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DISCRETE COCOMPACT SUBGROUPS OF G5,3

AND RELATED C∗-ALGEBRAS

P. MILNES AND S. WALTERS

ABSTRACT. The discrete cocompact subgroups of the five-
dimensional Lie group G5,3 are determined up to isomor-
phism. Each of their group C∗-algebras is studied by de-
termining all of its simple infinite dimensional quotient C∗-
algebras. The K-groups and trace invariants of the latter are
also obtained.

1. Introduction. Consider the Lie group G5,3 equal to R5 as a set
with multiplication given by

(h, j, k,m, n)(h′, j′, k′,m′, n′)
= (h+ h′+ nj′+m′n(n−1)/2+mk′, j+j′+ nm′, k+k′,m+m′, n+n′),

and inverse

(h, j, k,m, n)−1 = (−h+nj+mk−mn(n+1)/2,−j+nm,−k,−m,−n).

The group G5,3 is one of only six nilpotent, connected, simply con-
nected, five-dimensional Lie groups; it seemed the most tractable of
them for our present purposes. (Our notation is as in Nielsen [8], where
a detailed catalogue of Lie groups like this one is given.) In [6, Section
3] the authors have studied a natural discrete cocompact subgroup H5,3,
the lattice subgroup H5,3 = Z5 ⊂ G5,3. In Section 2 of this paper we
study the group G5,3 more closely, determining the isomorphism classes
of all its discrete cocompact subgroups, Theorem 1. These are given
by five integer parameters α, β, γ, δ, ε that satisfy certain conditions,
see (∗) and (∗∗) of Theorem 1, and are denoted by H5,3(α, β, γ, δ, ε).
It is shown that each such subgroup is isomorphic to a cofinite sub-
group of H5,3 = H5,3(1, 0, 1, 1, 0). Conversely, each cofinite subgroup
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of H5,3 ⊂ G5,3 is a discrete cocompact subgroup of G5,3. In Sections
3 and 4, the group C∗-algebras of the H5,3(α, β, γ, δ, ε)’s are exam-
ined by obtaining their simple infinite dimensional quotients. Some of
these are shown to be crossed products of certain types of Heisenberg
C∗-algebras (in Packer’s terminology [11]) and the rest are matrix al-
gebras over irrational rotation algebras, Theorem 5. In Section 5 the
K-groups of the simple quotients are calculated, Theorem 6, as are
their trace invariants, Theorem 8. The paper ends with a discussion of
the classification of the simple quotients.

We use one of the conventional notations for crossed products as
in, for example, [12] or [19]. Hence, if a discrete group G acts
on a C∗-algebra A, we write C∗(A,G) to denote the associated C∗-
crossed product algebra. We use a similar notation for twisted crossed
products, i.e., when there is a cocycle instead of an action, as in
Theorem 2. (See the preliminaries of [6] for more details.)

2. Determination of the discrete cocompact subgroups.

Theorem 1. Every discrete cocompact subgroup H of G5,3 has
the following form: there are integers α, β, γ, δ and ε satisfying
α, γ, δ > 0, and

0 ≤ ε ≤ gcd {γ, δ}/2(∗)
and

0 ≤ β ≤ gcd {α, γ, δ, ε}/2,(∗∗)

yielding H ∼= H5,3(α, β, γ, δ, ε) ( = Z5 as a set) with multiplication

(m)⎧⎨
⎩

(h, j, k,m, n)(h′, j′, k′,m′, n′)
= (h+ h′ + γnj′ + αγm′n(n− 1)/2 + βnm′ + δmk′ + εnk′,

j + j′ + αnm′, k + k′,m+m′, n+ n′).

Different choices for α, β, γ, δ and ε give non-isomorphic groups.
Each such group is, in fact, isomorphic to a cofinite subgroup of H5,3

(the lattice subgroup of G5,3), and each cofinite subgroup of H5,3 is
isomorphic to some H5,3(α, β, γ, δ, ε).
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Proof. Using the discreteness and cocompactness as in [7], the second
commutator subgroup of H tells us that there is a member (with entries
that don’t need to be identified indicated by ∗)

e5 = (∗, ∗, ∗, a, z)

of H, where z > 0 is the smallest positive number that can appear as
the last coordinate of a member of H. Continuing in this vein, we get

e4 = (∗, ∗, ∗, y, 0),
e3 = (∗, b, x, 0, 0),
e2 = (∗, w, 0, 0, 0) and
e1 = (v, 0, 0, 0, 0),

where x > 0 is the smallest positive number that can appear as the
third coordinate of a member of H whose last two coordinates are 0,
and similarly for v, w and y. Also, all other coordinates are ≥ 0, and
the bottom non-zero coordinate in each column is greater than the
coordinates above it, e.g., w > b ≥ 0 and w is also greater than the
second coordinate of e5 or of e4. These considerations show that the
map

π : (h, j, k,m, n) �−→ eh
1 e

j
2 e

k
3 e

m
4 en

5 , Z5 → H,

is one-to-one and onto. We want the multiplication (m) for Z5 that
makes π a homomorphism, hence an isomorphism; (m) is determined
using the commutators,
(C)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[e5, e4] = (∗, zy, 0, 0, 0)= eβ
1 e

α
2 , [e5, e3]=(zb+x a, 0, 0, 0, 0)=eε

1,

[e5, e2] = (zw, 0, 0, 0, 0) = eγ
1 , [e4, e3] = (xy, 0, 0, 0, 0) = eδ

1,

[e5, e1] = 0, [e4, e1] = 0, [e3, e1] = 0, [e2, e1] = 0,
[e4, e2] = 0, [e3, e2] = 0,

for some integers α, β, γ, δ, ε. Using the commutators to collect terms
in

(eh
1 e

j
2 e

k
3 e

m
4 en

5 )(eh′
1 e

j′
2 e

k′
3 e

m′
4 en′

5 )

gives the multiplication formula (m) for Z5, and also the equation

en
5 e

m′
4 = e

αγm′n(n−1)/2+βnm′

1 eαm′n
2 em′

4 en
5 ,

which the reader may find helpful in checking computations later.
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For a start in putting the restrictions on α, β, γ, δ, ε, (C) tells us
that α, γ, δ > 0 (since v, w, x, y and z > 0). Let Z denote the
center of H = H5,3(α, β, γ, δ, ε), Z = (Z, 0, 0, 0, 0). Then, as for G4,
with quotients and subgroups it is shown that different (positive) α,
γ, δ give non-isomorphic groups, e.g., H/Z gives α and Z modulo the
subgroup [H, [H,H]] gives γ; also, if K3 ⊂ H is the largest subset for
which all commutators are central, i.e., xyx−1y−1 ∈ Z for all x ∈ K3

and y ∈ H, and K4 is the centralizer of the commutator subgroup, then

Z ⊃ (δZ, 0, 0, 0, 0) = {xyx−1y−1 | x ∈ K3, y ∈ K4}

and Z/(δZ, 0, 0, 0, 0) = Zδ, the cyclic group of order δ.

Then we have an isomorphism of H5,3(α, β, γ, δ, ε) onto H5,3(α, β, γ,
δ, ε+ dγ + eδ), which is simpler to give in terms of generators,

(�)
e3 �−→ e′3 = ed

2e3, e5 �−→ e′5 = ee
4e5,

and ei �−→ e′i = ei otherwise.

Here we are merely changing the basis for H5,3(α, β, γ, δ, ε), and
the only commutator (using (m) and (C)) that changes is [e′5, e′3] =
eε+eδ+dγ
1 , so the resulting isomorphism is of H5,3(α, β, γ, δ, ε) onto

H5,3(α, β, γ, δ, ε+ dγ + eδ), which shows we can require

0 ≤ ε < gcd {γ, δ}.

This, accompanied by another isomorphism,

(�′)
(h, j, k,m, n) �−→ (−h,−j, k,−m,n),

H5,3(α, β, γ, δ, ε) −→ H5,3(α, β, γ, δ, −ε),
assures that we can have

(∗) 0 ≤ ε ≤ gcd {γ, δ}/2,

the required range for ε.

Now, to control β,

(†)
{
e1 �→ e1 = e′1, e2 �→ e−q

1 e2 = e′2, e3 → e3 = e′3,

e4 �→ er
2e

g
3e4 and e5 �→ e−f

3 e5 = e′5
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is an isomorphism of H5,3(α, β, γ, δ, ε) onto H5,3(α, β+qα+rγ+fδ+
gε, γ, δ, ε), which yields

0 ≤ β < gcd {α, γ, δ, ε}.
Then the isomorphism

(†′) (h, j, k,m, n) �−→ (−h, j, k,−m,−n)

of H5,3(α, β, γ, δ, ε) onto H5,3(α, −β + αγ, γ, δ, ε) leads to the con-
clusion

(∗∗) 0 ≤ β ≤ gcd {α, γ, δ, ε}/2.

It must still be shown that changing ε or β within the allowed limits
(namely, ε and β must satisfy (∗) and (∗∗), respectively) gives a non-
isomorphic group.

So, suppose that ϕ : H = H5,3(α, β, γ, δ, ε) → H5,3(α, β′, γ, δ, ε′) =
H′ is an isomorphism. Then

ϕ : Z =K1 = (Z, 0, 0, 0, 0) −→(Z, 0, 0, 0, 0) = K ′
1 = Z ′,

K2 = (Z,Z, 0, 0, 0) −→(Z,Z, 0, 0, 0) = K ′
2,

K3 = (Z,Z,Z, 0, 0)−→(Z,Z,Z, 0, 0) = K ′
3, and

K4 = (Z,Z,Z,Z, 0)−→(Z,Z,Z,Z, 0) = K ′
4,

since the Z’s are the centers, the K2’s consist of those s ∈ H for which
sr is in the commutator subgroup of H for some r ∈ Z, and the K3’s
and K4’s are as above. So we must have

ϕ(0, 0, 0, 0, 1) = (∗, ∗,−f, e, a) = S5 with a = ±1,
ϕ(0, 0, 0, 1, 0) = (∗, r, g, b, 0) = S4 with b = ±1, and
ϕ(0, 0, 1, 0, 0) = (∗, d, c, 0, 0) = S3 with c = ±1;

furthermore, commutators give

ϕ(β, α, 0, 0, 0) = [S5, S4] = S5S4S
−1
5 S−1

4 = (∗, αab, 0, 0, 0),

hence ϕ(0, 1, 0, 0, 0) = (q, ab, 0, 0, 0) = S2, and

ϕ(γ, 0, 0, 0, 0) = [S5, S2] = (γa2b, 0, 0, 0, 0),
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so ϕ(1, 0, 0, 0, 0) = (b, 0, 0, 0, 0) = S1, but also

ϕ(δ, 0, 0, 0, 0) = [S4, S3] = (δbc, 0, 0, 0, 0),

so c = 1. Furthermore, ϕ(ε, 0, 0, 0, 0) = [S5, S3] = (aε′ + eδ +
adγ, 0, 0, 0, 0), which shows that the manipulations at (�) and (�′)
above give the only way of changing ε in H5,3(α, β, γ, δ, ε); that is, if

(∗) 0 ≤ ε, ε′ ≤ gcd {γ, δ}/2
and ε = ±ε′ + a1δ + a2γ with a1, a2 ∈ Z, then ε = ε′. Now consider

ϕ(h, j, k,m, n) = ϕ((h, 0, 0, 0, 0)(0, j, 0, 0, 0)
× (0, 0, k, 0, 0)(0, 0, 0,m, 0)(0, 0, 0, 0, n))

= (hS1) · (jS2) · (kS3) · Sm
4 · Sn

5

= hS1 + jS2 + kS3 + Sm
4 · Sn

5 ∈ H′.

Note that Sn
5 �= nS5, but Sn

5 = (∗, ∗,−nf, ne, na), and also Sm
4 =

(∗,mr,mg,mb, 0); further, the (jS2) term puts a jq in the first en-
try of ϕ(h, j, k,m, n), so also (j + j′ + αnm′)q in the first entry of
ϕ(h, j, k,m, n)·ϕ(h′, j′, k′,m′, n′) (product in H5,3(α, β′, γ, δ, ε)). Then,
equating the coefficients of the nm′ terms in the first entry of

ϕ(en
5 e

m′
4 ) and ϕ(en

5 )ϕ(em′
4 ) = Sn

5 S
m′
4

gives

b(−αγ/2 + β) + qα = abβ′ − abαγ/2 + agε+ arγ + (eg + bf)δ,

or

β = ±β′ + a1α+ a2γ + a3δ + a4ε for some ai ∈ Z, 1 ≤ i ≤ 4,

which shows that the manipulations at (†) and (†′) above give the only
way of changing just β in H5,3(α, β, γ, δ, ε).

Here is an isomorphism ϕ of H5,3(α, β, γ, δ, ε) onto a subgroup of
the lattice subgroup H5,3 = Z5 ⊂ G5,3 in terms of generators; H5,3 has
multiplication

(m′)

⎧⎨
⎩

(h, j, k,m, n)(h′, j′, k′,m′, n′)
= (h+ h′ + nj′ +m′n(n− 1)/2 +mk′,

j + j′ + nm′, k + k′,m+m′, n+ n′),



DISCRETE COCOMPACT SUBGROUPS OF G5,3 1771

i.e., α = γ = δ = 1 and β = ε = 0. First suppose ε > 0. Then, with
d = αγε and generators

e1 = (1, 0, 0, 0, 0), e2 = (0, 1, 0, 0, 0), . . . , e5 = (0, 0, 0, 0, 1)

for H5,3(α, β, γ, δ, ε) satisfying
(C)⎧⎪⎨

⎪⎩
[e5, e4] = eβ

1 e
α
2 , [e5, e3] = eε

1, [e5, e2] = eγ
1 , [e4, e3] = eδ

1,

[e5, e1] = 0, [e4, e1] = 0, [e3, e1] = 0, [e2, e1] = 0, [e4, e2] = 0,
[e3, e2] = 0,

ϕ is given by

ϕ :e1 �−→ e′1 = (δd2, 0, 0, 0, 0),
e2 �−→ e′2 = (γδd(d − 1)/2, γδd, 0, 0, 0),
e3 �−→ e′3 = (0, δεd, δεd, 0, 0),
e4 �−→ e′4 = (0, βδd, 0, αγδ, 0),

and

e5 �−→ e′5 = (0, 0, 0, 0, d).

That ϕ is an isomorphism is verified by showing that {e′1, e′2, e′3, e′4, e′5}
⊂ H5,3 satisfies (C). (Here ϕ is given by

(h, j, k,m, n) �−→ (δd2h+ (γδd(d − 1)/2)j,
γδdj + δεdk + βδdm, δεdk, αγδm, dn). )

When ε = 0, use d = αγ and e′3 = (0, 0, δd, 0, 0).

It is easy to see that the image H1 = ϕ(H5,3(α, β, γ, δ, ε)) is cofinite
in H5,3. Consider the coset sH1 for s = (h, j, k,m, n) ∈ H5,3; since
e′5 = (0, 0, 0, 0, d), we can choose r5 ∈ Z so that se′5r5 has its last
coordinate in [0, d). Then choose r4 ∈ Z so that se′5r5e′4

r4 has its
second last coordinate in [0, αγδ). Continuing like this, we arrive at

se′5
r5 e′4

r4 e′3
r3 e′2

r2 e′1
r1 ∈ K

where

K =
(
[0, δ d2) × [0, γδ d) × [0, δ ε d) × [0, αγ δ) × [0, d)

) ∩ Z5 ⊂ H5,3,
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so every coset sH1 for s ∈ H5,3 has a representative in K, which is a
finite set. It follows that the quotient map H5,3 → H5,3/H1 maps K
onto H5,3/H1, which is therefore finite. (A similar argument shows that
G5,3/H1 is cocompact.)

Finally, note that since any cofinite subgroup of H5,3 is also a discrete
cocompact subgroup of G5,3, it must therefore be isomorphic to some
H5,3(α, β, γ, δ, ε). This completes the proof.

Remarks. 1. The image H1 = ϕ(H5,3(α, β, γ, δ, ε)) above is not a
normal subgroup of H5,3, e.g.,

(0, 0, 1, 0, 0)e′5(0, 0,−1, 0, 0) = (d, 0, 0, 0, 0) /∈ H1.

This makes it seem unlikely that H5,3(α, β, γ, δ, ε) can be embedded in
H5,3 as a normal subgroup; however, the existence of such an embedding
is still a possibility.

2. The theorem gives an isomorphism ϕ of H5,3(α, β, γ, δ, ε) onto a
subgroup of H5,3; conversely, there is always an isomorphism ϕ′ of H5,3

onto a subgroup of H5,3(α, β, γ, δ, ε), and as for ϕ, it is easier to give
ϕ′ in terms of the generators {ei | 1 ≤ i ≤ 5} of H5,3, which satisfy

(C′)

⎧⎨
⎩

[e5, e4] = e2, [e5, e3] = 0, [e5, e2] = e1, [e4, e3] = e1,

[e5, e1] = 0, [e4, e1] = 0, [e3, e1] = 0, [e2, e1] = 0,
[e4, e2] = 0, [e3, e2] = 0.

Then

ϕ′ :e1 �−→ e′1 = (αγ2δ2, 0, 0, 0, 0),
e2 �−→ e′2 = (αγ2δ(δ − 1)/2, αγ δ, 0, 0, 0),
e3 �−→ e′3 = (0,−α δε, αδ γ, 0, 0),
e4 �−→ e′4 = (0,−β, 0, γ, 0),

and
e5 �−→ e′5 = (0, 0, 0, 0, δ).

That ϕ′ is an isomorphism is verified by showing that e′1, e′2, e′3, e′4, e′5 ∈
H5,3(α, β, γ, δ, ε) satisfy (C′). (Here ϕ′ is given by

(h, j, k,m, n) �−→ (αγ2 δ2h+ jα γ2 δ(δ − 1)/2,
α γ δj − α δ εk − βm,α γ δk, γm, δn).)
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So, as for the three-dimensional groups H3(p) and the four-dimen-
sional groups H4(p1, p2, p3), here we have an infinite family of non-
isomorphic groups, each of which is isomorphic to a subgroup of any
other one.

3. Infinite dimensional simple quotients of C∗(H5,3(α, β, γ,
δ, ε)). We begin by obtaining concrete representations on L2(T2)
of the faithful simple quotients, i.e., those arising from a faithful
representation of H5,3(α, β, γ, δ, ε), and consider first the case ε = 0.
In this case H5,3(α, β, γ, δ, 0) has an abelian normal subgroup N =
(Z,Z, 0,Z, 0), with quotient

H5,3(α, β, γ, δ, 0)/N ∼= (0, 0,Z, 0,Z) = Z2,

also abelian and embedded in H5,3(α, β, γ, δ, 0) as a subgroup, so
that H5,3(α, β, γ, δ, 0) is isomorphic to a semi-direct product N ×
Z2; in this situation, the simple quotients of C∗(H5,3(α, β, γ, δ, 0))
can be presented as C∗-crossed products using flows from commuting
homeomorphisms, as follows.

Note. Here, and below, the term flow designates a pair (G,X)
consisting of a compact Hausdorff space X with a group G acting
continuously on it. Some authors refer to such a pair as a dynamical
system.

Let λ = e2πiθ for an irrational θ, and consider the flow F ′ = (Z2,T2)
generated by the commuting homeomorphisms

ψ′
1 : (w, v) �−→ (λγw, λβwαv) and ψ′

2 : (w, v) �−→ (w, λ−δv).

The flow F ′ is minimal, so the C∗-crossed product C′ = C∗(C(T2),Z2)
is simple [1, Corollary 5.16].

Let v and w denote, as well as members of T, the functions in C(T2)
defined by

(w, v) �−→ v and w,

respectively. Define unitaries U , V , W and X on L2(T2) by

(U ′)
U : f �−→ f ◦ ψ′

1, V : f �−→ vf,

W : f �−→ f ◦ ψ′
2 and X : f �−→ wf.
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These unitaries satisfy

UV = λβXαV U, UX = λγXU, VW = λδWV,(CR′)
UW = WU, V X = XV, WX = XW,

equations which ensure that

π : (h, j, k,m, n) �−→ λhXjW kV mUn

is a representation of H5,3(α, β, γ, δ, 0). Denote by A5,3
θ (α, β, γ, δ, 0)

the C∗-subalgebra of B(L2(T2)) generated by π, i.e., by U , V ,
W and X. Since A5,3

θ (α, β, γ, δ, 0) is generated by a representa-
tion of H5,3(α, β, γ, δ, 0), it is a quotient of the group C∗-algebra
C∗(H5,3(α, β, γ, δ, 0)). It follows readily that A5,3

θ (α, β, γ, δ, 0) is
isomorphic to the simple C∗-crossed product C′ above, and hence is
simple.

However, when 0 < ε ≤ gcd {γ, δ}/2 (which implies γ > 1, by (∗)),
H5,3(α, β, γ, δ, ε) is only an extension (Z,Z, 0,Z, 0) × (0, 0,Z, 0,Z) =
N × Z2, and not a semi-direct product. Nonetheless, we can modify
the flow F ′ representing A5,3

θ (α, β, γ, δ, 0) above to ge t a concrete
representation of A5,3

θ (α, β, γ, δ, ε). Consider the flow F = (Z2,T2)
generated by the commuting homeomorphisms

ψ1 : (w, v) �−→ (λw, λβwαγv) and ψ2 : (w, v) �−→ (w, λ−δv).

The flow F is minimal, so the C∗-crossed product C = C∗(C(T2),Z2)
is simple. Define unitaries on L2(T2) by

(U)
U : f �−→ f ◦ ψ1, V : f �−→ vf,

W : f �−→ wεf ◦ ψ2 and X : f �−→ wγf.

These unitaries satisfy

UV = λβXαV U, UX = λγXU, VW = λδWV,(CR)
UW = λεWU, V X = XV, WX = XW,

equations which ensure that

π : (h, j, k,m, n) �−→ λhXjW kV mUn
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is a representation of H5,3(α, β, γ, δ, ε). Denote by A5,3
θ (α, β, γ, δ, ε)

the C∗-subalgebra ofB(L2(T2)) generated by π. Now A5,3
θ (α, β, γ, δ, ε)

is isomorphic only to a subalgebra of C (as may be shown using con-
ditional expectations); a unitary that is missing is X ′ : f �→ wf , since
γ > 1.

Note. The reason we did not use F when ε = 0, and γ > 1, is that
A5,3

θ (α, β, γ, δ, 0) seems to be isomorphic only to a subalgebra of C in
that case too, whereas with F ′, A5,3

θ (α, β, γ, δ, 0) ∼= C′.

Since the flow method can no longer be used to prove the simplicity
of the algebra A5,3

θ (α, β, γ, δ, ε) (when 0 < ε ≤ gcd {γ, δ}/2), we use
the strong result of Packer [10].

Theorem 2. Let λ = e2πiθ for an irrational θ.

(a) There is a unique (up to isomorphism) simple C∗-algebra A5,3
θ (α,

β, γ, δ, ε) generated by unitaries U , V , W and X satisfying

UV = λβXαV U, UX = λγXU, VW = λδWV,(CR)
UW = λεWU, V X = XV, WX = XW,

Furthermore, for a suitable C-valued cocycle on H3(α) × Z,

A5,3
θ (α, β, γ, δ, ε) ∼= C∗(C,H3(α) × Z).

(b) Let π′ be a representation of H′
5,3 = H5,3(α, β, γ, δ, ε) such that

π = π′, as scalars, on the center (Z, 0, 0, 0, 0) of H′
5,3, and let A be

the C∗-algebra generated by π′. Then A ∼= A5,3
θ (α, β, γ, δ, ε) = A′5,3

θ

(say) via a unique isomorphism ω such that the following diagram
commutes.

H′
5,3 �

π
�
�
���π′

A′5,3
θ

�
�
�
��

ω

A

Proof. To use Packer’s result, we regard H5,3(α, β, γ, δ, ε) as an
extension

H5,3(α, β, γ, δ, ε) ∼= Z× (0,Z,Z,Z,Z) ∼= Z× (H3(α) × Z)
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(with H3(α) ∼= (0,Z, 0,Z,Z) ⊂ H5,3(α, β, γ, δ, ε)); this extension has
cocycle

[s, s′] = [(j, k,m, n), (j′, k′,m′, n′)]

= λγnj′+αγm′n(n−1)/2+βnm′+δmk′+εnk′
,

(H3(α) × Z,H3(α) × Z) −→ T.

The application of Packer’s result requires the consideration of the
related function

χs′
(s) = [s′, s][s, s−1s′s] for s, s′ ∈ (0,Z,Z,Z,Z) ∼= H3(α) × Z.

It must be shown that χs′
is non-trivial on the centralizer of s′ in

H3(α) × Z if s′ has finite conjugacy class in H3(α) × Z; this is easy
because the only elements of H3(α)×Z that have finite conjugacy class
are in the center Z1 = (Z,Z, 0, 0) of H3(α)×Z, so their centralizer is all
of H3(α)×Z. Thus the C∗-crossed product C∗(C,H3(α)×Z) is simple;
it is isomorphic to A5,3

θ (α, β, γ, δ, ε) because, with basis members

e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0),
e3 = (0, 0, 1, 0) and e4 = (0, 0, 0, 1)

for H3(α) × Z, the unitaries

U ′ = δe4 , V ′ = δe3 , W ′ = δe2 and X ′ = δe1

in l1(H3(α) × Z) ⊂ C∗(C,H3(α) × Z) satisfy (CR).

4. Other simple quotients of C∗(H5,3(α, β, γ, δ, ε)). Now
assume that λ is a primitive qth root of unity and that U , V , W and X
are unitaries generating a simple quotient A of C∗(H5,3(α, β, γ, δ, ε)),
i.e., they satisfy

UV = λβXαV U, UX = λγXU, VW = λδWV,(CR)
UW = λεWU, V X = XV, WX = XW,

We may assume that A is irreducibly represented. Then, if

(c′)
{
q1 is the order of λγ and
q2 is the lcm of the orders of λδ and λε,
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W q2 andXq1 are scalar multiples of the identity, by irreducibility. Since
W can be multiplied by a scalar without changing (CR), we may assume
W q2 = 1. However, Xq1 = μ′, a multiple of the identity. Put X = μX1

for μq1 = μ′, so that Xq1
1 = 1, and substitute X = μX1 in (CR) to get

(CR1)

⎧⎨
⎩
UV = λβμαXα

1 V U, UX1 = λγX1U, V X1 = X1V,

WX1 = X1W, VW = λδWV, UW = λεWU

and W q2 = 1 = Xq1
1 .

1. If μ is also a root of unity, then (CR1), along with irreducibility,
shows that U and V , as well as W and X, are (multiples of) finite order
unitaries, so A is finite dimensional.

2. If μ is not a root of unity, the dynamical system F = (Z2,T2)
used above to get a concrete representation of A5,3

θ (α, β, γ, δ, ε) can
be modified to get a concrete representation of A on L2(Zq1 × T),
where Zq1 is the subgroup of T with q1 elements. We shall now
show that A is isomorphic to Mq2 ⊗ C∗(C(Zq1 × T),Z), where q2 is
as in (c′) and the action of Z on Zq1 × T is generated by a minimal
transformation φ(w, v) = (λ′w, ξ1λγαq2v) for suitable λ′ of order q1 and
ξ1, see Theorem 3 below.

First consider the universal C∗-algebra A generated by unitaries
satisfying

(CR1)

⎧⎨
⎩
UV = λβμαXα

1 V U, UX1 = λγX1U, V X1 = X1V,

WX1 = X1W, VW = λδWV, UW = λεWU

and W q2 = 1 = Xq1
1 .

A change of variables is useful. Pick relatively prime integers c, d such
that dδ + cε = 0, and let a, b be integers such that ad− bc = 1. Put

U ′ = UaV b and V ′ = UcV d.

Then keeping X and W the same, (CR1) becomes

(CR2)

⎧⎨
⎩
U ′V ′ = ξXα

1 V
′U ′, U ′X1 = λaγX1U

′, WX1 = X1W,

V ′W = WV ′, U ′W = λδ′
WU ′, V ′X = λcγXV ′

and W q2 = 1 = Xq1
1
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where ξ = λβμαλs for some integer s, and δ′ = bδ+ aε. It is clear that
λδ′

is a primitive q2th root of unity and that the algebra A is generated
by U ′, V ′,W and X1, since ad− bc = 1.

Let B = C∗(X1, V
′) and let C(Zq2) = C∗(W ) be the C∗-algebra

generated by W . Since W commutes with X1 and V ′, we can form the
tensor product algebra B ⊗ C(Zq2) = C∗(X1, V

′,W ). The automor-
phism AdU ′ acts on this tensor product as σ ⊗ τ , where σ and τ are
automorphisms of B and C(Zq2), respectively, given by

σ(X1) = λaγX1, σ(V ′) = ξ1X
α
1 V

′ and τ (W ) = ζW.

Therefore, by the universality of A and of the C∗-crossed product
C∗(B ⊗C(Zq2),Z), these algebras are isomorphic. By Rieffel’s Propo-
sition 1.2 [17], the latter of these is isomorphic to Mq2(D), where
D = C∗(B,Z) = C∗(X1, V

′, U ′q2), and the action of Z on B is gener-
ated by σq2 .

Now, the unitaries X1, V
′ and U ′q2 generating D satisfy

(�)
{
U ′q2V ′ = ξq2λs′

Xαq2
1 V ′U ′q2 , V ′X1 = λcγX1V

′,
U ′q2X1 = λaγq2X1U

′q2 and Xq1
1 = 1,

for some s′ ∈ Z.

Now we apply another change of variables. Choose relatively prime
integers c′, d′ such that cd′ + aq2c

′ = 0, then pick integers a′, b′ with
a′d′ − b′c′ = 1, and put

U ′′ = U ′q2a′
V ′b′ and V ′′ = U ′q2c′V d′

.

Then (�) becomes (keeping X1 the same)

(��)
{
U ′′V ′′ = ξ1X

αq2
1 V ′′U ′′, V ′′X1 = X1V

′′,
U ′′X1 = λ′X1U

′′ and Xq1
1 = 1,

where ξ1 = ξq2λs′
for some integer s′, λ′ = λγ(aq2a′+cb′) has order q3

dividing q1 (the order of λγ), and perhaps q3 �= q1.

Now, with Zq1 ⊂ T representing the subgroup with q1 members, one
observes that D is isomorphic to the crossed product of C∗(C(Zq1 ×
T),Z) from the flow generated by φ(w, v) = (λ′w, ξ1λγαq2v). (Note
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that the flow is not minimal unless the order of λ′ is exactly q1.) This
proves the following.

Theorem 3. The universal C∗-algebra A generated by unitaries
U , V , W and X1 satisfying (CR1) as for 2 near the beginning of
this section, (see also (c′)) is isomorphic to Mq2(D), where D =
C∗(C(Zq1 × T),Z), as above.

Therefore, we now obtain all simple algebras satisfying (CR1).

Corollary 4. Every simple C∗-algebra generated by unitaries sat-
isfying (CR1), with μ not a root of unity, is isomorphic to a matrix
algebra over an irrational rotation algebra.

Proof. By Theorem 3, any such simple algebra Q is a quotient of
Mq2(D). Hence Q = Mq2(Q

′) where Q′ is a simple quotient of D. But
such a Q′ is generated by unitaries satisfying (��), but withX1, of order
q1, replaced by another unitary X2, which after suitable rescaling, has
order equal to the order of the λ′ appearing in (��). But this algebra
is known to be a matrix algebra over an irrational rotation algebra, see
for example Theorem 3 of [5].

We state

Theorem 5. A C∗-algebra A is isomorphic to a simple infinite
dimensional quotient of C∗(H5,3(α, β, γ, δ, ε)) if and only if A is
isomorphic to A5,3

θ (α, β, γ, δ, ε) for an irrational θ, or to an algebra
as in Corollary 4.

5. K-theory and the trace invariant. In this section we shall
calculate the K-groups of the C∗-algebra A := A5,3

θ (α, β, γ, δ, ε) by
means of the Pimsner-Voiculescu six term exact sequence [16]. Since
one of the groups in the sequence turns out to have torsion elements,
the application of this result requires careful examination.
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Theorem 6. For the C∗-algebra A5,3
θ (α, β, γ, δ, ε), one has K0 =

K1 = Z6 ⊕ Zα.

Proof. To prove this theorem, we combine two applications of the PV
sequence corresponding to two presentations P1 and P2 of A as follows.

P1. In view of (CR), let B1 = C∗(X,V, U) and let AdW , with

AdW (X) = X, AdW (V ) = λ−δV, AdW (U) = λ−εU,

generate an action of Z on B1, so that A = C∗(B1,Z). Applying the PV
sequence to B1, viewed as the crossed product of C(T2) = C∗(X,V )
by the automorphism AdU , it is not hard to see that K0(B1) = Z3 and
K1(B1) = Z3 ⊕ Zα. Since AdW is homotopic to the identity, the PV
sequence immediately gives

K1(A) = Z6 ⊕ Zα.

However, since in the short exact sequence

0 −→ K0(B1)
i∗−→ K0(A) δ−→ K1(B1) −→ 0

K1(B1) has torsion, we cannot readily obtain K0(A). For this, the next
presentation will help.

P2. In view of (CR), we can also let B2 = C∗(X,V,W ) = C(T) ⊗
Aδθ, where C(T) = C∗(X) and Aδθ = C∗(V,W ). Let σ = AdU , with

σ(X) = λγX, σ(V ) = λβXαV, σ(W ) = λεW,

generate an action of Z on B2, so that A = C∗(B2,Z). In this case the
PV sequence becomes

(∗)
K0(B2) �

id∗−σ∗ K0(B2) �

i∗ K0(A)

�
δ0

K1(A)

�

δ1

K1(B2)�
i∗ K1(B2)�

id∗−σ∗
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It is not hard to see that a basis for K1(B2) = Z4 is given by
{[X], [V ], [W ], [ξ]} where ξ = X ⊗ e + 1 ⊗ (1 − e) and e = e(V,W )
is a Rieffel projection in Aδθ of trace δθ mod 1. Also, a basis of
K0(B2) = Z4 is given by {[1], [e], BXV , BXW } where BXV = [PXV ]−[1]
is the Bott element in X,V and PXV the usual Bott projection in the
commuting unitaries X,V . The action of id∗ − σ∗ on K1(B2) is given
by

id∗ − σ∗ : [X] �→ 0, [V ] �→ −α[X], [W ] �→ 0, [ξ] �→ mα[X]

for some integer m, as shown by the following lemma. The action of
id∗ − σ∗ on K0(B2) is given by

id∗ − σ∗ : [1] �→ 0, [e] �→ αBXW , BXW �→ 0, BXV �→ 0.

Here, that σ∗(BXV ) = BXV is a well-known fact, see for example
Lemma 3.2 of [18]. The action on [e] is also shown in the following

Lemma 7. We have σ∗[e] = [e] − αBXW in K0(B2) and σ∗[ξ] =
[ξ] +mα[X] for some integer m.

Proof. The proof of the first equality can be established using an
argument quite similar to that of the proof of Lemma 4.2 of [18]. Hence
the kernel of id∗ − σ∗ on K0(B2) is Z3. For the second equality, let
η = (id∗ − σ∗)[ξ]. From P1 and (*) we have

Z6 ⊕ Zα
∼= K1(A) ∼= Z3 ⊕ Im (i∗)

∼= Z3 ⊕ K1(B2)
Im (id∗ − σ∗)

= Z3 ⊕ K1(B2)
Zα[X] + Zη

.

Thus

(∗∗) K1(B2)
Zα[X] + Zη

∼= Z3 ⊕ Zα.

But since K1(B2) ∼= Z4, it follows that the subgroup Zα[X] +Zη must
have rank one.1 Therefore, Zα[X] + Zη = Zd[X] for some integer d.
Substituting this into (∗∗), one gets d = α and so η ∈ Zα[X].
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It now follows that in K1(B2) one has Im (id∗ − σ∗) = Zα[X] and
that Ker (id∗−σ∗) = Z3 whether m is zero or not. Therefore, from the
exactness of (∗) we obtain Im (δ0) = Z3 and hence, by Lemma 7,

K0(A) = Z3⊕Im (i∗) = Z3⊕ K0(B2)
Im (id∗ − σ∗)

= Z3⊕ K0(B2)
ZαBXW

= Z6⊕Zα,

which completes the proof of Theorem 6.

5.1 The trace invariant. Let us first note that when θ is irrational,
the C∗-algebra A5,3

θ (α, β, γ, δ, ε) has a unique trace state τι . Such a
trace clearly exists by defining τι(XmWnV rUs) = 0 when (m,n, r, s) �=
(0, 0, 0, 0) and 1 otherwise. The uniqueness of a trace state follows
from showing that, for any such trace τι , one has τι(XmWnV rUs) = 0
when (m,n, r, s) �= (0, 0, 0, 0). Indeed, using AdX in the trace, one
gets τι(XmWnV rUs) = τι(X∗XmWnV rUsX) = λγsτι(XmWnV rUs),
which shows that τι(XmWnV rUs) = 0 for s �= 0, as γ > 0. One then
looks at τι(XmWnV r). Here one uses AdW to see that this trace is 0
for r �= 0. For τι(XmWn) one uses AdV and for τι(Xm) one uses AdU .
This proves uniqueness of the trace.

Theorem 8. The range of the unique trace on K0(A
5,3
θ (α, β, γ, δ, ε))

is Z + Zρθ + Zγδθ2 where ρ = gcd{γ, δ, ε}.

Note that this agrees with the trace invariant Z + Zθ + Zθ2 of the
algebra A5,3

θ as done in [18, Section 2], in the case (α, β, γ, δ, ε) =
(1, 0, 1, 1, 0).

Proof. First we make an appropriate change of variables for the
unitary generators of the algebra A = A5,3

θ (α, β, γ, δ, ε). Referring
back to the defining relations (CR), pick integers a, b, c, d such that
bδ + aε = 0, ad− bc = 1, and let

U ′ = UaV b, V ′ = UcV d.

Then the commutation relations (CR), withW remaining the same and
X suitably scaled, become

U ′V ′ = XαV ′U ′, U ′X = λaγXU ′, V ′W = λdδ+cεWV ′,
U ′W = WU ′, V ′X = λcγXV ′, WX = XW
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Let B = C∗(X,U ′, V ′). It is isomorphic to the crossed product of
C∗(X,U ′) = Aaγθ by Z and automorphism AdV ′ . An easy application
of Pimsner’s trace formula [15, Theorem 3] shows that

τι∗K0(B) = Z + Zaγθ + Zcγθ = Z + Zγθ,

since (a, c) = 1. Next, it is not hard to see that an application of the
Pimsner-Voiculescu sequence to the above crossed product presentation
of B gives the basis {[X], [V ′], [U ′], [ξ]} for K1(B), where [X] has order
α, ξ = 1 − e + ew∗V ′∗e is a unitary in B, e is a Rieffel projection
in Aaγθ of trace (aγθ)mod1, and w is a unitary in Aaγθ such that
V ′∗eV ′ = wew∗, which exists by Rieffel’s cancellation theorem [17].
The underlying connecting homomorphism ∂ : K1(B) → K0(Aaγθ)
gives ∂[ξ] = [e] and ∂[V ′] = [1], the usual basis of K0(Aaγθ).

To apply Pimsner’s trace formula, one calculates the usual “determi-
nant” on the aforementioned basis, since the kernel of id∗ − (AdW )∗
is all of K1(B), since AdW is homotopic to the identity. It is easy to
see that this determinant, whose values are in R/τι∗K0(B), on the el-
ements [X], [V ′], [U ′] gives the respective values 1, (dδ + cε)θ, 1. For ξ,
since now AdW fixes Aaγθ, and in particular e and w, one obtains

AdW (ξ)ξ∗ = (1− e+λdδ+cεew∗V ′∗e)(1− e+ eV ′we) = 1− e+λdδ+cεe.

Now a simple homotopy path connecting this element to 1 is just
t �→ 1 − e + e2πiθ(dδ+cε)te, and the corresponding determinant gives
the value (dδ + cε)θτι(e). Since τι(e) = aγθ mod 1, the range of the
trace is

τι∗K0(A) = Z + Zγθ + Z(dδ + cε)θ + Zγa(dδ + cε)θ2.

Now a(dδ + cε) = adδ + acε − c(bδ + aε) = δ, and similarly −b(dδ +
cε) = ε, thus showing that dδ + cε = gcd{δ, ε}. Therefore, one gets
τι∗K0(A) = Z + Z gcd{γ, δ, ε}θ + Zγδθ2.

5.2 Discussion of classification. Next, let us consider briefly the
classification of the algebras A5,3

θ (α, β, γ, δ, ε). First, it is easy to
show that A5,3

θ (α, β, γ, δ, ε) ∼= A5,3
−θ(α, β, γ, δ, ε). Second, we note

that the simple quotients A5,3
θ = A5,3

θ (1, 0, 1, 1, 0) have been almost
completely classified in [18]; specifically, they have been classified for
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all non-quartic irrationals, which are those that are not zeros of any
polynomial of degree at most 4 with integer coefficients. But, generally,
with λ = e2πiθ for an irrational θ, the operator equations

UV = λβXαV U, UX = λγXU, VW = λδWV,(CR)
UW = λεWU, V X = XV, WX = XW,

for A5,3
θ (α, β, γ, δ, ε) can be modified by changing some of the vari-

ables, i.e., by substituting X0 = e2πiθβ/αX and putting λ0 = λρ, where
ρ = gcd {γ, δ, ε}, and then γ0 = γ/ρ, δ0 = δ/ρ and ε0 = ε/ρ with
gcd {γ0, δ0, ε0} = 1. The equations (CR) become

(CR0){
UV = Xα

0 V U, UX0 = λγ0
0 X0U, V W = λδ0

0 WV, V X0 = X0V,

UW = λε0
0 WU, WX0 = X0W, with gcd {γ0, δ0, ε0} = 1,

which are the equations for A5,3
ρθ (α, 0, γ0, δ0, ε0), so

A5,3
θ (α, β, γ, δ, ε) ∼= A5,3

ρθ (α, 0, γ0, δ0, ε0)

where gcd {γ0, δ0, ε0} = 1. This reduces the classification to the class
of algebras A5,3

θ (α, 0, γ, δ, ε) where gcd {γ, δ, ε} = 1.

If two such C∗-algebras Aj = A5,3
θj

(αj , 0, γj , δj , εj), j = 1, 2, are
isomorphic, where now ρj = gcd {γj , δj , εj} = 1, what constraints
must hold between their respective parameters? As we observed in
Theorem 6, one must have α1 = α2. By Theorem 8, one has

Z + Zθ1 + Zγ1δ1θ
2
1 = Z + Zθ2 + Zγ2δ2θ

2
2.

One can show that if one assumes that θj are non-quadratic irra-
tionals, then these trace invariants are equal if, and only if, there is a
matrix S ∈ GL(2,Z) such that(

θ2
γ2δ2θ

2
2

)
= S

(
θ1

γ1δ1θ
2
1

)
mod

(
Z
Z

)
.

Further, one can more easily show that if θj are non-quartic irrationals,
i.e., not roots of polynomials over Z of degree at most four, then the
trace invariants are equal if, and only if,

θ2 = (±θ1)mod 1, and γ2δ2θ
2
2 = (±γ1δ1θ

2
1 +mθ1)mod 1,
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for some integer m. If θj are in (0, (1/2)) for j = 1, 2, then this shows
that θ1 = θ2 and hence γ1δ1 = γ2δ2. We therefore have one direction
of what could be a classification theorem.

Theorem 9. Let θ1 and θ2 be non-quartic irrationals in (0, (1/2)).
If the C∗-algebras A1 and A2 are isomorphic, then θ1 = θ2, α1 = α2,
and γ1δ1 = γ2δ2.

As to the converse, the necessary conditions by themselves seem
to suggest that the Elliott invariant of both algebras are isomorphic.
This will hold if it can be shown that the positive cone of K0(Aj)
consists of those elements with positive trace. Further, if one can show
that the algebras Aj fall into the classification class of Qing Lin and
Chris Phillips, i.e., are direct limits of recursive subhomogeneous C∗-
subalgebras, which is a highly nontrivial matter, then one will have
obtained a complete classification theorem for these algebras. The
difficulty in doing this is illustrated by their recent unpublished papers
[3, 13, 14], in which [3] is a 200-page classification theorem. The
authors are thankful to Chris Phillips for making these and related
papers available to them.

ENDNOTES

1. If 0 → F1 → G → F2 ⊕ H → 0 is a short exact sequence of finitely

generated Abelian groups, where F1, F2 are free groups and H is torsion, then

rank (G) = rank (F1) + rank (F2). This can be seen from the naturally obtained

short exact sequence 0 → F1 ⊕ F2 → G → H → 0, from which the result follows.

(If G has rank greater than that of a subgroup K, then G/K contains a non-torsion

element.)
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