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ON THE GAUSS MAP OF RULED
SURFACES IN MINKOWSKI SPACE

YOUNG HO KIM AND DAE WON YOON

ABSTRACT. In this paper, we study some characterization
of ruled surfaces in Minkowski space in terms of the Gauss
map. We give new examples of cylindrical and noncylindrical
ruled surfaces in a 4-dimensional Minkowski space with the
pointwise 1-type Gauss map.

1. Introduction. Since the late 1970’s when B.-Y. Chen introduced
the theory of finite type immersion, its study has been extended
to the submanifolds of pseudo-Euclidean spaces, namely a pseudo-
Riemannian submanifold M of an m-dimensional pseudo-Euclidean
space Em

s with signature (s, m − s) is said to be of finite type if its
position vector field x can be expressed as a finite sum of eigenvectors
of the Laplacian Δ of M , that is,

x = x0 + x1 + x2 + · · · + xk,

where x0 is a constant map, x1, . . . , xk nonconstant maps such that
Δxi = λixi, λi ∈ R, i = 1, 2, . . . , k, [3, 7]. If λ1, λ2, . . . , λk are
different, then M is said to be of k-type. Similarly, we can apply
this notion to a smooth map, for example, the Gauss map G that
is one of the most natural smooth maps on an n-dimensional pseudo-
Riemannian submanifold M of Em

s . Thus, the Gauss map G is said to
be of finite type if G is a finite sum of Em

s - valued eigenfunctions of Δ
[2, 4]. We also similarly define the notion of k-type Gauss map on M
as usual.

There are many examples of submanifolds in the Minkowski space
Em

1 with finite type Gauss map, for example, B-scrolls in E3
1, several

kinds of cylinders and extended B-scrolls in E4
1 are those with 1-type
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Gauss map [1, 10, 12]. Recently, D.-S. Kim and the authors [8, 9]
studied and characterized ruled surfaces with finite type Gauss map.
Also, the many geometers tried to study the submanifolds of Euclidean
or pseudo-Euclidean spaces satisfying a differential equation ΔG = ΛG,
where Δ denotes the Laplacian operator acting on the set of smooth
functions on the submanifolds and Λ an endomorphism of the ambient
manifold [5]. In particular, Aĺias et al. [1] proved that the so-called
B-scrolls over light-like curves are the only null scrolls in E3

1 satisfying
ΔG = ΛG. Related to such matters, we may pose the following natural
question: “Can we completely characterize null scrolls in arbitrary
dimensional Minkowski space with ΔG = ΛG?”

In this article, we study ruled surfaces including the null scrolls
in an m-dimensional Minkowski space Em

1 , and we give a complete
classification theorem of null scrolls satisfying ΔG = ΛG in Em

1 . Also,
we characterize ruled surfaces in terms of the notion of pointwise 1-
type Gauss map as well as we give some new examples of cylindrical
and noncylindrical ruled surfaces. The authors proved the following
theorems which will be used later.

Theorem A [8]. Let M be a ruled surface with 1-type Gauss map in
Em

1 if and only if M is an open part of one of the following:

(1) A Euclidean plane, a Minkowski plane, a hyperbolic cylinder
H1 × R1, a Lorentz circular cylinder R1

1 × S1, a Lorentz hyperbolic
cylinder S1

1 × R1 and a B-scroll if m = 3.

(2) A Euclidean plane, a Minkowski plane, S1×R1, H1×R1, R1
1×S1,

S1
1 × R1, helical cylinders and an extended B-scroll if m � 4.

Theorem B [9]. Let M be a null scroll in an m-dimensional
Minkowski space Em

1 . Then, the following are equivalent.

(1) The Gauss map is of finite type.

(2) The Gauss map is of either 1-type or null 2-type.

(3) M is an open part of generalized B-scroll in Em
1 .

Throughout this paper, we assume that all objects are smooth and
all surfaces are connected unless stated otherwise.
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2. Preliminaries. Let Em
s be an m-dimensional pseudo-Euclidean

space with signature (s, m − s). Then the metric tensor g̃ in Em
s has

the form

g̃ = −
s∑

i=1

dx2
i +

m∑
i=s+1

dx2
i ,

where (x1, x2, . . . , xm) is a standard rectangular coordinate system in
Em

s . In particular, for m ≥ 2, Em
1 is called Minkowski m-space.

Let x : M → Em
s be an isometric immersion of an oriented n-

dimensional pseudo-Riemannian submanifold M into Em
s .

Let ∇̃ be the Levi-Civita connection on Em
s and ∇ the induced

connection on M . Then, the Gauss and Weingarten formulas are given
by respectively

∇̃XY = ∇XY + h(X, Y ),(2.1)

∇̃XV = −AV X + DXV(2.2)

for vector fields X, Y tangent to M and a vector field V normal to M ,
where h denotes the second fundamental form, D the normal connection
and AV the shape operator in the direction of V that is related with h
by

〈h(X, Y ), V 〉 = 〈AV X, Y 〉.
If we define a covariant differentiation ∇h of the second fundamental
form h on the direct sum of the tangent bundle and the normal bundle
TM ⊕ T⊥M of M by

(∇Xh)(Y, Z) = DXh(Y, Z) − h(∇XY, Z) − h(Y,∇XZ),

then we have the Codazzi equation

(2.3) (∇Xh)(Y, Z) = (∇Y h)(X, Z)

for all tangent vector fields X, Y and Z of M .

From now on, a submanifold in Em
s always means pseudo-Riemannian.

Let us now define the Gauss map G of a submanifold M into G(n, m)
in ∧nEm

s , where G(n, m) is the Grassmannian manifold consisting of
all oriented n-planes through the origin of Em

s and ∧nEm
s is the vector
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space obtained by the exterior product of n vectors in Em
s . In a

natural way, for some positive integer k we can identify ∧nEm
s with

some pseudo-Euclidean space EN
k where N =

(
m
n

)
. Let e1, e2, . . . , em

be an adapted local orthogonal frame in Em
s such that e1, e2, . . . , en

are tangent to M and en+1, en+2, . . . , em normal to M . The map
G : M → G(n, m) ⊂ EN

k defined by G(p) = (e1 ∧ e2 ∧ · · · ∧ en)(p)
is called the Gauss map of M that is a smooth map which carries a
point p in M into the oriented n-plane in Em

s obtained from the parallel
translation of the tangent space of M at p in Em

s .

For two vectors ei1 ∧· · ·∧eim
and fj1 ∧· · ·∧fjm

of EN
k , we can define

an indefinite inner product 〈, 〉 by

〈ei1 ∧ · · · ∧ eim
, fj1 ∧ · · · ∧ fjm

〉 = det(〈eil
, fjk

〉)

on G(n, m) ⊂ EN
k .

It is well known that in terms of local coordinates {xi} of M the
Laplacian can be written as:

(2.4) Δ = − 1√|G|
∑
i,j

∂

∂xi

(√
|G| gij ∂

∂xj

)
,

where G = det(gij), (gij) = (gij)−1 and (gij) are the components of the
metric of M with respect to {xi}.

Now, we define a ruled surface M in Em
1 . Let I and J be open

intervals containing 0 in the real line R. Let α = α(s) be a curve on
Em

1 defined on J and β = β(s) a transversal vector field along α, that
is, α′(s)∧ β(s) �= 0 for every s ∈ J . Then, a ruled surface M is defined
by the parametrization given as follows:

x = x(s, t) = α(s) + tβ(s), s ∈ J, t ∈ I.

For such a ruled surface, α and β are called the base curve and β the
director curve. In particular, if β is constant, the ruled surface is said
to be cylindrical, and if it is not so, it is called noncylindrical. If the
base curve α is nonnull, i.e., space-like or time-like, the director curve
β can naturally be chosen so that it is orthogonal to α. Furthermore,
in this case, we have ruled surfaces of five different kinds according to
the character of the base curve α and the director curve β as follows.
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If the base curve α is space-like or time-like, then the ruled surface M
is said to be of type M+ or type M−, respectively. Also, the ruled
surface of type M+ can be divided into three types. In the case that
β is space-like, it is said to be of type M1

+ or M2
+ if β′ is nonnull or

null, respectively. When β is time-like, β′ must be space-like by causal
character. In this case, M said to be of type M3

+. For the ruled surface
of type M−, it is also said to be of type M1

− or M2
− if β′ is nonnull or

null, respectively. Note that in the case of type M− the director curve β
is always space-like. The ruled surface of type M1

+ or M2
+, respectively

M3
+, M1

− or M2
−, is clearly space-like, respectively time-like, [10, 12].

But, if the base curve α is a light-like curve and the vector field β
along α is a light-like vector field, then the ruled surface M is called a
null scroll. In particular, a null scroll with the Cartan frame in E3

1 is
said to be a B-scroll [1, 6]. It is also a time-like surface. The authors
[8, 9] defined the extended B-scrolls and the generalized B-scrolls in
arbitrary dimensional Minkowski spaces.

3. Examples.

Example 1. Let M be a space-like ruled surface in E4
1 with

parametrization x(s, t) = (s2, s2, s, t). Then, it is cylindrical and the
mean curvature vector field H is parallel satisfying ΔG = 0. We call
this ruled surface the quadric ruled surface of the first kind.

Example 2. Let M be a space-like ruled surface in E4
1 with

parametrization x(s, t) = ((s2/2) + ts, (s2/2) + ts, s, t). Then, it is
noncylindrical with the light-like parallel mean curvature vector field
H is parallel satisfying ΔG = fG for some function f . We call this
ruled surface the quadric ruled surface of the second kind.

Example 3. Let M be a space-like ruled surface in E4
1 with

parametrization x(s, t) = (as, as, (t + u) cos s, (t + u) sin s) where u2 =
a2 for some a > 0, which lies in E4

1. It is noncylindrical of type M2
−.

We call this ruled surface the helicoid of the fourth kind which is non-
cylindrical.
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Example 4. Let M be a null scroll generated by a light-like curve
α = α(s) in Em

1 and β = β(s) a light-like vector field along α, which is
up to congruences parametrized by

x = x(s, t) = α(s) + tβ(s), s ∈ J, t ∈ I

such that 〈α′, α′〉 = 0, 〈β, β〉 = 0, 〈α′, β〉 = −1, where I and J are some
open intervals. Furthermore, by appropriate change of parameter, we
may assume 〈α′, β′〉 = 0, which is equivalent to choose α as a light-like
geodesic of M .

Let α = α(s) be a light-like curve in Em
1 and let A(s), B(s), C1(s), · · · ,

Cm−2(s) be a null frame along α satisfying

〈A, A〉 = 〈B, B〉 = 〈A, Ci〉 = 〈B, Ci〉 = 0,

〈A, B〉 = −1, 〈Ci, Cj〉 = δij , α′(s) = A(s)

for 1 ≤ i, j ≤ m−2. Let X(s) be the matrix ( A(s) B(s) C1(s) ··· Cm−2(s) )
consisting of column vectors of A(s), B(s), C1(s), · · · , Cm−2(s) with
respect to the standard coordinate system in Em

1 . We then have

Xt(s)EX(s) = T,

where E = diag (−1, 1, · · · 1, 1) and

T =

⎛
⎜⎜⎜⎜⎝

0 −1 0
−1 0 0 . . . 0
0 0 1

. . .
. . .

0 1

⎞
⎟⎟⎟⎟⎠ ,

where Xt(s) denotes the transpose of X(s).

Consider a system of ordinary differential equations

(3.1) X ′(s) = X(s)M(s),

where

M(s) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 −a 0 · · · 0
0 0 −k1(s) −k2(s) · · · −km−2(s)

−k1(s) −a 0 −w2(s) · · · −wm−2(s)
−k2(s) 0 w2(s) 0 · · · 0

...
...

...
...

...
...

−km−2(s) 0 wm−2(s) 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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where a is a constant and k1, k2, · · · , km−2, w1, w2, · · · , wm−2 are some
smooth functions.

For a given initial condition X(0) = ( A(0) B(0) C1(0) ··· Cm−2(0) ) sat-
isfying Xt(0)EX(0) = T , there is a unique solution to equation (3.1).
Since T is symmetric and MT is skew-symmetric, d(Xt(s)EX(s))/ds =
0 and hence we have

Xt(s)EX(s) = T.

Therefore, A(s), B(s), C1(s), · · · , Cm−2(s) form a null frame along a
light-like curve α in Em

1 . Let x(s, t) = α(s) + tB(s). Then, it defines a
time-like surface M in Em

1 , which is called the generalized B-scroll in
Em

1 [9]. In particular, if w1, w2, · · · , wm−2 are identically zero, then it
is just an extended B-scroll defined in [8]. The Laplacian Δ of M is
given by

Δf = 2fst + 2ta2ft + t2a2ftt

for a function f defined on M . Let H be the mean curvature vector
field of M defined by H = tr h/2. The Beltrami equation Δx = −2H
gives

H(s, t) = −ta2B(s) + aC1(s),

which implies
ΔH = 2a2H.

And, the shape operator AH associated with the mean curvature vector
field H has the form (

a2 0
ak1 a2

)
in the coordinate frame {xs, xt}. The Gauss map G of M satisfies

Δ2G = 2a2ΔG.

Remark. 1. A generalized B-scroll cannot be of 1-type unless
wj(s) ≡ 0 for all j = 2, . . . , m − 2.

2. The ruled surfaces described in Examples 1, 2 and 3 are new
examples of those with the pointwise 1-type Gauss map.

4. Ruled surfaces with ΔG = ΛG and generalized B-scrolls.
In this section, we study ruled surfaces satisfying ΔG = ΛG and
characterize generalized B-scrolls in term of it.
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Theorem 4.1. There are no noncylindrical ruled surfaces except of
type M2

+ with nonnull base curve in Em
1 whose Gauss map satisfies

(4.1) ΔG = ΛG, Λ ∈ RN×N and N =
(

m

2

)
.

Proof. In this case, we also split it into two cases.

Case 1. Let M be a noncylindrical ruled surface of one of three types
M1

+, M3
+ or M1

− according to the character of the base curve α and the
director curve β:

(1) α = α(s) is space-like and β = β(s) is space-like,

(2) α = α(s) is space-like and β = β(s) is time-like,

(3) α = α(s) is time-like and β′ = β′(s) is nonnull,

where s is the arc-length of the director curve β. We also express the
ruled surface M with the following parametrization

x = x(s, t) = α(s) + tβ(s), s ∈ J, t ∈ I

such that 〈α′, β〉 = 0, 〈β, β〉 = ε2(= ±1) and 〈β′, β′〉 = ε3(= ±1).
Then, the Gauss map G of M is easily obtained by (1/‖xs ∧ xt‖)xs∧xt.
For later use we define smooth functions q, u, v and 2-planes A, B as
follows:

q = ‖xs‖2 = ε4〈xs, xs〉, u = 〈α′, β′〉, v = 〈α′, α′〉,
A = α′ ∧ β, B = β′ ∧ β.

In turn, we have by the simple computation

(4.2) q = ε4(ε3t
2 + 2ut + v), G =

1
q1/2

(A + tB).

It is easy to show that the Laplacian Δ of M can be expressed as

(4.3) Δ = −ε4

(
1
q

∂2

∂s2
− 1

2
1
q2

∂q

∂s

∂

∂s

)
− ε2

(
∂2

∂t2
+

1
2

1
q

∂q

∂t

∂

∂t

)
.
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By a straightforward computation, the Laplacian ΔG of the Gauss map
G with of help of (4.2) and (4.3) turns out to be

ΔG =
{

2ε2ε3ε4q
−1 − 2ε2(ε3t + u)2q−2

− ε4(2u′t + v′)2q−3 +
1
2

(2u′′t + v′′)q−2

}
G

+
1
2

q−5/2{2ε2ε4q(−ε3A + uB)

− 2ε4q(A′′ + tB′′) + 3(2u′t + v′)(A′ + tB′)}.

Suppose that the ruled surface satisfy the condition (4.1). By the
definition of the function q, (4.1) becomes the polynomial with the
variable t whose coefficients are functions of the variable s. Then, by
the coefficients of t6 and t7, we have

(4.5) ΛA = 0, ΛB = 0,

where Λ is the constant matrix and A and B are vectors. Suppose that
Λ is nonsingular. Then, (4.5) means that A = B = 0, which implies
that G = 0, a contradiction. Accordingly, we see that the matrix Λ is
singular.

Next, considering the coefficients of the other powers of t in (4.1) and
using (4.5), we obtain

(4.6) B′′ = 0,

(4.7) ε2A
′′ + ε3A + 4ε2ε3uB′′ − 3ε2ε3u

′B′ − (u + ε2ε3u
′′)B = 0,

(4.8) 8ε2ε3uA′′ − 6ε2ε3u
′A′ + (8u − 2ε2ε3u

′′)A

+ (4ε2ε3v + 8ε2u
2)B′′ − (12ε2uu′ + 3ε2ε3v

′)B′

− (4v + 4ε3u
2 − 8ε2u

′2 + ε2ε3v
′′ + 4ε2uu′′)B = 0,

(4.9) (4ε2ε3v + 8ε2u
2)A′′ − (12ε2uu′ + 3ε2ε3v

′)A′

+ (12ε3u
2 + 8ε2u

′2 + 2v − ε2ε3v
′ − 4ε2uu′′)A + 8ε2uvB′′

− (6ε2u
′v + 6ε2uv′)B′

− (16ε3uv − 8ε2u
′v′ + 2ε2uv′′ + 2ε2u

′′v)B = 0,
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(4.10) 8ε2uvA′′ − (6ε2u
′v + 6ε2uv′)A′

+ (8u3 + 8ε2u
′v′ − 2ε2uv′′ − 2ε2u

′′v)A + 2ε2v
2B′′ − 3ε2vv′B′

+ (2ε2v
′2 − ε2vv′′ − 4u2v − 4ε3v

2)B = 0,

(4.11)

2ε2v
2A′′ − 3ε2vv′A′ + (4u2v + 2ε2v

′2 − 2ε3v
2 − ε2vv′′)A − 2uv2B = 0.

Using the above equations, we can eliminate A′′, A′ and B′. Conse-
quently, we get
(4.12)

(4ε2ε3u
′2v − ε2v

′2 + ε3v
2)A + (4ε2ε3u

′vv′ − 2uv2 − 8ε2uu′2v)B = 0,

(4.13) (2uv′2 − 4u′vv′)A + (4ε3u
′2v2 − vv′2)B = 0.

Consider an open subset U = {p ∈ M | (A ∧B)(p) �= 0}. Suppose that
U is not empty. On U , (4.12) and (4.13) imply

(4.14)

⎧⎪⎪⎨
⎪⎪⎩

4ε2ε3u
′2v − ε2v

′2 + ε3v
2 = 0,

4ε2ε3u
′vv′ − 2uv2 − 8ε2uu′2v = 0,

2uv′2 − 4u′vv′ = 0,

4ε3u
′2v2 − vv′2 = 0.

It follows from (4.14) that

(4.15) u′vv′2(v − ε3u
2) = 0 on U .

If the open subset U1 = {p ∈ U | (v − ε3u
2)(p) �= 0} is not empty,

then u′vv′2(p) = 0 on U1. Let U2 = {p ∈ U1 | u′(p) �= 0} �= φ. Then
vv′2(p) = 0 on U2, that is, v is constant on each component of U2.
But, the fourth equation in (4.14) implies v = 0 on U2, which is a
contradiction. Therefore, the subset U2 is empty and u is constant on
each component of U1. We now consider the matter on a component O
of U1 for a while. From the second equation in (4.14), we have u = 0 on
O because v is nonzero. Then, the fourth equation in (4.14) gives that
v is a nonzero constant on O. Furthermore, the first equation in (4.14)
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implies v = 0 on O, which is a contradiction and hence the subset U1

is empty. Thus we have

v = ε3u
2, q = ε3ε4(t + ε3u)2 on U .

In this case, from the first equation in (4.14) we have v = 0, which
is also a contradiction. Therefore, U must be empty. Hence, A and B
are linearly dependent. Therefore, there exist some smooth functions
λ and μ such that α′ − λβ′ = μβ. By using the properties of α and
β, we can get μ = 0, u = λε3 and v = λ2ε3. From (4.12) we have
λ5β′ ∧ β = 0, that is, λ = 0 and v = 0 because of β ∧ β′ �= 0. It
contradicts the property of the curve α. Consequently, Case 1 never
occurs.

Case 2. Let M be a noncylindrical ruled surface of type M2
+ or M2

−.
We may also assume that M is parametrized by

x(s, t) = α(s) + tβ(s)

such that 〈β, β〉 = 1, 〈α′, β〉 = 0, 〈α′, α′〉 = ε1(= ±1) and β′ is light-
like. It is easy to get the Gauss map of the surface M as

G =
1

||(α′ + tβ′) ∧ β|| (α′ + tβ′) ∧ β.

Similarly to Case 1, we also define functions q and u by

q = ||xs||2 = ε4〈xs, xs〉, u = 〈α′, β′〉,
which give

(4.16) q = ε4(2ut + ε1), G =
1

q1/2
(A + tB),

where we put A = α′ ∧ β and B = β′ ∧ β and the region of t runs so
that q > 0.

By the straightforward computation, we easily have the Laplacian Δ
of M in the form of

(4.17) Δ = −ε4

(
− 1

2
1
q2

∂q

∂s

∂

∂s
+

1
q

∂2

∂s2

)
−

(
1
2

1
q

∂q

∂t

∂

∂t
+

∂2

∂t2

)
.
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For the Gauss map G, we have

ΔG =
G1(t)

q(1/2)+3
, . . . , ΔrG =

Gr(t)
q(1/2)+3r

, deg (Gr(t)) ≤ 1 + 2r

where G1(t), · · · , Gr(t) are polynomials in t with 2-planes in s as
coefficients.

Suppose the matrix Λ is not zero. Consider an open subset U = {p ∈
M |u(p) �= 0}. Suppose U is not empty. Then, by the Cayley-Hamilton
theorem, we have

(ΛN + c0ΛN−1 + · · · + cN−1Λ + cNI)G = 0

for some constants c0, . . . , cN , where I denotes the N × N -identity
matrix, in other words,

(ΔN+1 + c0ΔN + · · · + cNΔ)G = 0.

As in the previous argument, by considering the degree of the polyno-
mials obtained from ΔG, . . . , ΔrG (r = 1, 2, . . . , N + 1), we obtain

(4.18) ΔG = 0,

that is a contradiction to the assumption for a non-zero matrix Λ.
Consequently, the matrix Λ satisfying (4.1) is zero. Using (4.16) and
(4.17), we can obtain by a direct computation

(4.19)
ΔG =(−2u2q−2 + u′′tq−2 − 4ε4u

′2t2q−3)G

+ q−5/2 {ε4uBq + 3u′t(A′ + tB′) − ε4(A′′ + tB′′)q}.

Similarly to Case 1, by using (4.18) and (4.19), we have the following
equations:

(4.20) u2B′′ − 3uu′B′ + 2u′2B − uu′′B = 0,

(4.21) 4u2A′′ − 6uu′A′ − 2uu′′A + 4u′2A
+ 4ε1uB′′ − 3ε1u

′B′ + ε1u
′′B = 0,
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(4.22) 4ε1uA′′ − 3ε1u
′A′ + 4u3A − ε1u

′′A + B′′ − 2ε1u
2B = 0,

(4.23) A′′ + 2ε1u
2A − uB = 0.

Using the above equations, we can eliminate A′′, B′′, A′ and B′ so that

(4.24) 2ε1uu′2A = (u′2 − uu′′)B.

We now consider an open subset U1 = {p ∈ U | (u2)′(p) �= 0}. Suppose
that U1 is not empty. Then, from (4.24) we get α′ = ρβ for some
function ρ on U1, which is a contradiction. Therefore, the open subset
U1 is empty, that is, the function u is constant on M . Suppose u �= 0.
Equations (4.20) (4.23) imply that uA − (1/2)ε1B = 0, which gives
uα′ = (1/2)ε1β′, a contradiction. Thus, u is identically zero on M .

Let M be a surface of type M2
−. It is impossible because there is no

time-like vector orthogonal to a light-like vector in Minkowski space.

If M is a surface of type M2
+, then it is easily seen that M is flat.

Remark. Even in the case of ruled surfaces in E4
1 of type M2

+ with
the Gauss map of null 2-type, there are abundant examples of them
[12].

Theorem 4.2. Let M be a null scroll in Minkowski m-space Em
1 .

Then, the Gauss map G of M satisfies

(4.25) ΔG = ΛG, Λ ∈ RN×N and N =
(

m

2

)

if and only if M is an open part of generalized B-scroll.

Proof. Let α = α(s) be a light-like curve in Em
1 and β = β(s) a light-

like vector field along α. Then, the null scroll M is up to congruences
parametrized by

x = x(s, t) = α(s) + tβ(s), s ∈ J, t ∈ I
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such that 〈α′, α′〉 = 0, 〈β, β〉 = 0, 〈α′, β〉 = −1, where I and J are
some open intervals. Furthermore, without loss of generality we may
choose α as a light-like geodesic of M . We then have 〈α′(s), β′(s)〉 = 0
for all s. Therefore, we have the natural frame {xs, xt} given by

xs = α′ + tβ′, xt = β.

We also define smooth functions q and v as follows:

(4.26) q = 〈xs, xs〉, v = 〈β′, β′〉.

Similarly as before, the Laplacian Δ of M can be given as follows [8]:

(4.27) Δ = −2
∂2

∂s∂t
+

∂q

∂t

∂

∂t
+ q

∂2

∂t2
.

Furthermore, the Gauss map G is determined by

(4.28) G =
(

1
‖xs × xt‖

)
(xs × xt) = A + tB,

where we put A = α′ ∧ β and B = β′ ∧ β. Then, (4.27) and (4.28)
imply

(4.29) ΔG = −2β′′ ∧ β + 2vtβ′ ∧ β.

Together with (4.25) and (4.29), we have

(4.30) −2β′′ ∧ β + 2vtβ′ ∧ β = Λ(α′ ∧ β + tβ′ ∧ β).

Differentiating (4.30) with respect to t, we get

(4.31) (2vI − Λ)β′ ∧ β = 0,

where I denotes the N × N -identity matrix. Let V be an open subset
V = {p ∈ M | det(Λ − 2vI) �= 0}. If V �= ∅, then β′ ∧ β = 0,
where det means the determinant. By the choice of β and the causal
character of the light-like vector field β, we see that β is a constant
light-like vector. Then, (4.30) with β′ = 0 implies Λ(α′ ∧ β) = 0. Since
det(Λ − 2vI) = det Λ �= 0, α′ ∧ β = 0, which is a contradiction. Thus,
the open subset V is the empty set and Λ − 2vI is a singular matrix.
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Thus, 2v is an eigenvalue of Λ and it is a constant. Since v is constant,
it is easily obtained that

Δ2G − 2vΔG = 0.

Hence, the Gauss map is of at most null 2-type, i.e., it is of null 2-type,
1-type or ΔG = 0. If ΔG = 0, it is easily obtained that M is an
open part of the flat extended B-scroll which is a special case of the
generalized B-scroll, see [9]. Using Theorem B in Section 1, we have
the result.

Theorem 4.3. Let M be a cylindrical ruled surface in Em
1 . Then,

the mean curvature vector is parallel in the normal bundle if and only if
M is locally a Euclidean plane, a Minkowski plane, a circular cylinder
lying in E3, a circular cylinder of index 1 lying in E3

1, a hyperbolic
cylinder, a Lorentz cylinder or a quadric ruled surface of the first kind.

Proof. Let M be a cylindrical ruled surface. Then, we can take its
parametrization as

x(s, t) = α(s) + tβ

where α is a unit speed curve and β a constant vector such that
〈α′(s), β〉 = 0 for all s. From this, we have the mean curvature vector
field H of the form

H =
1
2

ε(α′)α′′,

from which,

(4.32) α′′′(s) = −4ε(α′)〈H, H〉α′(s)

where ε(α′) is the sign of α′. Suppose that H is parallel in the normal
bundle. Then, the mean curvature 〈H, H〉 is constant. If 〈H, H〉0, then
α′′ is either zero or light-like because of the causal character.

If α′′ is zero, then M is an Euclidean plane or a Minkowski plane.
Suppose α′′ is light-like. Then, α may be expressed up to congruence
as

α(s) =
s2

2
C + sD

where D is a unit constant vector orthogonal to C and β. From the
character of the director curve β, C is also orthogonal to β. And, D
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turns out to be space-like no matter whether the base curve α may
be space-like or time-like because the ambient space Em

1 has index 1.
Therefore, up to congruence, the parametrization of ruled surface M is
given by

x(s, t) = (s2, s2, s, t)

which is space-like and lies in E4
1. It is the quadric ruled surface of

the first kind given in Section 3. Suppose 〈H, H〉 �= 0. By solving
the differential equation (4.32), the ruled surface M is an open part
of the ordinary circular cylinder, the circular cylinder of index 1, the
hyperbolic cylinder or the Lorentz cylinder. The converse is obvious.

Corollary 4.4. Let M be a cylindrical ruled surface in Em
1 , m ≥ 4.

If the mean curvature vector field is parallel in the normal bundle, then
M lies in at most four-dimensional Minkowski space E4

1.

5. Ruled surfaces with pointwise 1-type Gauss map. In this
section, we study a ruled surface M in Em

1 with pointwise 1-type Gauss
map, that is, the Gauss map G satisfies

(5.1) ΔG = fG

for some smooth function f on M .

In the first place, we prove

Lemma 5.1. Let M be an n-dimensional submanifold of a pseudo-
Euclidean space Em

s with pointwise 1-type Gauss map G. Then, the
mean curvature vector field H is parallel in the normal bundle.

Proof. Let e1, · · · , en be a local orthonormal frame on M which
defines the Gauss map G by G(p) = (e1 ∧ e2 ∧ · · · ∧ en)(p) for each
point p ∈ M . Let ∇̃ be the Levi-Civita connection defined on Em

s and
∇ its induced connection on M . Then, we have

(5.2) ∇̃ei
G =

n∑
k=1

e1 ∧ · · · ∧ (∇ei
ek + h(ei, ek)) ∧ · · · ∧ en.
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For each point p ∈ M , we may choose a local orthonormal frame in
such a way that (∇ei

ej)(p) = 0. From (5.2), we have

(5.3)

(ΔG)(p) = −
∑

i

εi(∇̃ei
∇̃ei

G − ∇̃∇ei
ei

G)(p)

= −
∑

i

∑
k

εi(ei ∧ · · · ∧ {−Ah(ei,ek)ei + Dei
h(ei, ek)}

∧ · · · ∧ en)(p)

−
∑

i

∑
h �=k

εi(e1 ∧ · · · ∧ h(ei, eh) ∧ · · · ∧ h(ei, ek)

∧ · · · ∧ en)(p),

where εi is the sign of ei, A the shape operator, h(ei, ej) the second
fundamental form evaluated at ei and ej and D the normal connection
defined on the normal bundle of M .

Suppose that the Gauss map G of M is of pointwise 1-type, that is,
(5.1) is satisfied. By comparing the tangential part and the normal
part in (5.3), we see that

∑
i

Dei
h(ei, ek) = 0

for all k = 1, 2, . . . , n, from which, by using the Codazzi equation (2.3),
we get ∑

i

(
(∇̄ek

h)(ei, ei)
)
(p) = 0,

or equivalently, Dek
H = 0 for all k = 1, 2, . . . , n. Thus, the mean

curvature vector field H is parallel.

Therefore, using Theorem 4.3 and Lemma 5.1, we have

Theorem 5.2. Let M be a cylindrical ruled surfaces in Em
1 . Then,

M has pointwise 1-type Gauss map if and only if M is locally a
Euclidean plane, a Minkowski plane, a circular cylinder lying in E3, a
circular cylinder of index 1 lying in E3

1, a hyperbolic cylinder, a Lorentz
cylinder or a quadric ruled surface of the first kind.
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Theorem 5.3. Let M be a noncylindrical ruled surface in Em
1 of

type M1
+, M3

+ or M1
− with pointwise 1-type Gauss map. Then, M is

minimal.

Proof. Suppose that M is one of the ruled surfaces of type M1
+, M3

+

and M1
− in Em

1 satisfying the condition (5.1). We will use the same
notations used in Case 1 of Theorem 4.1.

By using (4.3), the Beltrami equation Δx = −2H gives

(5.4)

H(s, t) = ε4
1
2q

(α′′+tβ′′)− 1
4q2

(2u′t+v′)(α′+tβ′)+ε2ε4
1
2q

(ε3t+u)β.

By Lemma 5.1 we have

(5.5) ∇̃xt
H = −ε4q

−1〈h(xs, xt), H〉xs.

Differentiating (5.4) with respect to t and using (2.1), we can show that
the coefficient of t4 is obtained by

(5.6) β′′ = −ε2ε3β.

By (5.5) the coefficients of t3, t2, t1 and t0 are given by

(5.7) 2α′′ + 2ε2uβ − ε3u
′β′ − ε3〈α′′, β′〉β′ = 0.

(5.8)

6ε3uα′′−2ε3u
′α′−ε3v

′β′+uu′β′+6ε2ε3u
2β−(ε3α

′+2uβ′)〈α′′, β′〉 = 0.

(5.9) (4ε3v + 8u2)α′′ − (3ε3v
′ + 2uu′)α′ − (uv′ − 4u′v)β′

+ (4ε2ε3uv + 8ε2u
3)β − (2vβ′ + 4uα′)〈α′′, β′〉 = 0.

(5.10) 4uvα′′ − (3uv′ − 2u′v)α′ + vv′β′ + 4ε2u
2vβ − 2v〈α′′, β′〉α′ = 0.

If we take the scalar product with α′ and β′ in equation (5.7), respec-
tively, then we have

v′ − ε3uu′ − ε3〈α′′, β′〉u = 0, 〈α′′, β′〉 = u′,
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which imply

(5.11) v′ = 2ε2uu′.

Therefore, from (5.7), we obtain

(5.12) α′′ = ε3u
′β′ − ε2uβ.

Putting (5.12) into (5.8) implies

(5.13) u′(α′ − ε3β
′) = 0.

Let’s consider an open subset O = {p ∈ M |u′ �= 0} of M . Suppose
O �= ∅. Then, (5.13) yields

(5.14) α′ = ε3uβ′.

Since β′′ = −ε2ε3β, β is given by

(5.15) β(s) = cos s C + sin s D

for some unit space-like constant vectors C and D which are orthogonal
to each other, or

(5.16) β(s) = cosh s C + sinh s D

where C and D satisfy 〈C, C〉 = −〈D, D〉 = 1 and 〈C, D〉 = 0. Together
with (5.14), (5.15) and (5.16), α can be given by

α(s) = −ε3

∫ s

u(σ) sinσ dσ C + ε3

∫ s

u(σ) cosσ dσ D

or

α(s) = ε3

∫ s

u(σ) sinhσ dσ C + ε3

∫ s

u(σ) coshσ dσ D.

Thus, each component of O is contained either an Euclidean plane
or a Minkowski plane. By continuity, a component of O is either an
Euclidean plane or a Minkowski plane.
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Now, we suppose u′ = 0 on M , that is, u is constant on M . By (5.11),
v is also a constant. Then, (5.12) implies

(5.17) α′′ = −ε2uβ.

Making use of (5.6) and (5.17), we easily see that the mean curvature
vector H given by (5.4) is identically zero, that is, the surface is
minimal.

We now consider the case that the ruled surface M is noncylindrical
of type M2

+ or M2
−. Then, the surface M is parametrized by

x(s, t) = α(s) + tβ(s)

such that 〈β, β〉 = 1, 〈α′, β〉 = 0, 〈α′, α′〉 = ε1(= ±1) and β′ is light-
like. By using (4.17) and the Beltrami equation, the mean curvature
vector H is determined by

(5.18) H(s, t) = ε4
1
2q

(α′′ + tβ′′) − 1
2q2

u′t(α′ + tβ′) + ε4
1
2q

uβ.

By (5.18) we get

(5.19) 〈H, H〉 =
1
4

q−2{〈α′′ + tβ′′, α′′ + tβ′′〉 − u2 − ε4q
−1u′2t2}.

Differentiating (5.19) with respect to t and using Lemma 5.1, we have

(5.20)

⎧⎪⎨
⎪⎩

2ε1u〈β′′, β′′〉 − 4u2〈α′′, β′′〉 + uu′2 = 0,

〈β′′, β′′〉 − 4u2〈α′′, α′′〉 − ε1u
′2 + 4u4 = 0,

〈α′′, β′′〉 − 2ε1u〈α′′, α′′〉 + 2ε1u
3 = 0,

which imply

(5.21) u′ = 0.

On the other hand, by (2.2) and Lemma 5.1, we obtain

(5.22) ∇̃xs
H = −ε4

q
〈h(xs, xs), H〉xs − 〈h(xs, xt), H〉xt,
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and by (2.1) the second fundamental form h satisfies

(5.23)

⎧⎨
⎩

h(xs, xs) = α′′ + tβ′′ + uβ,

h(xs, xt) = −ε4(u/q)α′ + (1 − ε4(u/q)t)β′,
h(xt, xt) = 0.

Thus, from (5.18), (5.21), (5.22) and (5.23) we have

(5.24)

⎧⎨
⎩

uβ′(u2 − 〈α′′, α′′〉) = 0,

β′′′ = (u2 − 〈α′′, α′′〉)(ε1β
′ + 2uα′),

α′′′ + uβ′ = ε1(u2 − 〈α′′, α′′〉)α′ − 〈α′′, β′〉β.

Thus, we have

Lemma 5.4. Let M be a noncylindrical ruled surface in Em
1 of type

M2
+ or M2

− with pointwise 1-type Gauss map. Then, the function u is
constant on M .

We now prove

Theorem 5.5. Let M be a noncylindrical ruled surface in Em
1 with

pointwise 1-type Gauss map if and only if M is one of the ordinary
helicoid, the helicoid of the first, the second kind, the third and the
fourth kind, the Euclidean plane, the Minkowski plane, the quadric
ruled surface of the second kind and the conjugate Enneper’s surface
of the second kind.

Proof. Suppose the Gauss map G is of pointwise 1-type, i.e., (5.1) is
satisfied. In the first place, we consider the ruled surface M in Em

1 is
of type M1

+, M3
+ or M1

−. In the proof of Theorem 5.3, the function u
and v are constant if M is neither an Euclidean plane nor a Minkowski
plane. We now consider that M is neither an Euclidean plane nor a
Minkowski plane.

Case I. ε2ε3 = 1. In this case, because of the causal character, we
have (ε2, ε3) = (1, 1). So, (5.6) yields

β(s) = cos s C + sin s D.
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Since 〈β, β〉 = 〈β′, β′〉 = 1, we get 〈C, C〉 = 〈D, D〉 = 1 and 〈C, D〉 = 0.

Suppose the given ruled surface M is space-like, that is, ε4 = 1, and
thus q = (t2 + 2ut + v) > 0.

If u2−v < 0, then the function q is positive for all possible t. Since u
is constant, (5.12) gives α′′ = −uβ. Thus, up to congruence, we obtain

α(s) = u cos s C + u sin s D + s E

for some constant vector E, where 〈C, E〉 = 〈D, E〉 = 0 and 〈E, E〉 =
v − u2. Therefore, up to congruence, M is parametrized as

(5.25) x(s, t) = ((t + u) cos s, (t + u) sin s, as)

for some a > 0, which is an ordinary helicoid in a three-dimensional
Euclidean space E3.

If u2 − v > 0, then t > u +
√

u2 − v or t < u − √
u2 − v. Then,

〈E, E〉 = v − u2 < 0, and thus up to congruence, M is given by

(5.26) x(s, t) = (as, (t + u) cos s, (t + u) sin s)

for some a > 0, which lies in a three-dimensional Minkowski space E3
1,

where t > u+
√

u2 − v or t < u−√
u2 − v. It is the helicoid of the first

kind as a space-like surface, see [11].

We now suppose M is time-like, that is, ε4 = −1. In this case, ε2 = 1
and we must have u − √

u2 − v < t < u +
√

u2 − v. By a similar
argument to the previous case, we have up to congruence

(5.27) x(s, t) = (as, (t + u) cos s, (t + u) sin s)

where u −√
u2 − v < t < u +

√
u2 − v for a positive number a, which

lies in a 3-dimensional Minkowski space E3
1 that is the helicoid of the

first kind as a time-like surface.

Suppose v−u2 = 0. If M is space-like, ε4 = 1 and t �= −u. Up to con-
gruences, the straightforward computation gives the parametrization of
M by

(5.28) x(s, t) = (as, as, (t + u) cos s, (t + u) sin s)
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where u2 = a2, which lies in E4
1. This ruled surface is the helicoid of

the fourth kind described in Section 3. If M is time-like, then ε4 = −1
and q = −(t2 + 2ut + v) > 0 that is impossible.

Case II. ε2ε3 = −1. Suppose (ε2, ε3) = (1,−1). (5.6) implies

(5.29) β(s) = cosh s C + sinh s D

for some constant vector C and D. Since 〈β, β〉 = 1 and 〈β′, β′〉 = −1,
we have 〈C, C〉 = 1, 〈D, D〉 = 1 and 〈C, D〉 = 0. Then, (5.12) together
with u′ = 0 and (5.29) gives the base curve α such that

α(s) = −u cosh s C − u sinh s D + s E

up to congruence for some space-like constant vector E. Thus, accord-
ing to the sign of ε4, we have up to congruence

(5.30) x(s, t) = ((t − u) sinh s, (t − u) cosh s, as)

for u −√
u2 + a2 < t < u +

√
u2 + a2 with a2 = v + u2, which defines

M as a space-like ruled surface, or

(5.31) x(s, t) = ((t − u) sinh s, (t − u) cosh s, as)

for t > u−√
u2 + a2 or t < u−√

u2 + a2 with a2 = v+u2 as a time-like
surface. The ruled surfaces with parametrization (5.30) and (5.31) are
the helicoid of the second kind, see [11].

Next, consider (ε2, ε3) = (−1, 1). Then, (5.6) and (5.12) imply β′′ = β
and α′′ = uβ. We can easily solve these equations. By considering the
causal character, we see that M is time-like and ε4 = 1 of type M3

+

with the parametrization

(5.32) x(s, t) = ((t + u) cosh s, (t + u) sinh s, as)

up to congruence for all real t and v − u2 = a2, which lies in E3
1. It is

the helicoid of the third kind described in [11].

Now, we consider the case that the ruled surface M in Em
1 is

noncylindrical of type M2
+ or M2

−. By Lemma 5.4, the function u
is constant on M .
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Suppose that u = 0. By the causal character, the ruled surface M
under consideration is of type M2

+. From the second equation of (5.20),
we get 〈β′′, β′′〉 = 0. If β′′ is light-like, β′′ is parallel with β′. From the
causal character of β′, we may assume that every component of β′ is
nonzero. Thus, by a direct computation, we obtain β(s) = P (s)N
for some nonzero function P (s) and a constant light-like vector N,
which contradicts the fact that β is a space-like unit vector. Hence,
the vector field β′′ must be zero. In turn, the director curve β is given
by β(s) = s N + M for some constant light-like vector N and a space-
like unit vector M such that 〈N, M〉 = 0. We also obtain 〈α′′, α′′〉 = 0
from the second equation of (5.24). Together with the third equation of
(5.24), we have α′′′ = 0. So, α′′ is a constant vector F. If F is the zero
vector, then α′ is a constant vector G orthogonal to N and M. Thus,
up to congruence, M is parametrized as

(5.33) x(s, t) = (ts, ts, s, t)

which lies in E4
1, which is an Euclidean plane. If F is light-like, then

up to congruence, α(s) = (s2/2) F+ s G for some space-like unit vector
〈F, G〉 = 0. Since 〈α′, β〉 = 0 and 〈α′, β′〉 = 0, 〈M, F〉 = 〈N, F〉 =
〈G, N〉 = 〈G, M〉 = 0. Since F and N are both light-like, they are
collinear. Thus, up to congruence, M can be parametrized as

(5.34) x(s, t) =
(
(s2/2) + ts, (s2/2) + ts, t, s

)
which lies in E4

1. It is the quadric ruled surface of the second kind given
in Section 3.

Next, consider the case of u �= 0. From (5.24), we get 〈α′′, α′′〉 = u2

and α′′′ = −〈α′′, β′〉β−uβ′. Taking into account of the second equation
of (5.20) and the causal character of β′, we get β′′ ≡ 0. Therefore, β′

is a constant light-like vector C1 and thus we have

(5.35) β(s) = s C1 + sD1

where D1 is a unit space-like constant vector orthogonal to C1. Since
〈α′, β′〉 = u, α′′′ = −u C1. By solving this differential equation, we
obtain

(5.36) α(s) = −u(s3/6) C1 + (s2/2) D2 + s E1
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where 〈C1, D2〉 = 0, 〈D2, D2〉 = u2, 〈C1, E1〉 = u, 〈D2, E1〉 = 0 and
〈E1, E1〉 = ε1. Also, 〈α′, β〉 = 0 yields 〈D1, E1〉 = 0 and 〈D1, D2〉 = −u.
So, the vector D1 and D2 are collinear. Hence, if α is space-like, that
is, ε1 = 1, then up to congruence, the ruled surface M is given by

(5.37) x(s, t) =
(
− s3

6
+ ts,

s2

2
− t, −s3

6
+ s + ts

)

which is of type M2
+ and lies in E3

1. In case α is time-like, that is,
ε1 = −1, M is parametrized up to congruence by

(5.38) x(s, t) =
(
− s3

6
+ s + ts,

s2

2
− t, −s3

6
+ ts

)

which is of type M2
− and lies in E3

1. The ruled surfaces represented by
(5.37) and (5.38) are the so-called conjugate Enneper’s surface of the
second kind, see [11].

The converse is straightforward. Consequently, the proof is com-
pleted.

We now prove

Theorem 5.6. Let M be a null scroll with pointwise 1-type Gauss
map in an m-dimensional Minkowski space Em

1 . Then, M is an open
part of a Minkowski plane or an extended B-scroll.

Proof. Let α = α(s) be a light-like curve in Em
1 and β = β(s) be a

light-like vector field along α. Then, the null scroll M is parametrized
by

x = x(s, t) = α(s) + tβ(s)

such that 〈α′, α′〉 = 0, 〈β, β〉 = 0 and 〈α′, β〉 = −1. We have the
natural frame {xs, xt} given by

(5.39) xs = α′ + tβ′, xt = β(s).

Furthermore, we may choose an appropriate parameter s in such a way
that u = 〈α′(s), β′(s)〉 = 0, which is possible if the base curve α is
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chosen as a geodesic of M . Again, we define smooth functions q and v
as follows:

(5.40) q = ||xs||2 = 〈xs, xs〉, v = 〈β′, β′〉.

Similarly as before, the Laplacian Δ of M can be given as follows:

(5.41) Δ = −2
∂2

∂s∂t
+

∂q

∂t

∂

∂t
+ q

∂2

∂t2
.

Since 〈xs ∧ xt, xs ∧ xt〉 = −1, the Gauss map G of M is determined by

(5.42) G = (xs ∧ xt) = (α′ + tβ′) ∧ β = α′ ∧ β + tβ′ ∧ β.

Using (5.41) and (5.42), we can compute

(5.43) ΔG = −2(β′′ − vtβ′) ∧ β.

Since the Gauss map G is of pointwise 1-type,

(5.44) {f(α′ + tβ′) + 2(β′′ − vtβ′)} ∧ β = 0,

which implies
(f − 2v)β′ ∧ β = 0.

Consider an open subset O = {p ∈ M | f(p) �= 2v(p)}. Suppose
that O is not empty. Thus, β′ ∧ β = 0 on O. Since 〈α′, β′〉 = 0
and 〈α′, β〉 = −1, β′ = 0 on O. Thus, β is a constant vector and
ΔG = 0 on O. Then, (5.44) implies f(α′ ∧ β) = 0. Since f �= 0 on
O, we have α′ ∧ β = 0 that contradicts the fact G = α′ ∧ β in this
case. Consequently, the open subset O is empty. Hence, the function
f depends only on s such that

f = 2v.

Together with (5.44), we get

(fα′ + 2β′′) ∧ β = 0,

which implies the function v is constant on M by considering our
setting for α and β. In the sequel, f = 2v is constant, that is the
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Gauss map is of ordinary 1-type. According to classification theorem
of ruled surfaces in Minkowski space with 1-type Gauss map, we have
the theorem.

Remark. The extended B-scroll includes the Minkowski planes as one
of flat extended B-scrolls, see [8].
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