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ILLUSTRATION OF THE LOGARITHMIC
DERIVATIVES BY EXAMPLES SUITABLE

FOR CLASSROOM TEACHING

L. KOHAUPT

ABSTRACT. In this contribution, the logarithmic deriva-
tives of a matrix are illustrated by examples, which stem from
dynamical systems representing problems for one- and multi-
mass vibration models and which are suitable for classroom
teaching. Further, historical remarks are made and links to
the further development, namely the development of a differ-
ential calculus for norms of matrix and vector functions, are
established.

1. Introduction. If A is a complex square matrix and ‖ · ‖ any ma-
trix norm with ‖E‖ = 1, where E is the identity matrix, then the loga-
rithmic derivative μ[A] is defined by μ[A] = limh→0+(‖E+A h‖−1)/h.
By means of μ[A], one obtains, e.g., ‖eA t‖ ≤ eμ[A] t, t ≥ 0, which im-
proves the estimate ‖eA t‖ ≤ e‖A‖ t, t ≥ 0, since always |μ[A]| ≤ ‖A‖.
The cited estimates play an important role in initial value problems
of the form ẋ = A x, x(0) = x0, because its solution is given by
x(t) = Φ(t) x0 with Φ(t) = eA t. For the matrix sup-norms ‖ · ‖ = ‖ · ‖p

with p ∈ {1, 2,∞}, in [2] and [3], formulae for μ
(1)
p [A] := μp[A] =

limh→0+(‖E + A h‖p − 1)/h are stated. Note that μ[A] = D+‖Φ(0)‖.
Now, in [13], the author has shown that the second right derivatives
μ

(2)
p [A] = D2

+‖Φ(0)‖p, p ∈ {1, 2,∞}, exist, and called them second log-
arithmic derivatives. Further, formulae for μ

(2)
p [A], p ∈ {1, 2,∞} are

given in [13] and [14]. The motivation to investigate the logarithmic
derivatives was the following: the graph of y = ‖Φ(t)‖∞ for the consid-
ered examples seems to have a right curvature. This is proven strictly if
one can show that D2

+‖Φ(0)‖∞ < 0. So, we had to prove the existence
of D2

+‖Φ(0)‖∞ and to derive a formula for it, which was done in [13].

In this paper, we want to illustrate the logarithmic derivatives by
examples suitable for classroom teaching.

Received by the editors on December 14, 2002.
Key words and phrases. Logarithmic derivatives, dynamical system, vibration

model, differential calculus of norms.

Copyright c©2005 Rocky Mountain Mathematics Consortium

1595



1596 L. KOHAUPT

More precisely, the paper is structured as follows. Sections 2 and
3, respectively, review the definition of the logarithmic derivative and
the formulae for it in the norms ‖ · ‖p, p ∈ {1, 2,∞}. In Section 4,
examples are given using the system matrices A of a one-mass and
of a multi-mass vibration model. In Section 5, applications to upper
bounds on y = ‖Φ(t)‖∞ for the initial behavior of t ≥ 0 are given. In
Section 6, some historical remarks are made. Sections 4 6 could be used
in classroom teaching. Section 7 describes the further development that
has originated from the logarithmic derivatives. Finally, Section 8 is
an Appendix containing another check of the formulae for μ

(1)
2 [A] and

μ
(2)
2 [A] in the case of the one-mass model. This material can be used

as an exercise for classroom teaching. The references [4, 6, 8 10, 22,
23] and [25 28] are given even though they are not directly used in
this paper in order to provide the reader with some additional material
helpful in the present subject.

2. Definition of the logarithmic derivatives. Let A ∈ Cn×n,
respectively A ∈ Rn×n, and let Φ(t) = eA t, t ≥ 0, be the associated
fundamental matrix, cf. [2, p. 43], or evolution, cf. [1, p. 91]. As a
preparation to the definition of the logarithmic derivatives, we need the
following lemma, which states, loosely speaking, that for every t0 ≥ 0
and for p ∈ {1, 2,∞} the function t �→ ‖Φ(t)‖p is real analytic in some
neighborhood [t0, t0 + Δt0].

Lemma 1. Let p ∈ {1, 2,∞} and t0 ∈ R+
0 . Then, there exists a

number Δt0 > 0 and a function t �→ Φ̂(t), which is real analytic on
[t0, t0 + Δt0] such that Φ̂(t) = ‖Φ(t)‖p for t ∈ [t0, t0 + Δt0].

Proof. See [13, Lemma 2.2] for p = ∞ and t0 = 0, and also [14,
Lemma 1] for p = ∞ and p = 2. The case p = 1 follows from the
identity ‖Φ(t)‖1 = ‖Φ(t)T ‖∞ = ‖eAT t‖∞.

We mention that we apply the case t0 = 0, in this paper.

Due to Lemma 1, the following definition is meaningful.
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Definition 2. Let A ∈ Cn×n, respectively A ∈ Rn×n. Further,
let Φ(t) = eA t, t ≥ 0, be the associated fundamental matrix. Then,
the kth logarithmic derivative μ

(k)
p [A], k = 0, 1, 2, . . . of A in the norm

‖·‖p, p ∈ {1, 2,∞}, is defined as the kth right derivative of the function
t �→ ‖Φ(t)‖p at t = t0 = 0, that is,

μ(k)
p [A] := Dk

+‖Φ(0)‖p, k = 0, 1, 2, . . . .

Remark. According to [21, p. 71, Lemma 3’,b) ], in every matrix
sup-norm, one has the representation

μ[A] = D+‖Φ(0)‖ = lim
h→0+

(log ‖eA h‖)/h.

This seems to be the reason why μ[A] is called logarithmic derivative
or logarithmic norm.

Remark. Whereas the first logarithmic derivative in every norm with
‖E‖ = 1 exists, nothing is known on higher logarithmic derivatives in
the general case.

3. Formulae for the first two logarithmic derivatives. In this
section we review the formulae for μ

(k)
p [A], k = 1, 2 with p ∈ {1, 2,∞}.

3.1 Formulae for p = ∞. First, we state the formulae for complex
and then for real n×n-matrices A; in the latter case, a general formula
for the logarithmic derivative of any order can be given.

(i) A complex. First, let A ∈ Cn×n. Further, as a preparation,
define the following functionals on Cn×n:

νij [A] :=

{
(ReAij Re (A2)ij + Im Aij Im (A2)ij)/|Aij | Aij 	= 0,

|(A2)ij | Aij = 0,

(2)

λ
(1)
i [A] := ReAii +

n∑
j=1
j �=i

|Aij |,
(3)
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λ
(2)
i [A] := Re (A2)ii + (ImAii)2 +

n∑
j=1
i �=j

νij [A].

(4)

Then, one has the following theorem.

Theorem 3 (p = ∞, A complex). Let A ∈ Cn×n, let I0 :=
{1, . . . , n} and I1 be the set of all indices i1 ∈ I0 where λ

(1)
i [A] attains

its maximum, i.e.,

I1 :=
{

i1 ∈ I0 |λ(1)
i1

[A] = max
i∈I0

λ
(1)
i [A]

}
.

Then

μ(1)
∞ [A] = max

i∈I0
λ

(1)
i [A],(5)

μ(2)
∞ [A] = max

i∈I1
λ

(2)
i [A],(6)

where λ
(1)
i [A] and λ

(2)
i [A] are given by equations (3) and (4), respec-

tively.

Proof. See [13, pp. 385 386].

(ii) A real. Now, let A ∈ Rn×n. In this case, a unified formula for
all logarithmic derivatives can be given. For this, define the following
sign functionals:

(7) s
(1)
ij (A) := sgn (Aij)

and

(8) s
(k)
ij (A) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sgn (Aij) Aij 	= 0
sgn ((A2)ij) Aij = 0, (A2)ij 	= 0
sgn ((A3)ij) Aij = 0, (A2)ij = 0, (A3)ij 	= 0
...
sgn ((Ak)ij) (Al)ij = 0, l = 1, . . . , k − 1
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for k = 2, 3, . . . . Relation (8) can also be written as

(9) s
(k)
ij (A) =

{
s
(k−1)
ij (A) s

(k−1)
ij (A) 	= 0

sgn ((Ak)ij) s
(k−1)
ij (A) = 0

for k = 2, 3, . . . . With these sign functionals, define the further
functionals

(10) λ
(k)
i [A] = (Ak)ii +

n∑
j=1
j �=i

s
(k)
ij (A) (Ak)ij ,

k = 1, 2, . . . . Then, the logarithmic derivatives for real matrices read
as follows

Theorem 4 (p = ∞, A real). Let A ∈ Rn×n, I0 = {1, . . . , n} and
Ik be the set of all indices ik ∈ Ik−1 where λ

(k)
i [A] from equation (10)

attains its maximum, i.e.,

Ik :=
{
ik ∈ Ik−1 |λ(k)

ik
[A] = max

i∈Ik−1
λ

(k)
i [A]

}
,

k = 1, 2, . . . . Then, the logarithmic derivatives are given by

(11) μ(k)
∞ [A] = max

i∈Ik−1
λ

(k)
i [A],

k = 1, 2, . . . .

Proof. See [13, p. 388].

3.2 Formulae for p = 1. This case is reduced to the case p = ∞.
We have

Theorem 5 (p = 1, A complex or real). Let A ∈ Cn×n or A ∈ Rn×n.
Then,

(12) μ
(k)
1 [A] = μ(k)

∞ [AT ], k = 1, 2, . . . .
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Proof. Formula (12) follows from the relation ‖Φ(t)‖1 = ‖Φ(t)T ‖∞ =
‖eAT t‖∞.

3.3 Formulae for p = 2. For p = 2, we have unified formulae for
the complex and real cases.

Theorem 6. Let A ∈ Cn×n or A ∈ Rn×n. Then, the following
formulae hold:

(13) μ
(1)
2 [A] = λmax

(
A∗ + A

2

)

and

(14) μ
(2)
2 [A] = λ2

max

(
A∗ + A

2

)
.

In particular, the second logarithmic derivative in the spectral norm is
always nonnegative.

Proof. See [14, Theorem 6, p. 10].

4. Examples. In this section, we illustrate the logarithmic deriva-
tives by examples, which can be used in classroom teaching. In ad-
dition, we cast more light on some details. That is, for the one-mass
model and p = 2, we carry out a check of μ

(k)
2 [A], k = 1, 2, and Lemma

1, and for the multi-mass model and p = ∞, we derive μ
(k)
∞ [A], k = 1, 2,

in a less formal way, which is quite helpful for the understanding.

4.1 One-mass vibration model. (0) The model. We consider the
one-mass vibration model without damping in Figure 1.

The associated initial value problem is given by

mÿ + k y = 0, y(0) = y0, ẏ(0) = ẏ0,

or, in the state space description,

ẋ(t) = A x(t), x(0) = x0,
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k

b = 0
y

m

FIGURE 1. One-mass vibration model.

with the displacement vector x = [y, z]T , z = ẏ and the system matrix

(15) A =
[

0 1
−ω2 0

]

with ω2 = k/m.

Here, Φ(t) can be determined explicitly; it is given by

(16) Φ(t) =
[

cos ωt (1/ω) sin ωt
−ω sin ωt cos ωt

]
,

cf. [17, pp. 76 77].

(i) p = ∞. We obtain

A2j+1 = (−1)j ω2j A, j = 0, 1, 2, . . .(17)
A2j = (−1)j ω2j E, j = 0, 1, 2, . . .(18)

and

(19) s
(k)
12 (A) = 1, s

(k)
21 (A) = −1, k = 1, 2, . . . .

Case 1. ω ≤ 1. In this case,

(20) ‖Φ(t)‖∞ = | cos ωt| + 1
ω
| sin ωt|

and

(21) I1 = {1} as well as I1 = I2 = I3 = · · · .
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So, because of (17) (19) and (21), we have

(22) μ(2j)
∞ [A] = μ(2j+1)

∞ [A] = (−1)j ω2j , j = 0, 1, 2, . . . .

In particular,

(23)
μ(1)
∞ [A] = 1,

μ(2)
∞ [A] = −ω2,

for ω ≤ 1.

Check of formulae (22) and Lemma 1. We want to check formulae
(22) and Lemma 1. Since ‖Φ(t)‖∞ is analytic in 0 ≤ t ≤ t1 with
sufficiently small t1 > 0, we have the series expansion
(24)

‖Φ(t)‖∞,series =
∞∑

j=0

μ(j)
∞ [A]

tj

j!

= 1 + 1
t

1!
− ω2 t2

2!
− ω2 t3

3!
+ ω4 t4

4!
+ ω4 t5

5!

− ω6 t6

6!
− ω6 t7

7!
+ ω8 t8

8!
+ ω8 t9

9!

− ω10 t10

10!
− ω10 t11

11!
+ · · ·

= 1 − ω2 t2

2!
+ ω4 t4

4!
− ω6 t6

6!
+ ω8 t8

8!
− ω10 t10

10!
± · · ·

+
(
t− ω2 t3

3!
+ ω4 t5

5!
− ω6 t7

7!
+ ω8 t9

9!
− ω10 t11

11!
± · · ·

)
= cos ω t +

1
ω

sin ω t =: Φ̂(t).

Let t1 = π/(2 ω). Then,

(25)
Φ̂(t) = ‖Φ(t)‖∞,series = | cos ω t| + 1

ω
| sin ω t| = ‖Φ(t)‖∞,

0 ≤ t ≤ t1.

Case 2. ω ≥ 1. In this case,

(26) ‖Φ(t)‖∞ = ω | sin ωt| + | cos ωt|
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and

(27) I1 = {2} as well as I1 = I2 = I3 = · · · .

Because of (17) (19) and (27), we have

(28)
μ(2j+1)
∞ [A] = (−1)j ω2j+2, j = 0, 1, 2, . . .

μ(2j)
∞ [A] = (−1)j ω2j , j = 1, 2, . . .

In particular,

(29)
μ(1)
∞ [A] = ω2,

μ(2)
∞ [A] = −ω2,

for ω ≥ 1.

Check of formulae (28) and Lemma 1. We want to check also formulae
(28) and Lemma 1. For sufficiently small t1 >0, for 0≤t≤t1, we have

(30)

‖Φ(t)‖∞,series =
∞∑

j=0

μ(j)
∞ [A]

tj

j!

= 1+ ω2 t

1!
− ω2 t2

2!
− ω4 t3

3!
+ ω4 t4

4!
+ ω6 t5

5!
− ω6 t6

6!
± · · ·

= 1 − ω2 t2

2!
+ ω4 t4

4!
− ω6 t6

6!
± · · ·

+ ω

(
ω t − ω3 t3

3!
+ ω5 t5

5!
∓ · · ·

)
= cos ω t + ω sin ω t =: Φ̂(t).

Again let t1 = π/(2 ω). Then,

(31)
Φ̂(t) = ‖Φ(t)‖∞,series = | cos ω t| + ω | sin ω t| = ‖Φ(t)‖∞,

0 ≤ t ≤ t1.

Combining the two cases, i.e., (23) and (29), and adding the formula
for μ

(0)
∞ [A] := ‖Φ(0)‖∞, we obtain

(32)

μ(0)
∞ [A] = 1

μ(1)
∞ [A] = max{1, ω2}

μ(2)
∞ [A] = −ω2.
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(ii) p = 2. We have

(33) A∗ = AT =
[

0 −ω2

1 0

]

and thus

(34) B1 = A∗ + A = (1 − ω2)
[

0 1
1 0

]
.

Consequently,

(35) λmax(B1) = λ1(B1) = λ(T ) = λ1 = |1 − ω2|
and therefore

(36) μ
(1)
2 [A] =

|1 − ω2|
2

, μ
(2)
2 [A] =

(1 − ω2)2

4
.

Special case ω = 1. Here,

(37) μ
(1)
2 [A] = 0, μ

(2)
2 [A] = 0.

Limit case ω = 0. For ω → 0 in λ1 = |1 − ω2|, we obtain

(38) μ
(1)
2 [A] =

1
2
, μ

(2)
2 [A] =

1
4
.

Check of formulae (36). We want to check formulae (36) by expanding
‖Φ(t)‖2. From (16), we obtain

(39)

Ψ(t) = Φ∗(t) Φ(t)

=
[

cos2 ω t + ω2 sin2 ω t ((1/ω) − ω) sin ω t + cos ω t
((1/ω) − ω) sin ω t + cos ω t cos2 ω t + (1/ω2) sin2 ω t

]
.

Now, according to [24, p. 107, (21) and (25)],

(40) ‖Φ(t)‖2 =
√

λmax(Ψ(t)).
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Equation (39) entails

(41)

λ1 = λ1(ω > 0) = λmax(Ψ(t))

=
(ω2 + (1/ω2)) sin2 ω t + 2 cos2 ω t

2

+

√[
(ω2 + (1/ω2)) sin2 ω t + 2 cos2 ω t

2

]2
− 1.

We expand this up to the third order because we want to obtain also
the third logarithmic derivative. For sufficiently small t ≥ 0,

λ1(ω > 0) = 1 + |1 − ω2| t + (1 − ω2)2
t2

2

+ 3 |1 − ω2|
[
(1 − ω2)2

4
− ω2

3

]
t3

3!
+ O(t4)

= κ0 + κ1 t + κ2
t2

2
+ κ3

t3

3!
+ O(t4).

Hence,

‖Φ(t)‖2 =
√

λmax(Ψ(t)) = μ
(0)
2 [A] + μ

(1)
2 [A] t

+ μ
(2)
2 [A]

t2

2!
+ μ

(3)
2 [A]

t3

3!
+ O(t4)

with μ
(0)
2 [A] = 1, μ

(1)
2 [A] = (1/2) κ1 = |1 − ω2|/2, μ

(2)
2 [A] = (1/2) κ2 −

(1/4) κ2
1 = (1 − ω2)2/4, cf. (36), and

μ
(3)
2 [A] =

3
8

κ3
1 −

3
4

κ1 κ2 +
1
2

κ3.

Limit case. ω = 0 (cf. [13, p. 384]). Letting ω → 0 in λ1(ω > 0)
results in

λ1(ω = 0) = sup
‖x‖2=1

(Ψ(t) x, x) = 1 +
1
2

t2 + t

√
1 +

t2

4
, t ≥ 0.

Thus, for sufficiently small t1 > 0,

‖Φ(t)‖2 =
[

sup
‖x‖2=1

(Ψ(t) x, x)
]1/2

= 1+
1
2

t+
1
4

t2

2
+O(t4), 0 ≤ t ≤ t1.
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Consequently,

μ
(1)
2 [A] =

1
2

= λmax

(
A∗ + A

2

)
,

μ
(2)
2 [A] =

1
4

=
[
λmax

(
A∗ + A

2

)]2
,

but

μ
(3)
2 [A] = 0 	= 1

8
=
[
λmax

(
A∗ + A

2

)]3
.

4.2 Multi-mass vibration model. We consider the multi-mass
vibration model in Figure 2.

The associated initial value problem is given by

M ÿ + B ẏ + K y = 0, y(0) = y0, ẏ(0) = ẏ0,

where y = [y1, . . . , yn]T and

M =

⎡
⎢⎢⎢⎢⎣

m1

m2

m3

. . .
mn

⎤
⎥⎥⎥⎥⎦ ,

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

b1 + b2 −b2

−b2 b2 + b3 −b3

−b3 b3 + b4 −b4

. . . . . . . . .
−bn−1 bn−1 + bn −bn

−bn bn + bn+1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

K =

⎡
⎢⎢⎢⎢⎢⎢⎣

k1 + k2 −k2

−k2 k2 + k3 −k3

−k3 k3 + k4 −k4

. . . . . . . . .
−kn−1 kn−1 + kn −kn

−kn kn + kn+1

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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. . .

. . .
k1 k2

b1 b2
y1 y2

kn

bn bn 1

kn 1

yn

m1 m2 mn

FIGURE 2. Multi-mass vibration model.

The displacement vector is x = [yT , zT ]T , z = ẏ, and the system
matrix A has the form

A =
[

0 E
− M−1K − M−1B

]
.

As of now, we specify the values as

mj = 1, j = 1, . . . , n

kj = 1, j = 1, . . . n + 1

and

bj =
{

1/2 if j even
1/4 if j odd.

Then,
M = E,

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

3/4 −1/2
−1/2 3/4 −1/4

−1/4 3/4 −1/2
. . . . . . . . .

−1/4 3/4 −1/2
−1/2 3/4

⎤
⎥⎥⎥⎥⎥⎥⎦

(if n is even), and

K =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 −1
−1 2 −1

−1 2 −1
. . . . . . . . .
−1 2 −1

−1 2

⎤
⎥⎥⎥⎥⎥⎥⎦
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So, for n = 5 and m = 2 n = 10, we obtain

A

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

− 2 1 0 0 0 − 3/4 1/2 0 0 0

1 − 2 1 0 0 1/2 − 3/4 1/4 0 0

0 1 − 2 1 0 0 1/4 − 3/4 1/2 0

0 0 1 − 2 1 0 0 1/2 − 3/4 1/4

0 0 0 1 − 2 0 0 0 1/4 − 3/4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

A2

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 2 1 0 0 0 − 3/4 1/2 0 0 0

1 − 2 1 0 0 1/2 − 3/4 1/4 0 0

0 1 − 2 1 0 0 1/4 − 3/4 1/2 0

0 0 1 − 2 1 0 0 1/2 − 3/4 1/4

0 0 0 1 − 2 0 0 0 1/4 − 3/4

2 − 7/4 1/2 0 0 − 19/16 1/4 1/8 0 0

− 7/4 9/4 − 5/4 1/4 0 1/4 − 9/8 5/8 1/8 0

1/4 − 5/4 9/4 − 7/4 1/2 1/8 5/8 − 9/8 1/4 1/8

0 1/2 − 7/4 9/4 − 5/4 0 1/8 1/4 − 9/8 5/8

0 0 1/4 − 5/4 7/4 0 0 1/8 5/8 − 11/8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This leads to the results listed in Table 1. As can be seen,

(43) I1 = {7, 8, 9} and I2 = {8}

as well as

μ(1)
∞ [A] = Z ′

7 = Z ′
8 = Z ′

9 = 4 and μ(2)
∞ [A] = Z ′′

8 = −36
8

= −4.5.
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TABLE 1. Quantities for the calculation of μ
(1)
∞ [A] and μ

(2)
∞ [A].

i Aii +
∑n

j=1
j �=i

s
(1)
ij (A) Aij = Z′

i

1 1

2 1

3 1

4 1

5 1

6 −3/4 + 2 + 1 + 1/2 = 2.75

7 −3/4 + 1 + 2 + 1 + 1/2 + 1/4 = 4

8 −3/4 + 1 + 2 + 1 + 1/4 + 1/2 = 4

9 −3/4 + 1 + 2 + 1 + 1/2 + 1/4 = 4

10 −3/4 + 1 + 2 + 1/4 = 2.5

i (A2)ii +
∑n

j=1j �=i s
(2)
ij (A) (A2)ij = Z′′

i

1 −2 + 1 − 3/4 + 1/2 = −1.25

2 −2 + 1 + 1 + 1/2 − 3/4 + 1/4 = 0

3 −2 + 1 + 1 + 1/4 − 3/4 + 1/2 = 0

4 −2 + 1 + 1 + 1/2 − 3/4 + 1/4 = 0

5 −2 + 1 + 1/4 − 3/4 = −1.5

6 −19/16 − 2 − 7/4 + 1/2 + 1/4 + 1/8 = −65/16

7 −9/8−7/4−9/4−5/4+1/4+1/4+5/8+1/8 = −41/8

8 −9/8+1/4−5/4−9/4−7/4+1/2+1/8+5/8+1/4+1/8 = −36/8

9 −9/8+1/2−7/4−9/4−5/4+1/8+1/4+5/8 = −39/8

10 −11/8+1/4−5/4−7/4+1/8+5/8 = −27/8

Further, we remark that

μ(2)
∞ [A] = (A2)i2i2 +

n∑
j=1
j �=i2

s
(2)
i2j(A) (A2)i2j

= −36
8

	= max
i=1,... ,n

{
(A2)ii +

n∑
j=1
j �=i

s
(2)
ij (A) (A2)ij

}
= 0.
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By (44), we have

‖Φ(t)‖∞ .= μ(0)
∞ [A] + μ(1)

∞ [A] t + μ(2)
∞ [A]

t2

2

= 1 + 4 t − 4.5
t2

2
= 1 + 4 t − 2.25 t2, 0 ≤ t ≤ t1

for sufficiently small t1 > 0.

Less formal derivation of μ
(1)
∞ [A] and μ

(2)
∞ [A]. The formulae (5) and

(6) for μ
(1)
∞ [A] and μ

(2)
∞ [A] are based on [13, Lemma 2.1]. We give

here a less formal and more intuitive argument for the derivation of
these quantities, which was the first step in the development of the
differential calculus for norms of vector and matrix functions.

We start with the representation

(45) ‖Φ(t)‖∞ = max
i=1,... ,n

ϕi(t),

where

(46) ϕi(t) =
n∑

j=1

|Φij(t)|.

(Here, the index n = 10 instead of m = 2 n = 2 · 5 = 10 is used.)

For sufficiently small t1 > 0, the function ϕi(t) can be expanded in a
series. Namely, using
(47)

|a| =
√

(Re a)2 +(Im a)2 = |Re a|
√

1 +
(

Im a

Re a

)2

, Re a 	= 0, a ∈ C,

and

(48)
√

1 + x = 1 +
1
2

x − 1
8

x2 +
1
16

x3 ∓ · · · , |x| < 1,
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we obtain

(49)

ϕ1(t) =
1

+ 1 · t −1.25 · t2/2 + · · ·

ϕ2(t) =
1

+ 1 · t 0 · t2/2 + · · ·

ϕ3(t) =
1

+ 1 · t 0 · t2/2 + · · ·

ϕ4(t) =
1

+ 1 · t 0 · t2/2 + · · ·

ϕ5(t) =
1

+ 1 · t −1.5 · t2/2 + · · ·

ϕ6(t) =
1

+ 2.75 · t −4.0625 · t2/2 + · · ·

ϕ7(t) =
1

+
4

· t −5.125 · t2/2 + · · ·

ϕ8(t) =
1

+
4

· t
−4.5

· t2/2 + · · ·

ϕ9(t) =
1

+
4

· t −4.875 · t2/2 + · · ·

ϕ10(t) =
1

+ 2.5 · t −3.375 · t2/2 + · · ·
for 0 ≤ t ≤ t1. Let t1 > 0 be so small that, in ϕi(t), the constant
term is larger than the linear term and the linear term itself is larger
than the quadratic term; for this, e.g., take t1 = 10−3. By comparing
the constant terms only, all ϕi(t), i = 1, . . . , n are candidates for
the maximum. Comparing the linear terms, only ϕ7(t), ϕ8(t) and
ϕ9(t) remain as candidates for the maximum. Finally, comparing the
quadratic terms of ϕ7(t), ϕ8(t) and ϕ9(t), we find that ϕ8(t) must be
the maximum, i.e.,

(50) ‖Φ(t)‖∞ = ϕ8(t) = 1 + 4 · t − 4.5 · t2/2 + · · · , 0 ≤ t ≤ t1,

for sufficiently small t1 > 0, say, t1 = 10−3. From this, it follows that
μ

(1)
∞ [A] = 4 and μ

(2)
∞ [A] = −4.5. For comparison reasons, we state that

‖A‖∞ = 5.5 so that indeed |μ(1)
∞ [A]| ≤ ‖A‖∞.
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FIGURE 3. Graph of ‖Φ(t)‖∞ for one-mass vibration model with ω = 1,
plotted with Δt = π/100.

5. Applications to upper bounds. For the sake of brevity, we
restrict ourselves to the case p = ∞. Applications for p = 2 can be
found in [14]. Particularly, for a numerical example, see [14, p. 14].

(i) Oscillation behavior of ‖Φ(t)‖∞. The fundamental matrix (evo-
lution) Φ(t) = eAt is the unique solution to the initial value problem

Φ̇(t) = A Φ(t), Φ(0) = E,

cf. [2, p. 43]. Setting

Φ(t) = [ϕ1(t), . . . , ϕn(t)],

this is equivalent to

ϕ̇j(t) = A ϕj(t), ϕj(0) = ej , j = 1, . . . , n,

where ej is the jth unit vector. Hence, if A describes a vibration
problem, the oscillation character of the solutions ϕj(t), j = 1, . . . , n
is somehow inherited by ‖Φ(t)‖∞.

(ii) Plots of ‖Φ(t)‖∞ for the vibration models. We illustrate the
oscillation character by the examples of subsections 4.1 and 4.2.
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FIGURE 4. Graph of ‖Φ(t)‖∞ for one-mass vibration model with ω = 2,
plotted with Δt = π/100.

One-mass model. ‖Φ(t)‖∞ is shown for some cases in Figures 3 and 4.

Multi-mass vibration model. Here, Φ(t) = eAt is computed by the
MATLAB routine ‘expm1.’ ‖Φ(t)‖∞ is shown for some cases in Figures
5 and 6.

(iii) Tangent at t0 = 0 as upper bound on ‖Φ(t)‖∞.

One-mass vibration model. In this case, for sufficiently small t1 > 0,
we obtain

‖Φ(t)‖∞ .= 1 + μ(1)
∞ [A] t + μ(2)

∞ [A]
t2

2

= 1 + max{1, ω2} t − ω2 t2

2
, 0 ≤ t ≤ t1.

Since μ
(2)
∞ [A] < 0, for sufficiently small t1 > 0,

‖Φ(t)‖∞ ≤ 1 + μ(1)
∞ [A] t, 0 ≤ t ≤ t1.
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FIGURE 5. Graph of ‖Φ(t)‖∞ for multi-mass vibration model with n = 5,
resp. m=10, plotted with Δt = 0.2.

From the plots above, it is clear that this bound also holds globally,
that is, for all values 0 ≤ t < ∞.

In this special case, a strict proof for this can be given. Namely, from
(16) we infer

‖Φ(t)‖∞ =
{ | cosω t| + (1/ω) | sin ω t|, ω ≤ 1,

ω | sin ω t| + | cos ω t|, ω ≥ 1.

Case 1. ω ≤ 1. Here,

‖Φ(t)‖∞ = | cos ω t| +
∣∣∣∣ sin ω t

ω t

∣∣∣∣ t ≤ 1 + t = 1 + μ(1)
∞ [A] t, t > 0,

since μ
(1)
∞ [A] = max{1, ω2}.

Case 2. ω ≥ 1. In this case,

‖Φ(t)‖∞ = ω2 t

∣∣∣∣ sin ω t

ω t

∣∣∣∣+ | cos ω t| ≤ 1 + ω2 t = 1 + μ(1)
∞ [A] t, t > 0,
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FIGURE 6. Graph of ‖Φ(t)‖∞ for multi-mass vibration model with n = 50,
resp. m=100, plotted with Δt = 0.2.

since μ
(1)
∞ [A] = max{1, ω2}. For t = 0, these estimates remain valid.

In Figures 3 6, we have not shown the plots of the tangents. Such
plots can be found in [14].

Multi-mass vibration model. Here, for sufficiently small t1 > 0, we
obtain

‖Φ(t)‖∞ .= 1 + μ(1)
∞ [A] t + μ(2)

∞ [A]
t2

2
= 1 + 4 t − 2.25 t2, 0 ≤ t ≤ t1.

Since μ
(2)
∞ [A] < 0, for sufficiently small t1 > 0,

‖Φ(t)‖∞ ≤ 1 + μ(1)
∞ [A] t, 0 ≤ t ≤ t1.

From the plots in Figures 5 and 6, it is clear that this bound also holds
globally, that is, for all values 0 ≤ t < ∞. A strict proof of this is
not yet available, however. Particularly, in Figure 6, it is clear that
the tangent at t0 = 0 is extremely better than y = eμ∞[A] t = e4 t. We
mention that, for Figures 3 6, MATLAB was used.
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6. Historical remarks. In this section, we make some historical
remarks on the logarithmic derivative or logarithmic norm. Eltermann
[5], Lozinskĭı [16], and Dahlquist [3] seem to be the first to have used
the logarithmic derivative.

(i) As indicated in [7, p. 61], in 1955, Eltermann [5, p. 499] has
applied the formula for the logarithmic norm μ∞[A] (without calling it
such) for real matrices A having real eigenvalues λ(A) in the estimate

(51) λ(A) ≤ max
i=1,... ,n

(
Aii +

n∑
j=1
j �=i

|Aij |
)

.

(ii) In 1958, for A ∈ Cn×n and matrix norms ‖ · ‖ with ‖E‖ = 1,
Lozinskĭı [16, pp. 57 58] shows that the limit

(52) μ[A] = lim
h→0+

‖E + A h‖ − 1
h

exists and calls it logarithmic norm. Due to

Φ(h) = E + A h + A2 h2

2!
+ · · · , h > 0,

it is clear that

(53) μ[A] = lim
h→0+

‖Φ(h)‖ − 1
h

.

The following norm-like properties of the logarithmic norm are proven
in [16, p. 58]:

(54)
μ[A + B] ≤ μ[A] + μ[B]

μ[α A] = α μ[A], α ≥ 0
|μ[B] − μ[A]| ≤ ‖B − A‖

and in [16, p. 59], for eigenvalues λ(A) of A,

(55) Reλ(A) ≤ μ[A].
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Further, in [16, pp. 59 60], the following formulae for A ∈ Cn×n are
given:

(56)

μ(1)
∞ [A] = max

i=1,... ,n

{
Re Aii +

n∑
j=1
j �=i

|Aij |
}

,

μ
(1)
1 [A] = max

j=1,... ,n

{
ReAjj +

n∑
i=1
i �=j

|Aij |
}

,

μ
(1)
2 [A] = λmax

(
A∗ + A

2

)
.

In addition, Lozinskĭı uses the logarithmic norm in the error estimate
of the numerical integration of ordinary differential equations.

(iii) In 1959, Dahlquist publishes his dissertation of 1958 in [3]. The
above formulae for μ

(1)
∞ [A], μ

(1)
1 [A], and μ

(1)
2 [A] are stated in [3, p. 11]

without proof. Dahlquist also uses the directional derivative of vector
norms. For y, v ∈ Cn and h > 0, it is shown that

(57) λ[y; v] := lim
h→0+

‖y + h v‖ − ‖y‖
h

exists.

In the existence proof of (52) and (57), the convexity property of
norms is used.

(iv) In [2, p. 58], for continuous matrix functions A(t) and the
differential system ẋ = A x, the inequality

(58) D+‖x(t)‖ ≤ μ[A(t)] ‖x(t)‖, t ≥ 0,

is proven, where (57) is applied to y = x(t). Also, for constant A, the
estimate

(59) ‖eA t‖ ≤ eμ[A] t, t ≥ 0,

is derived in [2, p. 58].

(v) In [21, pp. 69 71], an important application of the logarithmic
norm is given. For this, consider the linear system of ordinary differ-
ential equations

(60) ẋ = A(t) x + g(t), t ≥ 0,
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with continuous A(t) ∈ Rn×n, g(t) ∈ Rn, t ≥ 0. Classical estimates of
the solution of (60) can be obtained from the differential inequality

(61) D+‖x(t)‖ ≤ ‖A(t)‖ ‖x(t)‖+ ‖g(t)‖, t ≥ 0.

Better estimates can be inferred from

(62) D+‖x(t)‖ ≤ μ[A(t)] ‖x(t)‖ + ‖g(t)‖, t ≥ 0.

More precisely, from [21, Lemma 1, p. 71], we state the following
lemma.

Lemma 7. Let x(t) be a solution of ẋ = A(t) x + g(t), t ≥ 0.
Then, ‖x(t)‖ ≤ ξ(t), where the scalar function ξ satisfies the differential
equation ξ̇ = μ[A(t)] ξ + ‖g(t)‖, t ≥ 0, with the initial condition
ξ(0) = ‖x(0)‖.

The above historical remarks are by no means exhaustive. So, for the
interested reader, the references [4, 7, 8 10, 19, 20] and [22, 23] are
added, in which more information on the logarithmic derivatives can
be found.

7. Further development. By inspection of Figures 3 6, it is
evident that the tangent of y = ‖Φ(t)‖∞ at t0 = 0 is only a good upper
bound for sufficiently small values of t, i.e., for the initial behavior.

For large values of t, i.e., for the asymptotic behavior of y = ‖Φ(t)‖∞,
and more generally for any matrix norm ‖ · ‖, ‖Φ(t)‖ can be estimated
from above by

(63) ‖Φ(t)‖ ≤ Mε e(ν[A]+ε) t, t ≥ 0,

where ε > 0 is given, Mε is some constant and

(64) ν[A] := max
j=1,... ,n

Re λj(A),

is the spectral abscissa of A, with λj(A), j = 1, . . . , n being the
eigenvalues of A, see [2, p. 56].



THE LOGARITHMIC DERIVATIVES 1619

To obtain the minimal Mε in (63), in [14], the author has developed
a differential calculus for the functions t �→ ‖Φ(t)‖p, p ∈ {1, 2,∞}. The
optimal constants Mε,p in (63) for the norms p ∈ {1, 2,∞} are then
determined by the conditions

‖Φ(tc)‖p = Mε,p e(ν[A]+ε) tc ,

D+ ‖Φ(tc)‖p = Mε,p (ν[A] + ε) e(ν[A]+ε) tc ,

where tc is the point of contact between y = ‖Φ(t)‖p and the upper
bound y = Mε,p e(ν[A]+ε) t.

We want to point out that the differential calculus developed in
[13 15] extends the notion of the logarithmic derivative in two di-
rections:

• not only the first derivative D1
+‖Φ(0)‖p is considered, but all

derivatives Dk
+‖Φ(0)‖p, k = 1, 2, . . . for p ∈ {1, 2,∞} and

• not only t0 = 0 is considered, but any t0 > 0, that is, Dk
+‖Φ(t0)‖p,

k = 1, 2, . . . are defined.

For more details on this and the plots of the upper bounds for the
asymptotic behavior as well as the differential calculus for norms of
vector functions, the reader is referred to [14] and [15].

Appendix

In subsection 4.1, for the one-mass model, we have checked formulae
(13) and (14) for μ

(1)
2 [A] and μ

(2)
2 [A] by expanding ‖Φ(t)‖2 in a series

using the explicit representation of Φ(t) in (16) and formula (40).

In this Appendix, we want to make a second check. Since this second
check, which can be used as an Exercise for classroom teaching, is not
elementary, we have postponed it to the Appendix.

One has

Ψ(t) = Φ(t)∗Φ(t).

Thus,

λmax(Ψ(t)) = λmax

(
E + B1 t + B2

t2

2!
+ · · ·

)
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with

B1 = A∗ + A,

B2 = A∗2 + 2 A∗A + A2,

so that

λmax(Ψ(t)) = 1 + λmax

(
B1 + B2

t

2
+ · · ·

)
t.

Set

T (t) := B1 + B2
t

2
+ · · ·

= T + T (1) t + · · ·
with

T := B1,

T (1) :=
1
2

B2.

Then,
λmax(Ψ(t)) = 1 + λmax(T (t)).

According to [14, pp. 8 10], for sufficiently small t ≥ 0,

λmax(T (t)) = λ1(B1) + max
i=1,... ,m

ν
(1)
i

(
P

1
2

B2 P

)
t + o(t),

where λ1 = λ1(B1) = λ1(T ) = λmax(T ) is the largest eigenvalue of
B1, P = P (λ1) = P (λmax) the eigenprojection associated with λ1, m
the dimension of algebraic eigenspace M = P X with X = Cn, and
ν

(1)
i are the repeated eigenvalues of P (1/2) B2 P in the subspace M .

Consequently, for sufficiently small t1 > 0,

λmax(Ψ(t)) = κ0 + κ1 t + κ2
t2

2
+ o(t2), 0 ≤ t ≤ t1,

with

κ0 = 1,

κ1 = λ1(B1) = λ1(A∗ + A),

κ2 = max
i=1,... ,m

ν
(1)
i

(
P

1
2

B2 P

)
.
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Next, we show that
κ2 = κ2

1.

Determination of the eigenprojection P .

(i) First way. Here, we use the eigenvector v(1) of the eigenvalue λ1.
From B1 v(1) = λ1 v(1), we obtain

v(1) =
1√
2

[
1
1

]
if 0 < ω < 1, and

v(1) =
1√
2

[
1
−1

]
if 1 < ω < ∞.

From [18, p. 234 and pp. 236 238], we infer

P = v(1) · v(1)T

and therefore

P =
1
2

[
1 1
1 1

]
if 0 < ω < 1, and

P =
1
2

[
1 −1
−1 1

]
if 1 < ω < ∞.

Remark. The special case ω = 1 and the limit case ω = 0 will be
discussed later.

(ii) Second way. According to [11, p. 66],

P = − 1
2 π i

∫
Γ

R(ζ) d ζ,

where
R(ζ) = (T − ζ)−1 = (B1 − ζ)−1

is the resolvent of T = B1 and Γ is a sufficiently small positively
oriented circle about z0 where z0 = 1 − ω2 if 0 < ω < 1 and
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z0 = −(1−ω2) if 1 < ω < ∞. We derive P only for the case z0 = 1−ω2.
The case z0 = −(1 − ω2) is left to the reader. We have

R(ζ) =
1

ζ2 − (1 − ω2)2

[ −ζ −(1 − ω2)
−(1 − ω2) −ζ

]
.

Using the partial-fraction decomposition

R(ζ)12 = − 1 − ω2

ζ2 − (1 − ω2)2
=

1
2

1
ζ + (1 − ω2)

− 1
2

1
ζ − (1 − ω2)

,

we obtain (cf. [12, p. 43])

P12 = − 1
2 π i

∫
Γ

R(ζ)12 d ζ =
1
2

(
1

2 π i

∫
Γ

d ζ

ζ − z0

)
=

1
2
.

Further,

R(ζ)11 = − ζ

ζ2 − (1 − ω2)2
= − 1

ζ + (1 − ω2)
− 1 − ω2

ζ2 − (1 − ω2)2
.

Hence,

P11 = − 1
2 π i

∫
Γ

R(ζ)11 d ζ = − 1
2 π i

∫
Γ

R(ζ)12 d ζ =
1
2
.

Therefore, for 0 < ω < 1 again

P = P (λ1) =
1
2

[
1 1
1 1

]
.

Determination of P T (1) P = P ((1/2) B2) P . Since

B2 = A∗2 + 2 A∗ A + A2 = 2
[−ω2 (1 − ω2) 0

0 1 − ω2

]
,

it follows in both cases that

P

(
1
2

B2

)
P =

1
4

(1 − ω2)2 P.
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For the eigenvalues of P T (1) P = P ((1/2) B2) P , we have

ν
(1)
1 = 0,

ν
(1)
2 = 1

2 (1 − ω2)2,

and for the algebraic eigenspace,

M (1) := P (λ1) X = [v(1)].

Eigenvalue expansion of λ1(E+B1 t+B2 (t2/2)+· · · ). For sufficiently
small t1 > 0,

λ1

(
B1 + t

B2

2

)
= λ1(B1) + ν

(1)
2

(
P

1
2

B2 P

)
t + o(t)

= |1 − ω2| + (1 − ω2)2
t

2
+ o(t), 0 ≤ t ≤ t1,

and therefore

λ1

(
E + B1 t + B2

t2

2
+ · · ·

)
= 1 + |1 − ω2| t + (1 − ω2)2

t2

2
+ o(t2),

0 ≤ t ≤ t1,

so that

κ0 = 1,

κ1 = |1 − ω2|,
κ2 = (1 − ω2)2 = κ2

1.

Finally, this implies

μ
(1)
2 [A] =

1
2

κ1 =
|1 − ω2|

2
= λmax

(
A∗ + A

2

)
,

μ
(2)
2 [A] =

1
2

(
κ2 − 1

2
κ2

1

)
=

(1 − ω2)2

4
=
[

λmax

(
A∗ + A

2

)]2
.
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Special case. ω = 1. Here, Bj = 0, j = 1, 2, . . . so that

Φ(t) = E.

Thus,
μ

(k)
2 [A] = 0, k = 1, 2, . . . .

Limit case. ω = 0. Here,

A =
[

0 1
0 0

]

and therefore

B1 =
[

0 1
1 0

]
as well as B2 =

[
0 0
0 2

]

and

Bj =
[

0 0
0 0

]
, j ≥ 3.

From the above formulae for ω > 0, we obtain for ω → 0:

μ
(1)
2 [A] =

1
2
,

μ
(2)
2 [A] =

1
4

=
(

1
2

)2

.
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