondegeneracy condition of the implicit function theorem.

In this paper we shall show that the linearized system at an embed-
ding admits prolongation to a complete system of finite order under
certain generic conditions on the embedding, which implies the finite-
dimensionality of the space of infinitesimal deformations. In particular,
we prove that the dimension of the space of infinitesimal deformations
is minimal, that is, equal to the dimension of the automorphism group
of the target manifold, from which we conclude that the embedding is
infinitesimally rigid.

The first result on the rigidity of local embeddings seems to be
the classical Beez-Killing theorem, which states that if a germ of
hypersurface in Rn+1, n ≥ 3, has three nonzero principal curvatures
then it is rigid, see [17, p. 244]. The Beez-Killing theorem is the case
where the embedding is completely determined by the first jet at a
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point. More generally, dependence on finite jet at a point of isometric
embeddings for more general codimensions has been studied in [1]. The
local rigidity problem has also been studied in [7, 9, 11, 15, 18] for
the case of Riemannian isometric embeddings. For the conformal cases,
Cartan proved in [3] that a germ of hypersurface in Rn+1, n ≥ 5, is
conformally rigid if the multiplicity of each principal curvature does not
exceed n − 3. This result has been generalized to higher codimensions
in [10].

This paper is organized as follows. In Section 1 we explain the notions
of prolongation and complete system. In Section 2 and Section 3
we construct complete systems for the infinitesimal deformations of
isometric embeddings and conformal embeddings, respectively.

1. Prolongation and the complete systems. Let m, n ∈ N. Let
Ω be an open subset of Rn and let R(q) be a Euclidean space whose
coordinates represent all the partial derivatives of Rm-valued smooth
maps defined on Ω of all orders from 0 to q. A multi-index of order r
is an unordered r-tuple of integers I = (i1, . . . , ir), with 1 ≤ is ≤ n.
The order of a multi-index I is denoted by |I|. By ua

I we denote the
|I|th order partial derivative of ua with respect to xi1 , . . . , xi|I| , and we
often drop the parentheses and commas in writing multi-indices, thus
ua

i = ua
(i) = ∂ua/∂xi, ua

jk = ua
(j,k) = (∂2ua)/(∂xj∂xk), and so forth. A

point in R(q) will be denoted by u(q), so that u(q) = (ua
I )1≤a≤m, 0≤|I|≤q.

The product space J q(Ω,Rm) = Ω ×R(q) is called the qth order jet
space of the space Ω × Rm. If f = (f1, . . . , fm) : Ω → Rm is smooth,
let (jqf)(x) = (x, ∂If

a(x) : 1 ≤ a ≤ m, |I| ≤ q), then jqf , called the
q-graph of f , is a smooth section of J q(Ω,Rm).

Consider a system of partial differential equations of order q, q ≥ 1,
for unknown functions u = (u1, . . . , um) of independent variables
x = (x1, . . . , xn):

(1.1) ∆ν(x, u(q)) = 0, ν = 1, . . . , l,

where each ∆ν(x, u(q)) is a smooth function in its arguments. Then
∆ = (∆1, . . . , ∆l) is a smooth map from J q(Ω,Rm) into Rl. The
subset S∆ of J q(Ω,Rm) defined by ∆ = 0 is called the solution
subvariety of (1.1). Then, a smooth solution of (1.1) is a smooth map
f : Ω → Rm whose q-graph is contained in S∆.
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A differential function P (x, u(q)) of order q is a smooth function
defined on an open subset of J q(Ω,Rm). The total derivatives of
P (x, u(q)) with respect to xi is the differential function of order q + 1
defined by

DiP (x, u(q+1)) :=
∂P

∂xi
(x, u(q)) +

m∑
a=1

∑
|J|≤q

∂P

∂ua
J

(x, u(q))ua
J,i,

where J, i denotes the multi-index (j1, . . . , j|J|, i), for J = (j1, . . . , j|J|).
For each nonnegative integer r, the rth-prolongation ∆(r) of the system
(1.1) is the system consisting of all the total derivatives of (1.1) of
order up to r. Let (∆(r)) be the ideal generated by ∆(r) of the ring of
differential functions on J q+r(Ω,Rm). If ∆̃ ∈ (∆(r)) for some r, the
equation

(1.2) ∆̃(x, u(q+r)) = 0

is called a prolongation of (1.1). Note that any smooth solution of (1.1)
must satisfy (1.2). If k is the order of the highest derivative involved
in ∆̃, we call (1.2) a prolongation of order k.

We now define the complete system.

Definition 1.1. We say that (1.1) admits prolongation to a complete
system of order k if there exist prolongations of (1.1) of order k

(1.3) ∆̃ν(x, u(k)) = 0, ν = 1, . . . , N

which can be solved for all the kth order partial derivatives as smooth
functions of lower order derivatives of u, namely, for each a = 1, . . . , m
and for each multi-index J with |J | = k,

(1.4) ua
J = Ha

J (x, u(k−1))

for some function Ha
J which is smooth in its arguments. Equation (1.4)

is called a complete system of order k.

The complete system (1.4) is obtained from (1.3) when the coefficients
to ua

J , |J | = k, 1 ≤ a ≤ m, of ∆̃ satisfies the nondegeneracy
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condition of the implicit function theorem. Therefore, generically an
over-determined system admits prolongation to a complete system of
some finite order.

Now we recall that solving the given system of partial differential
equations (1.1) is equivalent to finding an integral manifold of the
corresponding exterior differential system

dua
I −

n∑
i=1

ua
I,idxi = 0

for all multi-index I with |I| < q and a = 1, . . . , m, with an inde-
pendence condition dx1 ∧ · · · ∧ dxn �= 0 on S∆, see [2]. If (1.1) admits
prolongation to a complete system of order k then we have the following
Pfaffian system on J k−1(Ω,Rm):

(1.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dua −
n∑

i=1

ua
i dxi = 0,

...

dua
I −

n∑
i=1

ua
I,idxi = 0 |I| = k − 2,

dua
I −

n∑
i=1

Ha
I,i(x, u(k−1))dxi = 0 |I| = k − 1

with an independence condition dx1 ∧ · · · ∧ dxn �= 0, where Ha
I,i are

as in (1.4). Thus, a solution u = f(x) of (1.1) of class Ck satisfies a
complete system of order k if and only if

(x) �→ (x, ∂Jf(x) : |J | ≤ k − 1)

is an integral manifold of the Pfaffian system (1.5). In particular, we
have

Proposition 1.2. Suppose that (1.1) admits a complete system (1.4).
Then a solution is uniquely determined by its (k− 1) jet at a point and
is C∞ provided that it is Ck. Furthermore, if (1.1) is real analytic in
its arguments then each Ha

J is real analytic and every Ck solution of
(1.1) is real analytic.
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2. Isometric embedding of Riemannian manifolds. Let Ω
be an open subset equipped with a Riemannian metric g and let
gij(x) = g(∂xi , ∂xj ), where x = (x1, . . . , xn) is a Riemannian normal
coordinate system. A mapping u = (u1, . . . , un+1) : Ω → Rn+1 is a
local isometric embedding if u satisfies

(2.1)
n+1∑
α=1

uα
i uα

j = gij(x), i, j = 1, . . . , n.

For mappings u and v of Ω into Rn+1 we define a symmetric (0,2)
tensor field on Ω by

〈du, dv〉 =
1
2

n+1∑
α=1

(duα ⊗ dvα + dvα ⊗ duα).

Then (2.1) can be written as

(2.1) 〈du, du〉 = g.

Let f be a solution of (2.1). A one-parameter family of solutions
{uτ}|τ |<ε, of (2.1) is called a bending of f if u0 = f . By substituting
uτ for u in (2.1) and differentiating with respect to τ at τ = 0 we get

(2.2)
〈

df, d

(
∂

∂τ

∣∣∣
τ=0

uτ

)〉
= 0.

This motivates the following definition:

Definition 2.1. A Rn+1-valued map v on Ω is an infinitesimal
deformation of an isometric embedding f if and only if v satisfies

(2.3) 〈df, dv〉 = 0.

Let us denote by ρi(f) the dimension of the solution space of (2.3).
We observe that the composition of an infinitesimal rigid motion of
Rn+1 with f is trivially an infinitesimal deformation of f : It is the
variation vector field of the composition of a Euclidean transformation
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of Rn+1 with f , which is clearly a bending of f , see (2.2). Thus
ρi(f) ≥ 1/2(n + 1)(n + 2). If the equality holds, we say that f is
infinitesimally rigid.

We take up the question whether the space of the infinitesimal
deformations of a given embedding f is finite dimensional. If the
Riemannian manifold is flat, ρi(f) is infinity as the following example
shows:

Example 2.2. Suppose that (γ1(s), γ2(s)) is a curve in the coordi-
nate plane parametrized by arclength s. Consider an isometric immer-
sion f of R2 into R3 defined by f(t, s) = (t, γ1(s), γ2(s)).

A mapping v(t, s) = (0, v1(s), v2(s)) is an infinitesimal deformation
of f if and only if v satisfies (2.3), that is

(2.4) 〈df, dv〉 = (γ′
1(s)v

′
1(s) + γ′

2(s)v
′
2(s)) ds2 = 0.

Since γ′(s) is of unit length, we let (γ′
1(s), γ

′
2(s)) = (cos θ(s), sin θ(s)),

for a function θ. Then for any pair of functions (v1(s), v2(s)) such
that (v′1(s), v′2(s)) = (− sin θ(s), cos θ(s))φ(s), where φ is arbitrary, the
mapping v(t, s) = (0, v1(s), v2(s)) satisfies (2.4). Since φ is arbitrary,
the solution space of (2.4) is infinite dimensional.

Let f be a solution of (2.1). Then in terms of the local coordinates
(2.3) reads as

(2.5)
n+1∑
α=1

[
∂fα

∂xi
(x)vα

j +
∂fα

∂xj
(x)vα

i

]
:= Φij(x, v(1)) = 0,

for each i, j = 1, . . . , n.

Now we calculate the prolongations of (2.5). First, for each fixed
quadruple (i, j, k, l) of integers {1, . . . , n}, we consider the second
derivatives of (2.5):

(2.6)
1
2

[
D(j,k)Φ

il + D(i,l)Φ
jk − D(j,l)Φ

ik − D(i,k)Φ
jl

]
= 0.



FINITENESS OF INFINITESIMAL DEFORMATIONS 747

In the lefthand side of (2.6) all the terms involving the third order
derivatives of v cancel out and we get

(2.7)
n+1∑
α=1

[
∂2fα

∂xi∂xk
(x)vα

j� +
∂2fα

∂xj∂x�
(x)vα

ik − ∂2fα

∂xi∂x�
(x)vα

jk

− ∂2fα

∂xj∂xk
(x)vα

i�

]
:= Gijk�(x, v(2)) = 0.

On the other hand, for a fixed triple (i, j, k) of integers {1, . . . , n}, the
first derivative of (2.5):

1
2

[
DiΦ

jk + DjΦ
ki − DkΦij

]
= 0

becomes

(2.8)
n+1∑
α=1

[
∂fα

∂xk
(x)vα

ij +
∂2fα

∂xi∂xj
(x)vα

k

]
:= E ijk(x, v(2)) = 0.

The main result of this section is the following

Theorem 2.3. Let (Ω, g) be a Riemannian manifold of dimension
n, n ≥ 3. Suppose that f : Ω → Rn+1 is an isometric embedding
such that f(Ω) has at least three nonzero principal curvatures at each
point. Then the system (2.5) admits prolongation to a complete system
of order 2. Furthermore, the space of the infinitesimal deformations is
of dimension (1/2)(n + 1)(n + 2), which is the dimension of the group
of Euclidean motions of Rn+1, therefore, f is infinitesimally rigid.

Proof. We shall construct a complete system from (2.7) and (2.8).

Let {λ1, λ2, . . . , λn} be the principal curvatures at the reference
point 0. We may assume that (x1, . . . , xn) is a Riemannian normal
coordinate system at 0 = (0, . . . , 0) such that df(0)(∂xi |0) is the
principal direction corresponding to λi. By a suitable orthogonal
change of coordinates in Rn+1 we may assume that

∂fα

∂xi
(0) =

{ 1 if i = α

0 if i �= α
(2.9)

∂2fn+1

∂xi∂xj
(0) =

{
λi if i = j

0 if i �= j.
(2.10)
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Without loss of generality we assume that λ1, λ2 and λ3 are nonzero.
Note that the number of second derivatives of v is (1/2)n(n + 1)2 and
the number of equations in (2.8) is (1/2)n2(n + 1). Let us denote by Γ
the subsystem of the second prolongation, which is composed of (2.8)
and the following (1/2)n(n + 1) equations from (2.7):

(2.11)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

G2323(x, v(2)) = 0
G1i1i(x, v(2)) = 0 i = 2, . . . , n,
G3132(x, v(2)) = 0
G212i(x, v(2)) = 0 i = 3, . . . , n,
G1i1j(x, v(2)) = 0 2 ≤ i < j ≤ n.

Then, Γ is a determined linear system for the second order derivatives.
Now we show that the coefficient matrix of Γ is nonsingular at the
reference point 0.

We consider Γ with (2.8) arranged in the lexicographic order of the
indices (i, j, k) and then followed by (2.11).

The second derivatives of unknown functions will be ordered as
follows: {vα

ij}1≤α≤n, 1≤i≤j≤n in the lexicographic order of the indices
(i, j, α), and then {vn+1

ii }1≤i≤n in the increasing order of the index i,
and then {vn+1

ij }1≤i<j≤n in the lexicographic order of the indices (i, j).
For example, if n = 3, then the order is

v1
11, v

2
11, v

3
11, v

1
12, v

2
12, v

3
12, v

1
13, v

2
13, v

3
13, v

1
22, v

2
22, v

3
22, v

1
23, v

2
23, v

3
23,

v1
33, v

2
33, v

3
33, v

4
11, v

4
22, v

4
33, v

4
12, v

4
13, v

4
23.

Then, by (2.9) and (2.10) the coefficient matrix of Γ with respect to
the second order derivatives at 0 is of the block diagonal form

(2.12)
[

A O
O B

]
,

where the size of A is (1/2)n2(n + 1) × (1/2)n2(n + 1) and that of
B is (1/2)n(n + 1) × (1/2)n(n + 1). The first (1/2)n2(n + 1) rows
correspond to (2.8) and the remaining rows correspond to (2.11). The
first (1/2)n2(n + 1) columns are the partial derivatives with respect to
{uα

ij}1≤α≤n, 1≤i≤j≤n and the remaining columns are partial derivatives
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with respect to {un+1
ij }1≤i≤j≤n. By (2.9) A is the identity matrix. The

block B is again of the block diagonal form

(2.13) B =

⎛⎜⎜⎜⎜⎝
B1

B2

B3

. . .
Bn

⎞⎟⎟⎟⎟⎠ ,

where all other elements are zeros. The block Bk, k = 1, . . . , n, of
(2.13) is of size [n− (k− 1)]× [n− (k− 1)]. The first n rows containing
the block B1 correspond to the first n equations of (2.11), the next
(n − 1) rows containing the block B2 correspond to the next (n − 1)
equations, and so on. By (2.10) each block is as follows:

B1 =

⎛⎜⎜⎜⎜⎝
0 λ3 λ2 0
λ2 λ1 0 . . . 0
λ3 0 λ1 0
...

...
. . .

λn 0 0 λ1

⎞⎟⎟⎟⎟⎠ ,

B2 =

⎛⎜⎜⎜⎜⎝
λ3

λ2

λ2

. . .
λ2

⎞⎟⎟⎟⎟⎠ ,

Bk = λ1 Idn−(k−1), k = 3, . . . , n,

where Id denotes the identity matrix. Then (det B) =
∏n

j=1(detBj) =

−2λ
(1/2)(n−2)(n+1)
1 λn−1

2 λ2
3, which is nonzero by the assumption, and

hence the matrix (2.12) is nonsingular. Now we observe that Γ is
smooth on J 2(Ω,Rn+1). So, the coefficient matrix of Γ is nonsingular
on a neighborhood of the reference point, and consequently, we get a
complete system of order 2:

(2.14) vα
J = Hα

J (x, v(1)), |J | = 2, α = 1, . . . , n + 1,

for some smooth maps {Hα
J } defined on an open subset of J 1(Ω,Rn+1).

This proves the first assertion.
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The number of the partial derivatives of v = (v1, . . . , vn+1) of order
up to 1 is (n + 1)2. But those derivatives are related by (2.5), where
the number of independent equations is (1/2)n(n + 1). By (2.14) and
Proposition 1.2 we know that the dimension of the space of infinitesimal
deformations is the number of free partial derivatives of v of order up
to 1 at a point, which is (n+1)2− (1/2)n(n+1) = (1/2)(n+1)(n+2).
The proof is completed.

3. Conformal embedding of Riemannian manifolds. Let
Ω be an open subset equipped with a Riemannian metric g and let
gij(x) = g(∂xi , ∂xj ), where x = (x1, . . . , xn) is a Riemannian normal
coordinate system. A mapping u = (u1, . . . , un+1) : Ω → Rn+1 is a
local conformal embedding if u satisfies

(3.1)
n+1∑
α=1

uα
i uα

j = gij(x)ζ, i, j = 1, . . . , n,

for some positive function ζ, which is called the conformal factor. The
linearization of (3.1) at a solution (f, ζ) is

0 =
n+1∑
α=1

[
∂fα

∂xi
(x)vα

j +
∂fα

∂xj
(x)vα

i

]
− gij(x)w(3.2)

:= Φij(x, v(1), w(0)),

for each i, j = 1, . . . , n. That is, if {uτ}|τ |<ε is a 1-parameter family of
solutions of (3.1) with corresponding conformal factors {ζτ}|τ |<ε satis-
fying (u0, ζ0) = (f, ζ), then the variation vector field v = (∂/∂τ )|τ=0uτ

satisfies (3.2) with the choice w = (∂/∂τ )|τ=0ζτ . So, as in the isomet-
ric case, a Rn+1-valued map v defined on Ω is called an infinitesimal
conformal deformation of a conformal embedding f if and only if v sat-
isfies (3.2) with some real-valued function w. Note that the unknown
functions in (3.2) are v = (v1, . . . , vn+1) and w, whereas the number
of equations are (1/2)n(n + 1).
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Now we consider the second prolongations of (3.2): For each triple
(i, j, k) of integers {1, . . . , n}, we get

(3.3)

0 =
1
2

[
DiΦ

jk + DjΦ
ki − DkΦij

]
=

n+1∑
α=1

[
∂fα

∂xk
(x)vα

ij +
∂2fα

∂xi∂xj
(x)vα

k

]
+

1
2
[gij(x)wk−gjk(x)wi−gki(x)wj ]

+
1
2

[
∂gij

∂xk
(x) − ∂gjk

∂xi
(x) − ∂gki

∂xj
(x)

]
w

:= E ijk(x, v(2), w(1));

For each quadruple (i, j, k, l) of integers {1, . . . , n}, we get

(3.4)

0 =
1
2

[
D(j,k)Φ

il + D(i,l)Φ
jk − D(j,l)Φ

ik − D(i,k)Φ
jl

]
=

n+1∑
α=1

[
∂2fα

∂xi∂xk
(x)vα

jl+
∂2fα

∂xj∂xl
(x)vα

ik−
∂2fα

∂xi∂xl
(x)vα

jk−
∂2fα

∂xj∂xk
(x)vα

il

]
+

1
2

[gil(x)wjk + gjk(x)wil − gik(x)wjl − gjl(x)wik]

+
1
2

[
∂gjk

∂xl
(x) − ∂gjl

∂xk
(x)

]
wi +

1
2

[
∂gil

∂xk
(x) − ∂gik

∂xl
(x)

]
wj

+
1
2

[
∂gil

∂xj
(x) − ∂gjl

∂xi
(x)

]
wk +

1
2

[
∂gjk

∂xi
(x) − ∂gik

∂xj
(x)

]
wl

+
1
2

[
∂2gil

∂xj∂xk
(x) +

∂2gjk

∂xi∂xl
(x) − ∂2gik

∂xj∂xl
(x) − ∂2gjl

∂xi∂xk
(x)

]
w

:= Gijkl(x, v(2), w(2)).

Let us denote by ρc(f) the dimension of the space of infinitesimal
conformal deformations of f , which is equal to the dimension of the
solution space of (3.2). Like the isometric case, we observe that
the infinitesimal conformal motions of Rn+1 composited with f are
clearly infinitesimal conformal deformations of f . So, we have ρc(f) ≥
(1/2)(n+2)(n+3). If the equality holds, we say that f is infinitesimally
conformally rigid.
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As in the previous section, we shall construct under a certain nonde-
generacy condition on f a complete system for (v, w) to conclude the
finiteness of ρc(f). First, we observe that the equation (3.2) can not be
prolonged to a complete system of order 2 in any case: If such a pro-
longation is possible, then it follows from Proposition 1.2 that ρc(f) ≤
[the number of partial derivatives of (v, w) of order up to 1] − [the
number of independent equations in (3.2)] = (1/2)(n2 + 5n + 4), which
contradicts the fact ρc(f) ≥ (1/2)(n + 2)(n + 3). More specifically, we
cannot construct a complete system of order 2 from (3.3) and (3.4).

Now we proceed one step further to the third prolongation. In the
following theorem we shall construct a complete system of order 3 for
the infinitesimal deformations of conformal embeddings under the same
nondegeneracy assumptions as in [3] and [4].

Theorem 3.1. Let (Ω, g) be a Riemannian manifold of dimension
n, n ≥ 5. Suppose that f : Ω → Rn+1 is a conformal embedding
with a corresponding conformal factor ζ such that the multiplicity of
principal curvatures of f(Ω) does not exceed n − 3 at each point.
Then the system (3.2) for the infinitesimal deformations of f admits
prolongation to a complete system of order 3. Furthermore, the space
of the infinitesimal deformations is of dimension (1/2)(n + 2)(n + 3),
which is the dimension of the group of conformal motions of Rn+1,
therefore, f is infinitesimally conformally rigid.

Proof. The system (3.2) and its prolongations are smooth in their
arguments and linear in (v, w) and their partial derivatives. We shall
show that at each fixed reference point the matrix of coefficients to the
third order derivatives of v and w is nonsingular.

Let (x1, . . . , xn) be a Riemannian normal coordinate system at
the reference point 0 = (0, . . . , 0) with the coordinate vector fields
∂x1 , . . . , ∂xn and let (y1, . . . , yn+1) be a standard coordinate system of
Rn+1 at f(0) with the coordinate vector fields ∂y1 , . . . , ∂yn+1 . Assume
further that Tf(0)Ω is spanned by {∂y1 , . . . , ∂yn}, and that {∂yn+1}
generate [Tf(0)Ω]⊥. Without loss of generality we may assume that
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df(0)(∂xi |0) =
√

ζ(0)∂yi |f(0), i = 1, . . . , n. Then we have

g(∂xi |0, ∂xj |0) = gij(0) =
{ 1 if i = j

0 if i �= j;
(3.5)

∂fα

∂xi
(0) =

{√
ζ(0) if i = α

0 if i �= α;
(3.6)

∂2fn+1

∂xi∂xj
(0) =

{
λi if i = j

0 if i �= j.
(3.7)

For convenience we assume that the principal curvatures {λs}1≤s≤n

are arranged in the descending order in their absolute values. (If two
eigenvalues have the same absolute value, the positive one precedes the
negative one). Then by the hypothesis on the maximal multiplicity of
principal curvatures we have

λν �= λσ, if |ν − σ| ≥ n − 3.

In particular we have |λν | > |λn| ≥ 0, if ν ≤ 3, and hence

(3.8) λ1 �= 0, λ2 �= 0, λ3 �= 0.

First, we prove the following

Lemma 3.2. The system (3.3) and (3.4), the totality denoted by Γ,
can be written as

(3.9) vα
J = Hα

J (x, v(1), w(1)) + γα
J (x)w11, 1 ≤ α ≤ n + 1, |J | = 2,

(3.10) wJ = H̃J (x, v(1), w(1)) + γ̃J(x)w11, |J | = 2, J �= (1, 1),

for some smooth functions {Hα
J , H̃J} defined on an open subset of

J 1(Ω,Rn+2) and some smooth functions {γα
J , γ̃J} defined on an open

subset of the reference point 0 such that

γα
(r,s)(0) =

{ 0 if r �= s or α �= n + 1,

(2λ1)−1 if r = s and α = n + 1,

(3.11)

γ̃(r,s)(0) =

{
λsλ

−1
1 if r = s,

0 if r �= s.

(3.12)
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Proof of Lemma 3.2. Let Γ(0) denote the system Γ with x =
0, the reference point. It suffices to show that Γ(0) determines
{vα

J }1≤α≤n+1, |J|=2 and {wJ}|J|=2, J �=(1,1) uniquely when {vα
I }1≤α≤n+1

|I|≤1

,

{wI}|I|≤1 and w11 are specified. This is because Γ is smooth on
J 2(Ω,Rn+2) and linear with respect to the second order derivatives.

Rearrange Γ(0) as follows: Put the equations E ijk(0, v(2), w(1)) = 0,
1 ≤ i ≤ j ≤ n, 1 ≤ k ≤ n, in the lexicographic order of the indices
(i, j, k), then Gijij(0, v(2), w(2)) = 0, 1 ≤ i < j ≤ n, in the lexicographic
order of the indices (i, j), and then Gijik(0, v(2), w(2)) = 0, 1 ≤ i,
j, k ≤ n, i �= j, j < k, k �= i, in the lexicographic order of the indices
(j, k, i).

The second order derivatives of unknown functions will be ordered as
follows: {vα

ij}1≤α≤n, 1≤i≤j≤n in the lexicographic order of the indices
(i, j, α), then {vn+1

ii }1≤i≤n in the increasing order of the index i,
then {vn+1

ij }1≤i<j≤n in the lexicographic order of the indices (i, j),
then {wii}1≤i≤n in the increasing order of the index i, and then
{wij}1≤i<j≤n in the lexicographic order of the indices (i, j).

Then by (3.5) (3.7), the matrix of the coefficients to the second order
terms in the linear system Γ(0) becomes

(3.13) M =
[

A O
O B

]
,

where the size of A is (1/2)n2(n + 1) × (1/2)n2(n + 1) and that
of B is (1/2)n(n − 1)2 × n(n + 1). The first (1/2)n2(n + 1) rows
correspond to (3.3) and the remaining rows correspond to (3.4). The
first (1/2)n2(n+1) columns are the coefficients of {vα

ij}1≤α≤n, 1≤i≤j≤n,
the next (1/2)n(n + 1) columns are the ones of {vn+1

ij }1≤i≤j≤n, and
the remaining columns are the ones of {wij}1≤i≤j≤n. By (3.6), A =√

ζ(0)Id(1/2)n2(n+1). By (3.5) and (3.7), B is of the form

(3.14) B =
[

B1 O B2 O
O B3 O B4

]
,
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where

B1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ2 λ1 0 0 . . . 0 0 0
λ3 0 λ1 0 . . . 0 0 0
...

...
...

λn−1 0 0 0 . . . 0 λ1 0
λn 0 0 0 . . . 0 0 λ1

0 λ3 λ2 0 . . . 0 0 0
0 λ4 0 λ2 0 0 0
...

...
...

...
0 λn−1 0 0 . . . 0 λ2 0
0 λn 0 0 . . . 0 0 λ2

...
0 0 0 0 λn−1 λn−2 0
0 0 0 0 λn 0 λn−2

0 0 0 0 . . . 0 λn λn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

B2 is obtained from B1 by replacing all λis by −(1/2); B3 is of the
block diagonal form

B3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B3
1,2

. . .

B3
1,n

B3
2,3

. . .

B3
2,n

. . .

B3
n−2,n−1

B3
n−2,n

B3
n−1,n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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where

B3
r,s =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1

λ2
...

λr−1

λr+1

...
λs−1

λs+1

...
λn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 1 ≤ r < s ≤ n;

and B4 is obtained from B3 by replacing all λis by −(1/2). It can be
shown that the matrix B is of rank n(n + 1) − 1. Indeed, from our
hypothesis on the maximal multiplicity of principal curvatures, we see
that the submatrix [

B3 B4
]

of B is of maximal rank n(n − 1), and the submatrix[
B1 B2

]
is of rank 2n − 1: We observe that

(3.15)
1
2

[
B1

1 + B1
2 + · · · + B1

n

]
+ λ1B2

1 + λ2B2
2 + · · · + λnB2

n = 0

holds, and hence rank [B1 B2] ≤ 2n − 1. We also observe that a
sequence of suitable elementary operations on the matrix

[B1
1 . . . B1

n B2
2 . . . B2

n]

yields, without changing the rank, an upper triangular matrix T whose
(i, i)th element is⎧⎪⎪⎨⎪⎪⎩

1 if 1 ≤ i ≤ n − 1,
λ1 − λn if n ≤ i ≤ 2n − 3,
(λ1 − λn−1)(λ1 − λn−2) if i = 2n − 2,
λ1(λ2 − λn−1)(λ3 − λn) if i = 2n − 1,
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which is not zero by (3.8). Thus rank [B1 B2] = 2n−1. In conclusion,
we have shown that the column vectors (except the ones corresponding
to the variable w11) of the coefficient matrix M of the linear system Γ(0)
are linearly independent. This proves the equivalence of (3.3) (3.4)
and (3.9) (3.10) with appropriate choices of {Hα

J , H̃J} and {γα
J , γ̃J}.

Substituting (3.9) and (3.10) into Γ(0) we know that the vector

(γα
I (0), γ̃J(0))1≤α≤n+1,|I|=2,|J|=2 with γ̃(1,1) = 1

is a solution to Mx = 0. On the other hand (3.15) states that the vector
(κα

I , κ̃J)1≤α≤n+1,|I|=2,|J|=2 defined by

κ
α
(r,s) =

{ 0 if r �= s or α �= n + 1,

(1/2) if r = s and α = n + 1,

κ̃(r,s) =
{

λs if r = s,

0 if r �= s

is also a solution to Mx = 0. Since dim (Ker M) = 1, we should have
(3.11) (3.12). This completes the proof of Lemma 3.2.

Now we take total derivatives of (3.9) and (3.10) to get

(3.16) vα
rsi = DiH

α
(r,s)(x, v(2), w(2)) +

∂γα
(r,s)

∂xi
(x)w11 + γα

(r,s)(x)wi11,

1 ≤ α ≤ n + 1, 1 ≤ r, s, i ≤ n,

(3.17)
wrsi = DiH̃(r,s)(x, v(2), w(2)) +

∂γ̃(r,s)

∂xi
(x)w11 + γ̃(r,s)(x)wi11,

1 ≤ r, s, i ≤ n, (r, s) �= (1, 1).

We can solve (3.17) for all the third order derivatives of w as we show
now:

As before we work at the reference point 0. We denote (3.17) by
Ψrsi(x, v(3), w(3)) = 0 and rearrange the equations as follows: Put
Ψrsi = 0, 1 ≤ r < s < i ≤ n, in the lexicographic order of the
indices (r, s, i), then Ψrsr = 0, 2 ≤ r ≤ n, 1 ≤ s ≤ n, r �= s, in
the lexicographic order of the indices (r, s), then Ψ1s1 = 0, 2 ≤ s ≤ n,
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in the increasing order of the index s, then Ψrr1 = 0, 2 ≤ r ≤ n, in the
increasing order of the index r, and then finally Ψsss = 0, 1 < s ≤ n,
in the increasing order of the index s.

The third order derivatives of w are ordered as follows:

{wrsi}1≤r<s<i≤n in the lexicographic order of the indices (r, s, i),
then {wrrs}2≤r≤n, 1≤s≤n, r �=s in the lexicographic order of the indices
(r, s), then {w11s}2≤s≤n in the increasing order of the index s, and
then {wsss}1≤s≤n in the increasing order of the index s. Then, the
coefficient matrix becomes

C =

⎡⎢⎢⎢⎣
C1 O O O O
O C2 O O O
O O C3 O O
O C6 O C4 O
O O C7 O C5

⎤⎥⎥⎥⎦ ,

where the sizes of C1, C2, C3, C4, and C5 are (n(n − 1)(n − 2))/6 ×
(n(n − 1)(n − 2))/6, (n− 1)2 × (n− 1)2, (n− 1)× (n− 1), (n− 1)× 1,
and (n − 1) × (n − 1), respectively:

C1 = Id(n(n−1)(n−2))/6,

C2 = Id(n−1)2 ,

C3 = Id(n−1),

C4 = − 1
λ1

⎛⎜⎜⎝
λ2

λ3
...

λn

⎞⎟⎟⎠ ,

C5 = Id(n−1).

It is easily verified from (3.8) that the matrix C is of maximal rank.
Thus we can solve for all the third order derivatives of w:

(3.18) wK = H̃K(x, v(2), w(2)), |K| = 3,

for some smooth maps {H̃K} defined on an open subset of J 2(Ω,Rn+2).
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Now, replace the term wi11 in (3.16) by the function H̃(i,1,1)(x, v(2),

w(2)) in (3.18), to get

(3.19) vα
K = Hα

K(x, v(2), w(2)), |K| = 3, α = 1, . . . , n + 1,

for some smooth functions {Hα
K} defined on an open subset of J 2(Ω,

Rn+2).

Consequently, we get a complete system (3.18) (3.19) of order 3 for
conformal embeddings.

The number of the partial derivatives of (v, w) = (v1, . . . , vn+1, w) of
order up to 2 is (1/2)(n + 2)2(n + 1). But those derivatives are related
by (3.2), (3.3) and (3.4), where the number of free partial derivatives of
v and w of order up to 2 is (1/2)(n2 + 5n + 6). By Proposition 1.2, the
dimension of the space of infinitesimal deformations is (1/2)(n2+5n+6),
and this proves the second assertion of the theorem.
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3. E. Cartan, La déformation des hypersurfaces dans l’espace conforme réel a
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