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DEFICIENT DISCRETE QUARTIC
SPLINE INTERPOLATION

S.S. RANA AND RACHNA GUPTA

ABSTRACT. In the present paper, we have studied the
convergence properties of deficient discrete quartic spline in-
terpolants which match the given functional values at mesh
points and mid points between successive mesh points.

1. Introduction. Let us consider a mesh on [0, 1] which is defined
by

P : 0 = x0 < x1 < · · · < xn = 1.

For i = 0, 1, . . . , n − 1, pi shall denote the length of the mesh interval
[xi, xi+1]. Let p = max pi and p∗ = min pi.p is said to be a uniform mesh
if pi is a constant for all i. Throughout, h will represent a given positive
real number. Consider a real valued function s(x, h) defined over [0, 1]
which is such that its restriction si on [xi, xi+1] is a polynomial of
degree m or less, for i = 0, 1, . . . , n−1. Then s(x, h) defines a deficient
discrete spline of degree m with deficiency r, if

(1.1) D
{j}
h si(xi, h) = D

{j}
h si+1(xi, h), j = 0, 1, . . . , m − r − 1

where the difference operator D
{j}
h for a function f is defined by

D
{0}
h f(x) = f(x), D

{1}
h f(x) = (f(x + h) − f(x − h))/2h,

D
{2}
h f(x) = (f(x + h) − 2f(x) + f(x − h))/h2

and

D
{m+n}
h = D

{m}
h D

{n}
h f(x), m, n ≥ 0.
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Taking m = 4 and r = 1 in (1.1), the class of all such deficient discrete
quartic splines with deficiency 1 satisfying the boundary conditions

(1.2) D
{1}
h s(x0, h) = D

{1}
h f(x0), D

{1}
h s(xn, h) = D

{1}
h f(xn)

is denoted by D(4, 1, P, h).

Discrete splines were introduced by Mangasarian and Schumaker [9]
as the solution of certain minimization problems involving differences.
They have a close connection with best summation formulae, see [10],
which is a special case of the abstract theory of best approximation
of linear functionals. Malcolm [8] used discrete splines to compute
nonlinear splines iteratively. For some different constructive aspects of
discrete splines, we refer to Schumaker [13], Astor and Duris [2] and
Jia [6]. Existence, uniqueness and convergence properties of discrete
cubic spline interpolant matching the given function at intermediate
points for uniform mesh have been studied by Dikshit and Powar [3]
and Rana [11]. These results were generalized by Dikshit and Rana [4]
for nonuniform meshes and it has been shown that nonuniform meshes
permit a wider choice for the points of interpolation than those possible
for the case of uniform meshes. Rana and Dubey [12] have obtained an
asymptotically precise estimate of the difference between discrete cubic
spline interpolant and the function interpolated, which is sometimes
used to smooth a histogram. Deficient splines are quite useful than
usual splines as they require less continuity requirement at mesh points.
The object of the present paper is to study the existence, uniqueness
and convergence properties of deficient discrete quartic spline matching
the given functional values at mesh points and mid points which are
sometimes useful to achieve a prescribed accuracy with less data than
are required by some lower order method, see [5]. The results obtained
in this paper include in particular some earlier results due to Howell
and Verma [5] for the continuous case.

Now writing 2zi+1 = xi + xi+1, we introduce the following interpola-
tory conditions for a given function f,

(1.3)
s(xi, h) = f(xi), i = 0, 1, . . . , n,

s(zi+1, h) = f(zi+1), i = 0, 1, . . . , n − 1,

and pose the following.
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Problem A. Given h > 0, for what restrictions on p does there exist
a unique s(x, h) ∈ D(4, 1, P, h) which satisfies the conditions (1.2) and
(1.3) ?

2. Existence and uniqueness. Let P (z) be a discrete quartic
polynomial on [0, 1]. Then, we can show that

(2.1)
P (z) = P (0) Q1(z) + P (1/2) Q2(z) + P (1) Q3(z)

+ D
{1}
h P (0) Q4(z) + D

{1}
h P (1) Q5(z),

where

Q1(z) =
[
1 + z{z(−11 + 18z − 8z2) − 2h2(8z3− 24z2+ 12z + 9)

+ 16h4(2z − 3)}A]
,

Q2(z) = 16z(1 − z)
[
z(1 − z) − 2h2(z2− z − 1) + 4h2

]
A,

Q3(z) = −z(1 − 2z)
[
z(5 − 4z) − 2h2(4z2− 2z − 7) + 16h4

]
A,

Q4(z) = z
[
1 − {(2z2− 5z + 4)z + h2(4z3− 16z2+ 17z + 5) + 16h4}A]

,

Q5(z) = z(1 − z)(1 − 2z)
[
z + (3 + 2z)h2

]
A,

and A = 1/(1 + 10h2 + 16h4).

Now we are set to answer Problem A in the following:

Theorem 2.1. Suppose p∗ ≥ √
7h. Then, there exists a unique

deficient discrete quartic spline s(x, h) ∈ D(4, 1, P, h) which satisfies
the conditions (1.2) and (1.3).

Proof of Theorem 2.1. Denoting (x − xi)/pi by t, 0 ≤ t ≤ 1, we can
write (2.1) in the form of the restriction si(x, h) of the quartic spline
s(x, h) on [xi, xi+1] as follows

(2.2)
si(x, h) = f(xi) Q1(t) + f(zi+1) Q2(t) + f(xi+1) Q3(t)

+ pi Q4(t)D
{1}
h s(xi, h) + pi Q5(t)D

{1}
h s(xi+1, h).

In view of (2.1), it may be seen that si(x, h) is quartic on [xi, xi+1]
for i = 0, 1, . . . , n − 1 and satisfies (1.2) (1.3). Now, applying the
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continuity of second difference of si(x, h) at xi given by (1.1), we get
the following system of equations:

(2.3) pi−1D
{2}
h Q4(1)D{1}

h s(xi−1, h)

+
[
pi−1D

{2}
h Q5(1) − piD

{2}
h Q4(0)

]
D

{1}
h s(xi, h)

− piD
{2}
h Q5(0)D{1}

h s(xi+1, h) = Fi(h), i = 1, 2, . . . , n

where

Fi(h) =
[
D

{2}
h Q1(0) − D

{2}
h Q3(1)

]
f(xi) + D

{2}
h Q2(0)f(zi+1)

− D
{2}
h Q2(1)f(zi) + D

{2}
h Q3(0)f(xi+1) − D

{2}
h Q1(1)f(xi−1).

Write D
{1}
h s(xi, h) = Mi(h) = Mi (say), for all i. We can easily see

that excess of the absolute value of the coefficient of Mi over the sum of
the absolute value of the coefficients of Mi−1 and Mi+1 in (2.3) under
the conditions of Theorem 2.1 is given by

(2.4) Ci(h) = 2A(3 + 24h2)(1/pi + 1/pi−1),

which is clearly positive. Therefore, the coefficient matrix of the system
of equations (2.3) is diagonally dominant and hence invertible. Thus,
the system of equations (2.3) has a unique solution. This completes
the proof of the Theorem 2.1.

3. Norm of difference between two splines. In this section
we compute the distance between two spline interpolants s(x, u) and
s(x, v) for h = u, v interpolating the same data on P of Theorem 2.1 to
see that this distance only depends on the data which is computable.
Also, we shall show that the discrete quartic spline converges to the C2

quartic spline as h goes to zero. The system of equations (2.3) may be
written as

(3.1) A(h)M(h) = F (h),

where A(h) is the coefficient matrix and M(h) and F (h) are column
vectors (Mi(h)) and (Fi(h)) respectively defined in Section 2. Unless
stated otherwise ‖ . ‖ will denote the sup norm throughout the present
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paper. Thus, it may be observed that the row max norm of coefficient
matrix A(h), cf. [1, p. 21],

(3.2) ‖ A−1(h) ‖≤ C(h),

where
C(h) = max

i
{C−1

i (h)}.

Setting

Mi(u, v) = Mi(u) − Mi(v)

and

M∗
i (u, v) = u2Mi(u) − v2Mi(v),

we denote the single column vectors (Mi(u, v)), or M∗
i (u, v), by

M(u, v), or M∗(u, v). We shall first prove the following lemma.

Lemma 3.1. Let s(x, h) be the unique deficient discrete quartic
spline interpolant of f under the assumptions of Theorem 2.1. Then,
we have

(3.3) ‖ M(u, v) ‖≤ K1 |u2 − v2|,

where K1 is a positive function of p and h and

(3.4) ‖ M∗(u, v) ‖≤ K2 |u2 − v2|,

where K2 = u2K1+ ‖ M(v) ‖.

Proof of Lemma 3.1. To prove Lemma 3.1, we see from (3.1) that,
for h = u, v,

(3.5) A(u)M(u, v) = (A(v) − A(u))M(v) + K3(u2 − v2),

where K3 = ‖F‖ ‖32(3p2 + 2) + (u2 + v2)(4 + 8p2)/p4‖ and

‖F‖ = max
i

|f(xi)|.
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However, as already shown in the proof of Theorem 2.1 that A(h) is
invertible, we get the following from (3.1) and (3.2),

(3.6) ‖M(v)‖ ≤ C(v)‖F (v)‖.

Now using (3.6) in (3.5) we get,

(3.7) ‖M(u, v)‖ ≤ C(u)
[
C(v)‖A(v) − A(u)‖ ‖F (v)‖ + K3|u2 − v2| ].

It may also be seen easily that

(3.8) ‖A(v) − A(u)‖ ≤ K4|u2 − v2|,

where

K4 = 24[1+6(u2+v2)+64u2v2]/[p∗(1+10v2+16v4)(1+10u2+16u4)].

Combining (3.6) (3.8), we prove (3.3) of Lemma 3.1. By a parallel
reasoning, we can also prove (3.4) of Lemma 3.1.

Thus, we are now set to prove the following:

Theorem 3.1. For a given function f , let s(x, h) be the deficient
discrete quartic spline interpolant of Theorem 2.1. Then, for h = u, v >
0, we have

(3.9) ‖s(x, u) − s(x, v)‖ ≤ p K5|u2 − v2|,

where K5 = (9K1 + 26K2)/(1 + 10u2 + 16u4)(1 + 10v2 + 16v4).

Proof of Theorem 3.1. In order to prove Theorem 3.1, we see from
(2.2) that, for h = u, v, we have

(3.10) ‖s(x, u) − s(x, v)‖ ≤ p
[
9 ‖M(u, v)‖ + 26‖M∗(u, v)‖ ]

/U

where
U = (1 + 10u2 + 16u4)(1 + 10v2 + 16v4).

Thus, we get the following when we appeal to Lemma 3.1 in (3.10),

(3.11) ‖s(x, u) − s(x, v)‖ ≤ K5 p |u2 − v2|,
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where

K5 = (9K1 + 26K2)/(1 + 10u2 + 16u4)(1 + 10v2 + 16v4).

This completes the proof of Theorem 3.1. If we allow u −→ 0, then
Theorem 3.1 gives a comparison of continuous and discrete interpolat-
ing splines.

4. Error bounds. For convenience, we assume in this section that
b = a + Nh where N is a positive integer. It is also assumed that the
mesh points {xi} are such that xi ∈ [a, b]h for i = 1, 2, . . . , n where
the discrete interval [a, b]h is the set of points {a, a + h, . . . , a + Nh}.
For a function f and two distinct points x1, x2 in its domain, the first
divided difference is defined by

[x1, x2]f = {f(x1) − f(x2)}/(x1 − x2).

For convenience we write f{1} for D
{1}
h f , f

{1}
i for D

{1}
h f(xi) and w(f, p)

for the modulus of continuity of f . The discrete norm of a function f
over the interval [0, 1]h is defined by

‖f‖ = max
[0,1]h

|f(x)|.

Without assuming any smoothness condition on the data f , we shall
obtain in the following the bounds for the error function e(x) =
s(x, h) − f(x) over the discrete interval [0, 1]h.

Theorem 4.1. Suppose s(x, h) is the deficient discrete quartic spline
interpolant of Theorem 2.1. Then

(4.1) ‖(e{1}i )‖ ≤ C(h) K(p, h) w(f, p)

and

(4.2) ‖(e(x))‖ ≤ p K∗(p, h) w(f, p).

Proof of Theorem 4.1. To obtain the error estimate (4.1) first we
replace Mi(h) by e{1}(xi) = D

{1}
h s(xi, h) − f

{1}
i in (3.1) and get

(4.3) A(h)(e{1}(xi)) = (Fi(h)) − A(h)(f{1}
i ) = (Li), say.
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To estimate the row max norm of the matrix (Li) in (4.3), we shall
need the following result due to Lyche [7].

Lemma 4.1. Let {ai}m
i=1 and {bj}n

j=1 be given sequences of nonneg-
ative real numbers such that

∑
ai =

∑
bj . Then, for any real valued

function f defined on a discrete interval [0, 1]h, we have

(4.4)
∣∣∣∣

m∑

i=1

ai[xi0, xi1, . . . , xik] f −
n∑

j=1

bj [yj0, yj1, . . . , yjk] f
∣∣∣∣

≤ w (f{k}, |1 − kh|)
∑

ai/k!,

where xik, yjk ∈ [0, 1]h for relevant values of i, j and k.

It may be observed that the ith row of the righthand side of (4.3) is
written as

(4.5) (Li) =
8∑

i=1

ai[xi0, xi1] f −
5∑

j=1

bj [yj0, yj1] f,

where

a1 = 16h4/pi−1, a2 = (h2(4 + 8h2)/p3
i−1) + 11/2pi−1,

a3 = (h2(4 + 8h2)/p3
i ) + 11/2pi, a4 = 16h4/pi, a5 = 24h2/pi−1,

a6 = 24h2/pi, a7 =
[
(1 − 7h2)p2

i−1 + (2 + 4h2)h2
]
/p3

i−1,

a8 =
[
(1 − 7h2)p2

i + (2 + 4h2)h2
]
/p3

i ,

b1 =
[
h2(4 + 8h2) + (5/2)p2

i−1

]
/p3

i−1,

b2 = 16h4/pi, b3 = 16h4/pi−1,

b4 =
[
h2(4 + 8h2) + (5/2)p2

i

]
/p3

i ,

b5 = (4 + 17h2)(1/pi + 1/pi−1) + (2 + 4h2)h2(1/p3
i + 1/p3

i−1),

and

x21 = y30 = x30 = y21 = x51 = x60 = xi,

x11 = y11 = x20 = y20 = zi, x10 = y10 = x50 = xi−1,

x31 = y31 = x40 = y40 = zi+1, x41 = y41 = x61 = xi+1,
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x70 = xi−1 − h, x71 = xi−1 + h, y50 = xi − h, y51 = xi + h,

x80 = xi+1 − h, x81 = xi+1 + h.

Clearly in (4.5) {ai} and {bj} are sequences of nonnegative real numbers
such that

∑
ai =

∑
bj = (6 + 12h2) h2 (1/p3

i + 1/p3
i−1)

+ (1/pi + 1/pi−1){16h4+ 17h2+ (13/2)} = N(p, h), (say).

Thus, applying Lemma 4.1 in (4.5) for i = 8, j = 5 and k = 1, we get

(4.6) |(Li)| ≤ N(p, h) w(f{1}, |1 − p| ).

Now, using the equations (3.2) and (4.6) in (4.3) we get

(4.7) ‖e{1}(xi)| ≤ C(h) K(p, h) w(f{1}, p),

where K(p, h) is some positive function of p and h.

We next proceed to obtain an upper bound for e(x). Replacing Mi(h)
by e

{1}
i in equation (2.2), we obtain

(4.8) e(x, h) = p
[
Q5(t)e

{1}
i (xi+1) + Q4(t)e

{1}
i (xi)

]
+ Mi(f).

Now we write the expression of Mi(f) used in the righthand side of
(4.8) in terms of the divided difference as following:

(4.9) (Mi(f)) =
5∑

i=1

ui [xi0, xi1] f −
5∑

j=1

vj [yj0, yj1] f,

where u1 =
[
pi{11t2 + (18 + 48h2)h2 t + (8 + 16h2) t4}A]

/2,

u2 =
[
pi{32t2h4 + (24 + 48h2)t3}A]

/2, u3 = 24t2h2piA, u4 = pi t,

u5 = pi{t2 + 3h2t + (2 + 4h2)t4}A,

v1 =
[
pi{32t2h4 + (18 + 48h2)t3}A]

/2,

v2 =
[
pi{5t2 + (14 + 16h2)h2t + (8 + 16h2)t4}A]

/2,

v3 = pi

[
(4 + 17h2)t2 + (5 + 16h2)h2t + (2 + 4h2)t4

]
A,
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v4 = pi

[
7h2t2 + 3t3

]
A, v5 = pi t

and

x10 = x30 = y10 = y50 = xi, x31 = y21 = x20 = xi+1,

x11 = x21 = y11 = y20 = zi+1,

x40 = y30 = xi − h, x41 = y31 = xi + h,

x50 = y40 = xi+1 − h, x51 = y41 = xi+1 + h, y51 = x.

Observing the fact
∑

ui =
∑

vj , we again apply Lemma 4.1 suitably
in (4.9) for i = j = 5 and k = 1 to see that

(4.10) |Mi(f)| ≤ p N∗(p, h) w(f{1}, |1 − p| ),

where N∗(p, h) = pi{2t + (13 + 32h4 + 48h2)t2 + (24 + 48h2)t3 + (24 +
48h2)h2t + (12 + 24h2)t4}A]/2. Thus, using (4.7) and (4.10) in (4.8),
we get the following

(4.11) ‖e(x)‖ ≤ p K∗(p, h) w(f{1}, p ),

where K∗(p, h) is a positive constant of p and h. This completes the
proof of Theorem 4.1.
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