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ON GENERALIZATION
OF BULLEN-SIMPSON’S INEQUALITY

M. MATIĆ, J. PEČARIĆ AND A. VUKELIĆ

ABSTRACT. Generalization of Bullen-Simpson’s inequal-
ity for (2r)-convex functions is given, by using some Euler
type identities. A number of inequalities, for functions whose
derivatives are either functions of bounded variation or Lips-
chitzian functions or functions in Lp-spaces, are proved.

1. Introduction. For any convex function f : [0, 1] → R,
the following pair of inequalities, usually referred in the literature as
Hadamard’s inequalities, hold

(1.1) f

(
1
2

)
≤

∫ 1

0

f(t) dt ≤ f(0) + f(1)
2

.

If f is concave, the inequalities are reversed. In [9] Hammer showed,
by a simple geometric argument that for convex functions the absolute
value of error in the mid-point quadrature rule is always smaller than
absolute value of the error in the trapezoidal rule, i.e., the following
inequalities are valid for a convex function f

(1.2) 0 ≤
∫ 1

0

f(t) dt − f

(
1
2

)
≤ 1

2
[f (0) + f (1)] −

∫ 1

0

f(t) dt.

An elementary analytic proof of (1.1) and (1.2), but stated on the
interval [−1, 1], was given in [3].

The trapezoid rule is the simplest example of a closed quadrature
rule, while the mid-point rule is the simplest open quadrature rule, [4].
The next simplest such pair is based on the Simpson’s formula

(1.3)
∫ 1

0

f(t) dt =
1
6

[
f(0) + 4f

(
1
2

)
+ f(1)

]
− 1

2880
f (4)(η)
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and the three-point formula (we call it the dual Simpson’s formula)

(1.4)
∫ 1

0

f(t) dt =
1
3

[
2f

(
1
4

)
− f

(
1
2

)
+ 2f

(
3
4

)]
+

7
23040

f (4)(ξ),

which hold in this form for some η and ξ from [0, 1], for any function
f with continuous fourth derivative f (4) on [0, 1]. If additionally f (4)

is nonnegative, that is, if f (4)(t) ≥ 0, for all t ∈ [0, 1], then from the
above formulas we immediately have

(1.5)
1
3

[
2f

(
1
4

)
−f

(
1
2

)
+ 2f

(
3
4

)]
≤

∫ 1

0

f(t) dt

≤ 1
6

[
f(0) + 4f

(
1
2

)
+ f(1)

]
.

In the case when f (4) exists, the condition f (4)(t) ≥ 0, for all t ∈ [0, 1]
is equivalent to the requirement that f is a four-convex function on
[0, 1]. However, a function f may be four-convex although f (4) does
not exist.

Bullen in [3] proved that, if f is four-convex, then (1.5) is valid.
Moreover, he proved that the dual Simpson’s quadrature rule is more
accurate than the Simpson’s quadrature rule, that is, we have

(1.6)
0 ≤

∫ 1

0

f(t) dt − 1
3

[
2f

(
1
4

)
− f

(
1
2

)
+ 2f

(
3
4

)]
≤ 1

6

[
f(0) + 4f

(
1
2

)
+ f(1)

]
−

∫ 1

0

f(t) dt,

provided f is four-convex. We shall call this inequality Bullen-
Simpson’s inequality.

We recall that a function f : [0, 1] → R is said to be n-convex on [0, 1],
for some n ≥ 0, if for any choice of n + 1 distinct points x0, x1, . . . , xn

from [0, 1] we have
f [x0, x1, . . . , xn] ≥ 0,

where f [x0, x1, . . . , xn] is the nth order divided difference of f . In the
case when the above inequality is reversed, f is said to be n-concave
on [0, 1]. If f is n-convex (n-concave), then f (n−2) exists and is convex
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(concave) function in the ordinary sense. Especially, two-convex (two-
concave) function f is convex (concave) in the ordinary sense. Also, if
f (n) exists, then f is an n-convex (n-concave) if and only if f (n) ≥ 0,
f (n) ≤ 0. For some further details on n-convexity see for example [12].

In the recent papers [5, 6], Dedić et al. considered a generalization of
(1.3) and (1.4), based on the well-known Euler formula for expanding
n times differentiable function f in terms of Bernoulli polynomials, see
for example [10, p. 17]. Before stating the basic results from [5, 6] we
recall that a sequence of Bernoulli polynomials (Bk(t))k≥0 is uniquely
determined by the following identities

(1.7) B′
k(t) = kBk−1(t), k ≥ 1; B0(t) = 1

and

(1.8) Bk(t + 1) − Bk(t) = ktk−1, k ≥ 0.

The values Bk = Bk(0) are usually called the Bernoulli numbers. For
some further details on the Bernoulli polynomials and the Bernoulli
numbers, see for example [1, 2]. Also, we need a sequence (B∗

k(t))k≥0

of periodic functions of period 1, related to the Bernoulli polynomials
as

B∗
k(t) = Bk(t), 0 ≤ t < 1, and B∗

k(t + 1) = B∗
k(t), t ∈ R

It is easy to see that B∗
0(t) = 1 and B∗

1(t) is a discontinuous function
with a jump of −1 at each integer. Also, since Bk(1) = Bk(0) = Bk for
k ≥ 2, the functions B∗

k(t) are continuous for k ≥ 2. Moreover, from
(1.7) we get

B∗′
k (t) = kB∗

k−1(t), k ≥ 1

for every t ∈ R when k ≥ 3, and for every t ∈ R \ Z when k = 1, 2.

Now we consider a function f : [0, 1] → R such that f (n−1) is a
continuous function of bounded variation, for some n ≥ 1. Denote
r = [n/2], s = [(n − 1)/2], where [a] is the greatest integer less than or
equal to a.

For such a function f , the following identities were obtained in [5]:

(1.9)
∫ 1

0

f(t) dt =
1
6

[
f(0) + 4f

(
1
2

)
+ f(1)

]
+ TS

r (f) + σ1
n(f)
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and

(1.10)
∫ 1

0

f(t) dt =
1
6

[
f(0) + 4f

(
1
2

)
+ f(1)

]
+ TS

s (f)+ σ2
n(f).

The perturbations TS
r (f) and TS

s (f) are defined as TS
0 (f) = TS

1 (f) = 0
and, for m ≥ 2,

(1.11) TS
m(f) =

1
3

m∑
k=2

1
(2k)!

(1− 22−2k)B2k

[
f (2k−1)(1) −f (2k−1)(0)

]
,

while the remainders σ1
n(f) and σ2

n(f) are given by

σ1
n(f) =

1
3 (n!)

∫ 1

0

GS
n (t) df (n−1)(t)

and

σ2
n(f) =

1
3 (n!)

∫ 1

0

FS
n (t) df (n−1)(t),

where

FS
1 (t) = GS

1 (t) = B1(1 − t) + 2B∗
1

(
1
2
− t

)
and for n ≥ 2

GS
n(t) = Bn(1 − t) + 2B∗

n

(
1
2
− t

)
, FS

n (t) = GS
n(t) − GS

n(0).

Further, under the same assumptions on f , the following two identities
were obtained in [6]:

(1.12)
∫ 1

0

f(t) dt =
1
3

[
2f

(
1
4

)
−f

(
1
2

)
+ 2f

(
3
4

)]
+ TD

r (f) + ρ1
n(f)

and

(1.13)
∫ 1

0

f(t) dt =
1
3

[
2f

(
1
4

)
−f

(
1
2

)
+ 2f

(
3
4

)]
+ TD

s (f) + ρ2
n(f).
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Here, the perturbations TD
r (f) and TD

s (f) are defined as TD
0 (f) =

TD
1 (f) = 0 and, for m ≥ 2,

(1.14) TD
m (f) = −1

3

m∑
k=2

1
(2k)!

(8 · 2−4k− 6 · 2−2k + 1)

× B2k

[
f (2k−1)(1) − f (2k−1)(0)

]
,

while the remainders ρ1
n(f) and ρ2

n(f) are given by

ρ1
n(f) =

1
3 (n!)

∫ 1

0

GD
n (t) df (n−1)(t)

and

ρ2
n(f) =

1
3 (n!)

∫ 1

0

FD
n (t) df (n−1)(t),

where, for all n ≥ 1,

GD
n (t) = 2B∗

n

(
1
4
− t

)
− B∗

n

(
1
2
− t

)
+ 2B∗

n

(
3
4
− t

)
,

FD
n (t) = GD

n (t) − GD
n (0).

The aim of this paper is to establish a generalization of the inequal-
ities (1.5) and (1.6) for a class of (2r)-convex functions and also to
obtain some estimates for the absolute value of difference between the
absolute value of error in the dual Simpson’s quadrature rule and the
absolute value of error in the Simpson’s quadrature rule. We shall make
use of the following five-point quadrature formula∫ 1

0

f(t) dt ≈ 1
12

[
f (0) + 4f

(
1
4

)
+ 2f

(
1
2

)
+ 4f

(
3
4

)
+ f (1)

]
,

obtained by adding the Simpson’s and the dual Simpson’s quadrature
formulae. It is suitable for our purposes to rewrite the inequality (1.5)
in the form

(1.15)
∫ 1

0

f(t) dt ≤ 1
12

[
f (0) + 4f

(
1
4

)
+ 2f

(
1
2

)
+ 4f

(
3
4

)
+ f (1)

]
.
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As we mentioned earlier, this inequality is valid for any 4-convex
function f and we call it the Bullen-Simpson’s inequality.

It should be noted that each continuous n-convex function on [0, 1]
is the uniform limit of the sequence of corresponding Bernstein’s poly-
nomials, see for example [12, p. 293]. Also, Bernstein’s polynomials of
continuous n-convex function are also n-convex functions. Therefore,
when stating our results for a continuous (2r)-convex function f , with-
out any loss of generality we assume that f (2r) exists and is continuous.
Actually those results are valid for any continuous (2r)-convex function
f .

2. Bullen-Simpson’s formulae of Euler type. We consider the
sequences of functions (Gk(t))k≥1 and (Fk(t))k≥1 defined for t ∈ R by

Gk(t) := GS
k (t) + GD

k (t), Fk(t) := FS
k (t) + FD

k (t),

where GS
k (t), GD

k (t), FS
k (t) and FD

k (t) are defined as in the introduc-
tion. So we have

G1(t) = F1(t) = B1(1−t)+2B∗
1

(
1
4
− t

)
+B∗

1

(
1
2
− t

)
+2B∗

1

(
3
4
− t

)
and, for k ≥ 2,

Gk(t) = Bk(1 − t) + 2B∗
k

(
1
4
− t

)
+ B∗

k

(
1
2
− t

)
+ 2B∗

k

(
3
4
− t

)
,

Fk(t) := Gk(t) − B̃k,

where

B̃k := Gk(0) = Bk + 2Bk

(
1
4

)
+ Bk

(
1
2

)
+ 2Bk

(
3
4

)
.

Let f : [0, 1] → R be such that f (n−1) exists on [0, 1] for some n ≥ 1.
We introduce the following notation

D(0, 1) :=
1
12

[
f (0) + 4f

(
1
4

)
+ 2f

(
1
2

)
+ 4f

(
3
4

)
+ f (1)

]
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Further, we define T0(f) = T1(f) := 0 and, for 2 ≤ m ≤ [n/2],

Tm(f) :=
1
2

[
TS

m (f) + TD
m (f)

]
,

where TS
m(f) and TD

m (f) are given by (1.11) and (1.14), respectively.
It is easy to see that
(2.1)

Tm(f) =
1
3

m∑
k=2

1
(2k)!

2−2k(1 − 4 · 2−2k)B2k

[
f (2k−1)(1) −f (2k−1)(0)

]
.

In the next lemma we establish two formulae which play the key role
in this paper. We call them Bullen-Simpson formulae of Euler type.

Lemma 1. Let f : [0, 1] → R be such that f (n−1) is a continuous
function of bounded variation on [0, 1], for some n ≥ 1. Then we have

(2.2)
∫ 1

0

f(t) dt = D(0, 1) + Tr(f) + τ1
n(f),

where r = [n/2] and

τ1
n(f) =

1
6 (n!)

∫ 1

0

Gn (t) df (n−1)(t).

Also,

(2.3)
∫ 1

0

f(t) dt = D(0, 1) + Ts(f) + τ2
n(f),

where s = [(n − 1)/2] and

τ2
n(f) =

1
6 (n!)

∫ 1

0

Fn (t) df (n−1)(t).

Proof. First we multiply formulas (1.9) and (1.12) by the factor 1/2
and then add them up to obtain the identity (2.2). The identity (2.3)
follows analogously from (1.10) and (1.13).
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Remark 1. The interval [0, 1] is used for simplicity and involves no
loss in generality. The results which follow will apply,without comment,
to any interval that is convenient.

Namely, it is easy to transform the identities (2.2) and (2.3) to the
identities which hold for any function f : [a, b] → R such that f (n−1)

is a continuous function of bounded variation on [a, b], for some n ≥ 1.
We get

∫ b

a

f(t) dt = D(a, b) + T̃r(f) +
(b−a)n

6 (n!)

∫ b

a

Gn

(
t−a

b−a

)
df (n−1)(t)

(2.4)

and

∫ b

a

f(t) dt = D(a, b) + T̃s(f) +
(b−a)n

6 (n!)

∫ b

a

Fn

(
t−a

b−a

)
df (n−1)(t),

(2.5)

where

D(a, b) :=
b−a

12

[
f(a) + 4

(
3a+b

4

)
+ 2

(
a+b

2

)
+ 4

(
a+3b

4

)
+f(b)

]
,

while T̃0(f) = T̃1(f) = 0 and

T̃m(f) =
1
3

m∑
k=2

(b−a)2k

(2k)!
2−2k(1−4 · 2−2k)B2k

[
f (2k−1)(b) −f (2k−1)(a)

]
,

for 2 ≤ m ≤ [n/2].

3. Bullen-Simpson’s inequality for (2r)-convex functions. In
this section we use Bullen-Simpson formulae of Euler type established in
Lemma 1 to obtain a generalization of Bullen-Simpson’s inequality for
(2r)-convex functions. First, we need some properties of the functions
Gk(t) and Fk(t) defined in the previous section.

Since B1(t) = t − (1/2), we have

(3.1) G1(t) = F1(t) =

⎧⎪⎪⎨⎪⎪⎩
−6t + 1/2 t ∈ [0, 1/4]
−6t + 5/2 t ∈ (1/4, 1/2]
−6t + 7/2 t ∈ (1/2, 3/4]
−6t + 11/2 t ∈ (3/4, 1].
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Further, for k ≥ 2, the functions B∗
k(t) are periodic with period 1 and

continuous. We have

Gk(0) = Gk(1/2) = Gk(1) = B̃k and Fk(0) = Fk(1/2) = Fk(1) = 0.

Moreover, it is enough to know the values of the functions Gk(t) and
Fk(t), k ≥ 2, only on the interval [0, 1/2] since for 0 ≤ t ≤ 1/2 we have

Gk

(
t +

1
2

)
= Bk

(
1
2
− t

)
+ 2B∗

k

(
−1

4
− t

)
+ B∗

k (−t) + 2B∗
k

(
1
4
− t

)
= B∗

k

(
1
2
− t

)
+ 2B∗

k

(
3
4
− t

)
+ Bk (1−t) + 2B∗

k

(
1
4
− t

)
= Gk (t) .

For k = 2 and k = 3, we have B2(t) = t2 − t + (1/6) and B3(t) =
t3 − (3/2)t2 + (1/2)t, so that by direct calculation we get B̃2 = B̃3 = 0
and

(3.2) G2(t) = F2(t) =

{
6t2 − t t ∈ [0, 1/4]

6t2 − 5t + 1 t ∈ (1/4, 1/2]
,

(3.3) G3(t) = F3(t) =

{
−6t3+ (3/2)t2 t ∈ [0, 1/4]

−6t3 + (15/2)t2− 3t+ (3/8) t ∈ (1/4, 1/2].

The Bernoulli polynomials have a property of symmetry with respect
to 1/2, that is, [1]

(3.4) Bk(1 − t) = (−1)kBk(t), t ∈ R, k ≥ 1.

Also, we have

Bk (1) = Bk (0) = Bk, k ≥ 2, B1(1) = −B1(0) =
1
2

and
B2r−1 = 0, r ≥ 2.

This implies

(3.5) B̃2r−1 = 0, r ≥ 2
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and

B̃2r = B2r + 4B2r

(
1
4

)
+ B2r

(
1
2

)
, r ≥ 1.

Also, we have [1, 23.1.21, 23.1.22]

B2r

(
1
2

)
= − (

1 − 21−2r
)
B2r,

B2r

(
1
4

)
= −2−2r

(
1 − 21−2r

)
B2r, r ≥ 1,

which gives the formula

(3.6) B̃2r = 2 · 2−2r(4 · 2−2r − 1)B2r, r ≥ 1.

Now, by (3.5) we have

(3.7) F2r−1(t) = G2r−1(t), r ≥ 1.

Also,

(3.8) F2r(t) = G2r(t) − 2 · 2−2r(4 · 2−2r − 1)B2r, r ≥ 1.

Further, as we pointed out earlier, the points 0 and 1/2 are the zeros
of Fk(t), k ≥ 2. As we shall see below, 0 and 1/2 are the only zeros of
Fk(t) in [0, 1/2] for k = 2r, r ≥ 1, while for k = 2r − 1, r ≥ 2, we have
F2r−1 (1/4) = G2r−1 (1/4) = 0. We shall see that 0, 1/4 and 1/2 are
the only zeros of F2r−1(t) = G2r−1(t) in [0, 1/2] for r ≥ 2. Also, note
that for r ≥ 1 we have

G2r (0) = G2r

(
1
2

)
= B̃2r = 2 · 2−2r(4 · 2−2r − 1)B2r

and

G2r

(
1
4

)
= 2B2r + 2B2r

(
1
4

)
+ 2B2r

(
1
2

)
= 2 · 2−2r(2 · 2−2r+ 1)B2r,

while

(3.9) F2r

(
1
4

)
= G2r

(
1
4

)
− B̃2r = 4 · 2−2r(1 − 2−2r)B2r.
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Lemma 2. For k ≥ 2, we have

Gk

(
1
2
− t

)
= (−1)kGk(t), 0 ≤ t ≤ 1

2
,

and

Fk

(
1
2
− t

)
= (−1)kFk(t), 0 ≤ t ≤ 1

2
.

Proof. As the functions B∗
k(t) are periodic with period 1 and con-

tinuous for k ≥ 2, we obtain the above two identities by the simple
argument similar to the one used in [5, 6, 8].

Note that the identities established in Lemma 2 are valid for k = 1,
too, except at the points 0, 1/4 and 1/2.

Lemma 3. For r ≥ 2, the function G2r−1(t) has no zeros in the
interval (0, 1/4). The sign of this function is determined by

(−1)rG2r−1(t) > 0, 0 < t <
1
4
.

Proof. For r = 2, G3(t) is given by (3.3) and it is easy to see that

(3.10) G3(t) > 0, 0 < t <
1
4
.

Thus, our assertion is true for r = 2. Now, using a simple induction,
similarly as it was done in [5, 6, 8], we prove that G2r−1(t) cannot
have a zero inside the interval (0, 1/4). Further, if G2r−3(t) > 0,
0 < t < (1/4), then from G′′

2r−1(t) = (2r − 1)(2r − 2)G2r−3(t) it
follows that G2r−1(t) is convex on (0, 1/4) and hence G2r−1(t) < 0,
0 < t < 1/4, while in the case when G2r−3(t) < 0, 0 < t < 1/4 we have
that G2r−1(t) is concave and hence G2r−1(t) > 0, 0 < t < 1/4. Since
(3.10) is valid we conclude that

(−1)rG2r−1(t) > 0, 0 < t <
1
4
.
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Corollary 1. For r ≥ 2 the functions (−1)r−1F2r(t) and
(−1)r−1G2r(t) are strictly increasing on the interval (0, 1/4) and
strictly decreasing on the interval (1/4, 1/2). Consequently, 0 and 1/2
are the only zeros of F2r(t) in the interval [0, 1/2] and

max
t∈[0,1]

|F2r(t)| = 4 · 2−2r(1 − 2−2r) |B2r| , r ≥ 1.

Also, we have

max
t∈[0,1]

|G2r(t)| = 2 · 2−2r
(
2 · 2−2r + 1

) |B2r| , r ≥ 1.

Proof. Using (1.7), we get[
(−1)r−1F2r(t)

]′
=

[
(−1)r−1G2r(t)

]′
= 2r(−1)rG2r−1(t)

and (−1)rG2r−1(t) > 0 for 0 < t < 1/4 by Lemma 3. Thus,
(−1)r−1F2r(t) and (−1)r−1G2r(t) are strictly increasing on the interval
(0, 1/4). Also, by Lemma 2, we have F2r (1/2 − t) = F2r(t), 0 ≤ t ≤ 1/2
and G2r (1/2 − t) = G2r(t), 0 ≤ t ≤ 1/2. which implies that
(−1)r−1F2r(t) and (−1)r−1G2r(t) are strictly decreasing on the interval
(1/4, 1/2). Further, F2r(0) = F2r (1/2) = 0, which implies that |F2r(t)|
achieves its maximum at t = 1/4, that is

max
t∈[0,1]

|F2r(t)| =
∣∣∣∣F2r

(
1
4

)∣∣∣∣ = 4 · 2−2r(1 − 2−2r) |B2r| .

Also,

max
t∈[0,1]

|G2r(t)| = max
{
|G2r (0)| ,

∣∣∣∣G2r

(
1
4

)∣∣∣∣}
= 2 · 2−2r

(
1 + 2 · 2−2r

) |B2r| ,

which completes the proof.

Corollary 2. Assume r ≥ 2. Then we have∫ 1

0

|G2r−1(t)| dt =
8 · 2−2r

(
1 − 2−2r

)
r

|B2r| .
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Also, we have∫ 1

0

|F2r(t)| dt =
∣∣∣B̃2r

∣∣∣ = 2 · 2−2r
(
1 − 4 · 2−2r

) |B2r|

and

∫ 1

0

|G2r(t)| dt ≤ 2
∣∣∣B̃2r

∣∣∣ = 4 · 2−2r
(
1 − 4 · 2−2r

) |B2r| .

Proof. Using Lemma 2 and Lemma 3, we get

∫ 1

0

|G2r−1(t)| dt = 4
∣∣∣∣ ∫ 1/4

0

G2r−1(t) dt

∣∣∣∣ = 4
∣∣∣∣ − 1

2r
G2r(t)|1/4

0

∣∣∣∣
=

2
r

∣∣∣∣G2r

(
1
4

)
− G2r (0)

∣∣∣∣ =
8 · 2−2r

(
1−2−2r

)
r

|B2r| ,

which proves the first assertion. By Corollary 1, F2r(t) does not change
the sign on the interval (0, 1/2). Therefore, using (3.8) we get

∫ 1

0

∣∣∣∣F2r(t)
∣∣∣∣ dt = 2

∣∣∣∣ ∫ 1/2

0

F2r(t) dt

∣∣∣∣ = 2
∣∣∣∣ ∫ 1/2

0

[
G2r(t) − B̃2r

]
dt

∣∣∣∣
= 2

∣∣∣∣− 1
2r + 1

G2r+1(t)|1/2
0 − 1

2
B̃2r

∣∣∣∣ =
∣∣∣B̃2r

∣∣∣
= 2 · 2−2r

(
1 − 4 · 2−2r

) |B2r| .

This proves the second assertion. Finally, we use (3.8) again and the
triangle inequality to obtain the third formula.

In the following discussion we assume that f : [0, 1] → R has a
continuous derivative of order n, for some n ≥ 1. In this case the
remainders τ1

n(f) and τ2
n(f) are given by

τ1
n(f) =

1
6(n!)

∫ 1

0

Gn(s)f (n)(s) ds(3.11)
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and

τ2
n(f) =

1
6(n!)

∫ 1

0

Fn(s)f (n)(s) ds.(3.12)

Lemma 4. If f : [0, 1] → R is such that f (2r) is continuous on [0, 1],
for some r ≥ 2, then there exists a point η ∈ [0, 1] such that

(3.13) τ2
2r(f) =

1
3(2r)!

2−2r(1 − 4 · 2−2r)B2rf
(2r)(η).

Proof. Using (3.12) with n = 2r, we can rewrite τ2
2r(f) as

(3.14) τ2
2r(f) = (−1)r−1 1

6(2r)!
Jr,

where

(3.15) Jr =
∫ 1

0

(−1)r−1F2r(s)f (2r)(s) ds.

From Corollary 1 it follows that (−1)r−1F2r(s) ≥ 0, 0 ≤ s ≤ 1, so
that (3.13) follows from the mean value theorem for integrals and
Corollary 4.12.

Now, we prove the main result:

Theorem 1. Assume f : [0, 1] → R is such that f (2r) is continuous
on [0, 1] for some r ≥ 2. If f is (2r)-convex function, then for even r
we have

(3.16)
0 ≤

∫ 1

0

f(t) dt − 1
3

[
2f

(
1
4

)
− f

(
1
2

)
+ 2f

(
3
4

)]
− TD

r−1(f)

≤ 1
6

[
f(0) + 4f

(
1
2

)
+ f(1)

]
+ TS

r−1 −
∫ 1

0

f(t) dt,

while for odd r we have reversed inequalities in (3.16).
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Proof. Let us denote by LHS and RHS, respectively, the lefthand
side and the righthand side in the second inequality in (3.16). Then we
have

LHS = ρ2
2r(f)

and
RHS − LHS = −2τ2

2r(f),

where ρ2
2r(f) and τ2

2r(f) are determined respectively by the identities
(1.13) and (2.3). Dedić et al. [6] proved that, under the given assump-
tion on f , there exists a point ξ ∈ [0, 1] such that

(3.17) ρ2
2r(f) = − 1

3(2r)!
(
1 − 2 · 2−2r

)
(1 − 4 · 2−2r)B2rf

(2r)(ξ).

Also, by Lemma 4, we know that

(3.18) −2τ2
2r(f) = − 2

3(2r)!
2−2r(1 − 4 · 2−2r)B2rf

(2r)(η),

for some point η ∈ [0, 1]. Finally, we know that [1]

(3.19) (−1)r−1B2r > 0, r = 1, 2, . . . .

Now, if f is a (2r)-convex function, then f (2r)(ξ) ≥ 0 and f (2r)(η) ≥ 0
so that using (3.17), (3.18) and (3.19), we get the inequalities

LHS ≥ 0, RHS − LHS ≥ 0, when r is even;
LHS ≤ 0, RHS − LHS ≤ 0, when r is odd.

This proves our assertions.

Remark 2. For r = 2, formula (3.13) reduces to

τ2
4 (f) = − 1

46080
f (4)(η).

Note that in this case the result stated in Theorem 1 reduces to Bullen’s
result that we mentioned in the introduction.
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Theorem 2. Assume f : [0, 1] → R is such that f (2r) is continuous
on [0, 1] for some r ≥ 2. If f is either a (2r)-convex or (2r)-concave
function, then there exists a point ϑ ∈ [0, 1] such that

(3.20) τ2
2r(f) = ϑ

2
3(2r)!

2−2r(1 −2−2r)B2r

[
f (2r−1)(1) −f (2r−1)(0)

]
.

Proof. We obtain (3.20) from (3.14) using (3.9) and arguing similarly
as in [5, 6, 8].

Remark 3. If we approximate
∫ 1

0
f(t) dt by

I2r(f) := D(0, 1) + Tr−1(f),

then the next approximation will be I2r+2(f). The difference

Δ2r(f) = I2r+2(f) − I2r(f)

is equal to the last term in I2r+2(f), that is,

Δ2r(f) =
1

3(2r)!
2−2r(1 − 4 · 2−2r)B2r

[
f (2r−1)(1) − f (2r−1)(0)

]
.

We see that, under the assumptions of Theorem 2,

τ2
2r(f) =

2ϑ
(
1 − 2−2r

)
1 − 4 · 2−2r

Δ2r(f).

Theorem 3. Assume f : [0, 1] → R is such that f (2r+2) is
continuous on [0, 1] for some r ≥ 2. If f is either a (2r)-convex and
(2r+2)-convex or (2r)-concave and (2r+2)-concave function, then the
remainder τ2

2r(f) has the same sign as the first neglected term Δ2r(f)
and ∣∣τ2

2r(f)
∣∣ ≤ |Δ2r(f)| .

Proof. We have

Δ2r(f) + τ2
2r+2(f) = τ2

2r(f),
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that is,

(3.21) Δ2r(f) = τ2
2r(f) − τ2

2r+2(f).

By (3.12) we have

τ2
2r(f) =

1
6(2r)!

∫ 1

0

F2r(s)f (2r)(s) ds

and

−τ2
2r+2(f) =

1
6(2r + 2)!

∫ 1

0

[−F2r+2(s)] f (2r+2)(s) ds.

Similarly as in [5, 6, 8] it follows that∣∣τ2
2r(f)

∣∣ ≤ |Δ2r(f)| and
∣∣−τ2

2r+2(f)
∣∣ ≤ |Δ2r(f)| .

4. Some inequalities related to Bullen-Simpson formulae of
Euler type. In this section we use Bullen-Simpson formulae of Euler
type established in Lemma 1 to estimate the absolute value of difference
between the absolute value of error in the dual Simpson’s quadrature
rule and the absolute value of error in the Simpson’s quadrature rule.
We do this by proving a number of inequalities for various classes of
functions.

First, let us denote

RS :=
∫ 1

0

f(t) dt − 1
6

[
f(0) + 4f

(
1
2

)
+ f(1)

]
and

RD :=
∫ 1

0

f(t) dt − 1
3

[
2f

(
1
4

)
− f

(
1
2

)
+ 2f

(
3
4

)]
.

By the triangle inequality we have

||RD| − |RS || ≤ |RD + RS |.
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Now, if we define R := RD + RS , then
(4.1)

R

2
=

∫ 1

0

f(t) dt − 1
12

[
f (0)+ 4f

(
1
4

)
+ 2f

(
1
2

)
+ 4f

(
3
4

)
+ f (1)

]
=

∫ 1

0

f(t) dt − D(0, 1).

Theorem 4. Let f : [0, 1] → R be such that f (n−1) is an L-
Lipschitzian function on [0, 1] for some n ≥ 1.

If n = 2r − 1, r ≥ 2, then

(4.2)

∣∣∣∣∫ 1

0

f(t) dt − D(0, 1) − Tr−1(f)
∣∣∣∣

≤ 1
6(2r − 1)!

∫ 1

0

|G2r−1(t)| dt · L

=
8 · 2−2r(1 − 2−2r)

3(2r)!
|B2r| · L.

If n = 2r, r ≥ 2, then

(4.3)

∣∣∣∣∫ 1

0

f(t) dt − D(0, 1) − Tr−1(f)
∣∣∣∣

≤ 1
6(2r)!

∫ 1

0

|F2r(t)|, dt · L

=
2−2r(1 − 4 · 2−2r)

3(2r)!
|B2r| · L

and also

(4.4)

∣∣∣∣∫ 1

0

f(t) dt − D(0, 1) − Tr(f)
∣∣∣∣

≤ 1
6(2r)!

∫ 1

0

|G2r(t)| dt · L

≤ 2 · 2−2r(1 − 4 · 2−2r)
3(2r)!

|B2r| · L.
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Proof. For any integrable function Φ : [0, 1] → R, we have

(4.5)
∣∣∣∣∫ 1

0

Φ(t) df (n−1)(t)
∣∣∣∣ ≤ ∫ 1

0

|Φ(t)| dt · L,

since f (n−1) is L-Lipschitzian function. Applying (4.5) with Φ(t) =
G2r−1(t), we get∣∣∣∣ 1
6(2r−1)!

∫ 1

0

G2r−1(t) df (2r−2)(t)
∣∣∣∣ ≤ 1

6(2r−1)!

∫ 1

0

|G2r−1 (t)| dt · L.

Applying the above inequality and the identity (2.3), we get the
inequality in (4.2). Similarly, we can apply the inequality (4.5) with
Φ(t) = F2r (t) and again the identity (2.3) to get the inequality in (4.3).
Finally, applying (4.5) with Φ(t) = G2r (t) and the identity (2.2), we
get the first inequality in (4.4). The equalities in (4.2) and (4.3) and
the second inequality in (4.4) follow from Corollary 2.

Corollary 3. Let f : [0, 1] → R be such that f (n−1) is an L-
Lipschitzian function on [0, 1] for some n ≥ 1.

If n = 2r − 1, r ≥ 2, then

(4.6)
|R − 2Tr−1(f)| ≤ 1

3(2r − 1)!

∫ 1

0

|G2r−1(t)| dt · L

=
16 · 2−2r(1 − 2−2r)

3(2r)!
|B2r| · L.

If n = 2r, r ≥ 2, then

(4.7)
|R − 2Tr−1(f)| ≤ 1

3(2r)!

∫ 1

0

|F2r(t)| dt · L

=
2 · 2−2r(1 − 4 · 2−2r)

3(2r)!
|B2r| · L

and also

(4.8)
|R − 2Tr(f)| ≤ 1

3(2r)!

∫ 1

0

|G2r(t)| dt · L

≤ 4 · 2−2r(1 − 4 · 2−2r)
3(2r)!

|B2r| · L.
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Proof. Follows from Theorem 4 and (4.1).

Corollary 4. Let f : [0, 1] → R be a given function.

If f ′′ is L-Lipschitzian on [0, 1], then∣∣∣∣ ∫ 1

0

f(t) dt − D(0, 1)
∣∣∣∣ ≤ 1

4608
L, |R| ≤ 1

2304
L.

If f ′′′ is L-Lipschitzian on [0, 1], then∣∣∣∣∫ 1

0

f(t) dt − D(0, 1)
∣∣∣∣ ≤ 1

46080
L, |R| ≤ 1

23040
L.

Proof. The first pair of inequalities follow from (4.2) and (4.6) with
r = 2, while the second pair follow from (4.3) and (4.7) with r = 2.

Remark 4. If f is L-Lipschitzian on [0, 1], then, as above,∣∣∣∣ ∫ 1

0

f(t) dt − D(0, 1)
∣∣∣∣ ≤ 1

6

∫ 1

0

|G1(t)| dt · L.

Since
∫ 1

0
|G1(t)| dt = 5/12, we get∣∣∣∣ ∫ 1

0

f(t) dt − D(0, 1)
∣∣∣∣ ≤ 5

72
· L and |R| ≤ 5

36
· L.

If f ′ is L-Lipschitzian on [0, 1], then∣∣∣∣ ∫ 1

0

f(t) dt − D(0, 1)
∣∣∣∣ ≤ 1

12

∫ 1

0

|F2(t)| dt · L.

Since
∫ 1

0
|F2(t)| dt = 1/27, we get∣∣∣∣ ∫ 1

0

f(t) dt − D(0, 1)
∣∣∣∣ ≤ 1

324
· L and |R| ≤ 1

162
· L.
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Remark 5. Suppose that f : [0, 1] → R is such that f (n) exists and is
bounded on [0, 1] for some n ≥ 1. In this case we have for all t, s ∈ [0, 1],∣∣∣f (n−1)(t) − f (n−1)(s)

∣∣∣ ≤ ‖f (n)‖∞ · |t − s| ,

which means that f (n−1) is an ‖f (n)‖∞-Lipschitzian function on [0, 1].
Therefore, the inequalities established in Theorem 4 hold with L =
‖f (n)‖∞. Consequently, under appropriate assumptions on f , the
inequalities from Corollary 4 and Remark 4 hold with L = ‖f ′‖∞,
‖f ′′‖∞, ‖f ′′′‖∞, ‖f (4)‖∞.

Theorem 5. Let f : [0, 1] → R be such that f (n−1) is a continuous
function of bounded variation on [0, 1] for some n ≥ 1.

If n = 2r − 1, r ≥ 2, then

(4.9)

∣∣∣∣∫ 1

0

f(t) dt − D(0, 1) − Tr−1(f)
∣∣∣∣

≤ 1
6(2r − 1)!

max
t∈[0,1]

|G2r−1(t)| · V 1
0 (f (2r−2)).

If n = 2r, r ≥ 2, then

(4.10)

∣∣∣∣∫ 1

0

f(t) dt − D(0, 1) − Tr−1(f)
∣∣∣∣

≤ 1
6(2r)!

max
t∈[0,1]

|F2r(t)| · V 1
0 (f (2r−1))

=
2 · 2−2r(1 − 2−2r)

3(2r)!
|B2r| · V 1

0 (f (2r−1)).

Also, we have
(4.11)∣∣∣∣∫ 1

0

f(t) dt − D(0, 1) − Tr(f)
∣∣∣∣ ≤ 1

6(2r)!
max
t∈[0,1]

|G2r(t)| · V 1
0 (f (2r−1))

=
2−2r(2 · 2−2r+ 1)

3(2r)!
|B2r| · V 1

0 (f (2r−1)).

Here V 1
0 (f (n−1)) denotes the total variation of f (n−1) on [0, 1].
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Proof. If Φ : [0, 1] → R is bounded on [0, 1] and the Riemann-Stieltjes
integral

∫ 1

0
Φ(t) df (n−1)(t) exists, then

(4.12)
∣∣∣∣ ∫ 1

0

Φ(t) df (n−1)(t)
∣∣∣∣ ≤ max

t∈[0,1]
|Φ(t)| · V 1

0 (f (n−1)).

We apply this estimate to Φ(t) = G2r−1 (t) to obtain∣∣∣∣ 1
6(2r − 1)!

∫ 1

0

G2r−1 (t) df (2r−2)(t)
∣∣∣∣

≤ 1
6(2r − 1)!

max
t∈[0,1]

|G2r−1 (t)| · V 1
0 (f (2r−2)),

which is just the inequality (4.9) because of the identity (2.3). Similarly,
we can apply the estimate (4.12) with Φ(t) = F2r (t) and use the
identity (2.3) and Corollary 1 to obtain (4.10). Finally, (4.11) follows
from (4.12) with Φ(t) = G2r (t), the identity (2.2) and Corollary 1.

Corollary 5. Let f : [0, 1] → R be such that f (n−1) is a continuous
function of bounded variation on [0, 1] for some n ≥ 1.

If n = 2r − 1, r ≥ 2, then

(4.13) |R − 2Tr−1(f)| ≤ 1
3(2r − 1)!

max
t∈[0,1]

|G2r−1(t)| · V 1
0 (f (2r−2)).

If n = 2r, r ≥ 2, then

(4.14)
|R − 2Tr−1(f)| ≤ 1

3(2r)!
max
t∈[0,1]

|F2r(t)| · V 1
0 (f (2r−1))

=
4 · 2−2r(1 − 2−2r)

3(2r)!
|B2r| · V 1

0 (f (2r−1)).

Also, we have

(4.15)
|R − 2Tr(f)| ≤ 1

3(2r)!
max

t∈[0,1]
|G2r(t)| · V 1

0 (f (2r−1))

=
2 · 2−2r(2 · 2−2r + 1)

3(2r)!
|B2r| · V 1

0 (f (2r−1)).
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Proof. Follows from Theorem 5 and (4.1).

Corollary 6. Let f : [0, 1] → R be a given function.

If f ′′ is a continuous function of bounded variation on [0, 1], then∣∣∣∣ ∫ 1

0

f(t) dt − D(0, 1)
∣∣∣∣ ≤ 1

2592
V 1

0 (f ′′), |R| ≤ 1
1296

V 1
0 (f ′′).

If f ′′′ is a continuous function of bounded variation on [0, 1], then∣∣∣∣ ∫ 1

0

f(t) dt − D(0, 1)
∣∣∣∣ ≤ 1

18432
V 1

0 (f ′′′), |R| ≤ 1
9216

V 1
0 (f ′′′).

Proof. From explicit expressions (3.3), we get

max
t∈[0,1]

|G3(t)| =
1
72

,

so that the first pair of inequalities follow from (4.9) and (4.13) with
r = 2. The second pair of inequalities follow from (4.10) and (4.14)
with r = 2.

Remark 6. If f is a continuous function of bounded variation on [0, 1],
then, as above∣∣∣∣ ∫ 1

0

f(t) dt − D(0, 1)
∣∣∣∣ ≤ 1

6
max
t∈[0,1]

|G1(t)| · V 1
0 (f).

Since maxt∈[0,1] |G1(t)| = 1, we get∣∣∣∣ ∫ 1

0

f(t) dt − D(0, 1)
∣∣∣∣ ≤ 1

6
· V 1

0 (f) and |R| ≤ 1
3
· V 1

0 (f).

If f ′ is a continuous function of bounded variation on [0, 1], then∣∣∣∣ ∫ 1

0

f(t) dt − D(0, 1)
∣∣∣∣ ≤ 1

12
max

t∈[0,1]
|F2(t)| · V 1

0 (f ′).
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Since maxt∈[0,1] |F2(t)| = 1/8, we get∣∣∣∣ ∫ 1

0

f(t) dt − D(0, 1)
∣∣∣∣ ≤ 1

96
· V 1

0 (f) and |R| ≤ 1
48

· V 1
0 (f).

Remark 7. Suppose that f : [0, 1] → R is such that f (n) ∈ L1[0, 1] for
some n ≥ 1. In this case f (n−1) is a continuous function of bounded
variation on [0, 1], and we have

V 1
0

(
f (n−1)

)
=

∫ 1

0

∣∣∣f (n)(t)
∣∣∣ dt =

∥∥f (n)
∥∥

1
,

Therefore, the inequalities established in Theorem 5 hold with ‖f (n)‖1

in place of V 1
0 (f (n−1)). However, a similar observation can be made for

the results of Corollary 6 and Remark 6.

Theorem 6. Assume that (p, q) is a pair of conjugate exponents, that
is, 1 < p, q < ∞, 1/p + 1/q = 1 or p = ∞, q = 1. Let f : [0, 1] → R be
an R-integrable function such that f (n) ∈ Lp[0, 1] for some n ≥ 1.

If n = 2r − 1, r ≥ 1, then

(4.16)
∣∣∣∣ ∫ 1

0

f(t) dt − D(0, 1) − Tr−1(f)
∣∣∣∣ ≤ K(2r − 1, p)

∥∥f (2r−1)
∥∥

p
.

If n = 2r, r ≥ 1, then

(4.17)
∣∣∣∣ ∫ 1

0

f(t) dt − D(0, 1) − Tr−1(f)
∣∣∣∣ ≤ K∗(2r, p)

∥∥f (2r)
∥∥

p
.

Also, we have

(4.18)
∣∣∣∣ ∫ 1

0

f(t) dt − D(0, 1) − Tr(f)
∣∣∣∣ ≤ K(2r, p)

∥∥f (2r)
∥∥

p
.

Here

K(n, p) =
1

6n!

[∫ 1

0

|Gn(t)|q dt

]1/q

,

K∗(n, p) =
1

6n!

[∫ 1

0

|Fn(t)|q dt

]1/q

.
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Proof. Applying the Hölder inequality, we have∣∣∣∣ 1
6(2r − 1)!

∫ 1

0

G2r−1 (t) f (2r−1)(t) dt

∣∣∣∣
≤ 1

6(2r − 1)!

[∫ 1

0

|G2r−1 (t)|q dt

]1/q

· ∥∥f (2r−1)
∥∥

p

= K(2r − 1, p)
∥∥f (2r−1)

∥∥
p

The above estimate is just (4.16), by the identity (2.4). The inequalities
(4.17) and (4.18) are obtained in the same manner from (2.3) and (2.2),
respectively.

Corollary 7. Assume (p, q) is a pair of conjugate exponents, that is,
1 < p, q < ∞, 1/p + 1/q = 1 or p = ∞, q = 1. Let f : [0, 1] → R be an
R-integrable function such that f (n) ∈ Lp[0, 1] for some n ≥ 1.

If n = 2r − 1, r ≥ 1, then

|R − 2Tr−1(f)| ≤ 2K(2r − 1, p)
∥∥f (2r−1)

∥∥
p
.

If n = 2r, r ≥ 1, then

|R − 2Tr−1(f)| ≤ 2K∗(2r, p)
∥∥f (2r)

∥∥
p
.

Also, we have

|R − 2Tr(f)| ≤ 2K(2r, p)
∥∥f (2r)

∥∥
p
.

Proof. Follows from Theorem 6 and (4.1).

Remark 8. Note that K∗(1, p) = K(1, p) for 1 < p ≤ ∞, since
G1(t) = F1(t). Also, for 1 < p ≤ ∞, we can easily calculate K(1, p).
We get

K(1, p) =
1
6

[
2 + 2−q

3(1 + q)

]1/q

, 1 < p ≤ ∞.
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At the end of this section we prove an interesting Grüss type inequal-
ity related to Bullen-Simpson’s identity (2.2). To do this we use the
following variant of the key technical result from the recent paper [11]:

Lemma 5. Let F, G : [0, 1] → R be two integrable functions. If, for
some constants m, M ∈ R,

m ≤ F (t) ≤ M, 0 ≤ t ≤ 1 and
∫ 1

0

G(t) dt = 0,

then

(4.19)
∣∣∣∣ ∫ 1

0

F (t)G(t) dt

∣∣∣∣ ≤ M − m

2

∫ 1

0

|G(t)| dt.

Theorem 7. Suppose that f : [0, 1] → R is such that f (n) exists and
is integrable on [0, 1], for some n ≥ 1. Assume that

mn ≤ f (n)(t) ≤ Mn, 0 ≤ t ≤ 1,

for some constants mn and Mn. Then

(4.20)
∣∣∣∣ ∫ 1

0

f(t) dt − D(0, 1) − Tk(f)
∣∣∣∣ ≤ 1

12 (n!)
Cn(Mn − mn),

where k = [n/2] and

Cn =
∫ 1

0

|Gn(t)| dt, n ≥ 1.

Moreover, if n = 2r − 1, r ≥ 2, then

(4.21)
∣∣∣∣ ∫ 1

0

f(t) dt − D(0, 1) − Tr−1(f)
∣∣∣∣

≤ 4 · 2−2r
(
1 − 2−2r

)
3 (2r)!

|B2r| (M2r−1 − m2r−1).
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Proof. We can rewrite the identity (2.2) in the form

(4.22)
∫ 1

0

f(t) dt − D(0, 1) − Tk(f) =
1

6(n!)

∫ 1

0

F (t)G(t) dt,

where
F (t) = f (n)(t), G(t) = Gn (t) , 0 ≤ t ≤ 1.

In [7, Lemma 2] it was proved that, for all n ≥ 1 and for every γ ∈ R,∫ 1

0

B∗
n(γ − t) dt = 0,

so that we have∫ 1

0

G(t) dt

=
∫ 1

0

[
Bn(1−t) + 2B∗

n

(
1
4
− t

)
+ B∗

n

(
1
2
− t

)
+ 2B∗

n

(
3
4
− t

)]
dt

= 0.

Thus, we can apply (4.19) to the integral in the righthand side of
(4.22) and (4.20) follows immediately. The inequality (4.21) follows
from (4.20) and Corollary 2.

Remark 9. For n = 1 and n = 2 we have already calculated

C1 =
∫ 1

0

|G1(t)| dt =
5
12

, C2 =
∫ 1

0

|G2(t)| dt =
1
27

,

so that we have∣∣∣∣ ∫ 1

0

f(t) dt − D(0, 1)
∣∣∣∣ ≤ 5

144
(M1 − m1)

and ∣∣∣∣ ∫ 1

0

f(t) dt − D(0, 1)
∣∣∣∣ ≤ 1

648
(M2 − m2).
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For n = 3 we apply (4.21) with r = 2 to get the inequality∣∣∣∣∫ 1

0

f(t) dt − D(0, 1)
∣∣∣∣ ≤ 1

9216
(M3 − m3).
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