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CONSTRUCTING COMPLETE PROJECTIVELY
FLAT CONNECTIONS

RALPH HOWARD

ABSTRACT. On any open subset U of the Euclidean space
Rn there is complete torsion-free connection whose geodesics
are reparameterizations of the intersections of the straight
lines of Rn with U . For any positive integer m, there is a
complete projectively flat torsion free connection on the two-
dimensional torus such that for any point p there is another
point q so that any broken geodesic from p to q has at least
m breaks. This example is also homogeneous with respect to
a transitive Lie group action.

1. Introduction. The purpose of this note is to tie up a couple
of loose ends in the classical theory of linear connections. First, in
[6, p. 395], Spivak raises the question of if, on a compact manifold
with complete connection, any two points can be joined by a geodesic.
The answer is “no” even when the connection is projectively flat and
homogeneous:

Theorem 1. Let T 2 be the two-dimensional torus. Then, for any
positive integer m, there is a complete torsion free projectively flat
connection, ∇, on T 2 such that for any point p ∈ T 2 there is a point
q ∈ T 2 with the property that any broken ∇-geodesic between p and
q has at least m breaks. Moreover if T 2 is viewed as a Lie group in
the usual manner, this connection is invariant under translations by
elements of T 2.

Another natural question is: For a connected open subset, U , of
the Euclidean space, Rn, is the usual flat connection restricted to U
projectively equivalent to complete torsion free connection on U? This
is true and is a special case of a more general result about connections
on incomplete Riemannian manifolds.
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Theorem 2. Let (M, g) be a not necessarily complete Riemannian
manifold. Then there is a complete torsion free connection on M that
is projective with the metric connection on M . In particular, any con-
nected open subset M of the Euclidean space, Rn, has a complete tor-
sion free connection ∇ such that the geodesics of ∇ are reparameteri-
zations of straight line segments of M ⊆ Rn.

The main tool is Proposition 2.2, which gives an elementary method
of constructing complete torsion free connections that are projective
with a given torsion free connection.

1.1. Definitions, notation and preliminaries. All of our
manifolds are smooth, i.e., C∞, Hausdorff, paracompact and connected.
The tangent bundle of M is denoted by T (M). If f :M → N is a smooth
map between manifolds, then the derivative map is f∗x:T (M)x →
T (M)f(x).

We will use the term connection to stand for a linear connection on
the tangent bundle, also called a Koszul connection, as defined in [4,
Proposition 2.8, p. 123 and Proposition 7.5, p. 143] or [6, p. 241]. Let
c:(a, b) → M be a smooth immersed curve. Then c is a is a ∇-geodesic
if and only if ∇c′(t)c

′(t) = 0. The curve is a ∇-pregeodesic if and only if
there is a reparameterization of c that is a geodesic. This is equivalent
to ∇c′(t)c

′(t) = α(t)c′(t) for some smooth function α:(a, b) → R. Given
a pregeodesic c:(a, b) → M , then an affine parameterization of c is a
reparameterization σ:(a1, b1) → (a, b) so that c ◦ σ is a geodesic.

If f :M → N is a local diffeomorphism and ∇ is a connection on N ,
then the pull back connection is the connection f∗∇ defined on M by
f∗

(
(f∗∇)XY

)
= ∇f∗Xf∗Y . The connection ∇ on M is homogeneous

on M if and only if there is a transitive action on M by a Lie group,
G, so that φ∗∇ = ∇ for all φ ∈ G.

Two connections ∇ and ∇ on M are projective if and only if all
geodesics of ∇ are pregeodesics of ∇. This is an equivalence relation
on the set of connections on M . If ∇i is a connection on Mi for i = 1, 2,
then a map f :M1 → M2 is a projective map if and only if it is a local
diffeomorphism and maps ∇1-geodesics to ∇2-pregeodesics. This is
equivalent to the connections ∇1 and f∗∇2 on M1 being projective.
The connection ∇ is projectively flat if and only if every point p ∈ M
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has an open neighborhood U and projective map f :U → Rn where Rn

has its standard flat connection. Or, what is the same thing, for every
geodesic c of M the image f ◦ c is a reparameterization of an interval
in a line of Rn. There is a well-known criterion, due to Hermann
Weyl, for two connections to be projective. A proof can be found in [6,
Corollary 19, p. 277].

1.1. Proposition (H. Weyl). Two connections ∇ and ∇ on a
manifold are projective and have the same torsion tensor if and only if
there is a smooth one form ω so that the connections are related by

(1.1) ∇XY = ∇XY + ω(X)Y + ω(Y )X.

Therefore, if this relation holds and ∇ is torsion free, then so is ∇.

Only the easy direction of this result will be used. That is, if ∇ is
torsion free and ∇ is given by (1.1), then ∇ is torsion free and projective
with ∇. Note in this case if c:(a, b) → M is a ∇-geodesic, then (1.1)
implies ∇c′(t)c

′(t) = 2ω(c′(t))c′(t), and therefore c is a ∇-pregeodesic.
That ∇ is torsion free is equally as elementary.

The connection ∇ is complete if and only if every ∇-geodesic defined
on a subinterval of R extends to a ∇-geodesic defined on all of R.
Letting exp∇ be the exponential of ∇, cf. [4, p. 140], then ∇ is easily
seen to be complete if and only if the domain of exp∇ is all of T (M).
A curve c:[0, b) → M is an inextendible ∇-geodesic ray if and only if c
is a ∇-geodesic and has no extension to [0, b + ε) as a ∇-geodesic for
any ε > 0. Therefore when b = ∞, so that [0,∞) is the domain of c, c
is always inextendible.

1.2. Proposition. Let ∇ be a torsion free connection on the
manifold M , and let ∇ be torsion free and projective with ∇. Then ∇ is
complete if and only if every inextendible ∇-geodesic ray c:[0, b) → M
has an orientation preserving reparameterization σ:[0,∞) → [0, b) such
that c ◦ σ is a ∇-geodesic.
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Proof. First assume that the reparameterization condition holds,
and we will show that ∇ is complete by showing the domain of the
exponential map of ∇ is all of T (M). Let v ∈ T (M). As 0 is in the
domain of exp∇, assume v �= 0. Let c:[0, b) → M be the inextendible
∇-geodesic ray with c′(0) = v. By assumption, there is an orientation
preserving reparameterization σ:[0,∞) → [0, b) such that c̃ := c ◦ σ
is a ∇-geodesic. As the reparameterization is orientation preserving
c̃′(0) = λc′(0) = v for some positive constant λ. Then ĉ:[0,∞) → M
given by ĉ(t) := c̃(t/λ) is also a ∇-geodesic and ĉ′(0) = v. From the
definition of exp∇ we have for all t ≥ 0 that tv is in the domain of exp∇

and exp∇(tv) = ĉ(t). In particular, letting t = 1 shows that v is in the
domain of exp∇ and completes the proof that ∇ is complete.

Conversely, assume ∇ is complete and let c:[0, b) → M be an
inextendible ∇-geodesic ray. Assume, toward a contradiction, there
is an orientation preserving reparameterization σ:[0, b1) → [0, b) with
b1 < ∞ and so that c̃ = c◦σ is a ∇ geodesic. Then, as ∇ is complete, the
curve c̃ extends to a ∇-geodesic ĉ:[0,∞) → M and therefore is a proper
extension of c̃. But then ĉ can be reparameterized as a ∇-geodesic that
extends c, contradicting that c was an inextendible ∇-geodesic ray and
completing the proof.

2. Constructing complete projectively equivalent connec-
tions on incomplete Riemannian manifolds. We first observe
that, for some choices of the one form ω in Weyl’s result 1.1, there is
an explicit formula for reparameterizing a ∇-geodesic as a ∇-geodesic.

2.1. Lemma. Let ∇ be a smooth manifold, let ∇ be a connection
on M and let v:M → (0,∞) be a smooth positive function. Define a
new connection by

(2.1) ∇XY = ∇XY +
1
2v

dv(X)Y +
1
2v

dv(Y )X.

Let c:(a, b) → M be a ∇-geodesic and σ:(α, β) → (a, b) be an orientation
preserving reparameterization of c so that c̃ = c ◦ σ is a ∇-geodesic.
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Then the inverse of σ, σ−1:(a, b) → (α, β), is given by

(2.2) σ−1(t) = C0 + C1

∫ t

t0

v(c(τ )) dτ

where t0 ∈ (a, b), C0, C1 ∈ R and C1 > 0.

Proof. Let t be the natural coordinate on (a, b) and s the coordinate
on (α, β) related to t by t = σ(s). Our goal is to find s = s(t) = σ−1(t).
Note dt = σ′(s) ds so that σ′(s) = dt/ds. Therefore,

c̃′(s) = (c ◦ σ)′(s) = σ′(s)c′(σ(s)) =
dt

ds

dc

dt

∣∣∣∣
t=σ(s)

.

Because of this, and because it makes applications of the chain rule
easier to follow, we will denote c̃′(s) as dc/ds and think of s as “the
affine parameter for ∇ along c”. We will abuse notation a bit and write
v(t) = v(c(t)). As ∇dc/dtdc/dt = ∇c′(t)c

′(t) = 0, we have using (2.1)
that ∇dc/dsdc/dt = dt/ds∇dc/dtdc/dt = 0, and dv(dc/ds) = dv/ds

0 = ∇dc/ds
dc

ds
= ∇dc/ds

dc

ds
+

1
v

(
dv

ds

)
dc

ds
= ∇dc/ds

(
dt

ds

dc

dt

)
+

d(ln v)
ds

dc

ds

=
d2t

ds2

dc

dt
+

dt

ds
∇dc/ds

dc

dt
+

d(ln v)
ds

dc

ds
=

d2t

ds2

dc

dt
+

d(ln v)
ds

dt

ds

dc

dt

=
(

dt

ds

)((
dt

ds

)−1
d2t

ds2
+

d(ln v)
ds

)
dc

dt
=

(
dt

ds

)(
d

ds
ln

(
v

dt

ds

))
dc

dt
.

This shows that ln(v(dt/ds)), and therefore also v(dt/ds) is constant.
As v, (dt/ds) > 0 (the reparameterization is orientation preserving
implies dt/ds = σ′(s) > 0), there is a constant C1 > 0 such that

v(t)
dt

ds
=

1
C1

.

This differential equation can be integrated to give s(t) = σ−1(t) as a
function of t, and the result is the required formula (2.2).

2.2. Proposition. Let M be a smooth manifold with smooth torsion
free connection ∇, and let v:M → (0,∞) be a smooth positive function.
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Then the connection ∇ defined by (2.1) is a torsion free connection
projective with ∇, and ∇ is complete if and only if for each inextendible
∇-geodesic ray c : [0, b) → M the growth condition

(2.3)
∫ b

0

v(c(t)) dt = ∞.

holds.

Proof. That ∇ is projective to ∇ and torsion free follows from
Proposition 1.1 using ω = (2v)−1dv. So all that is left to check is that
∇ is complete if and only if (2.3) holds along inextendible ∇-geodesic
rays.

First assume that the growth condition (2.3) holds along inextendible
∇-geodesic rays. Let c:[0, b) → M be such a ray, and let σ:[0, β) → [0, b)
be an orientation preserving reparameterization of c so that c̃ = c ◦ σ
is a ∇-geodesic. We claim that β = ∞. By Lemma 2.1 σ−1(t) is given
by

(2.4) σ−1(t) = C1

∫ t

0

v(c(τ )) dτ

with C1 > 0. But then the growth condition (2.3) implies β =
C1

∫ b

0
v(c(τ )) dτ = ∞. As c was any inextendible ∇-geodesic ray, the

completeness of ∇ follows from Proposition 1.2.

Conversely, assume ∇ is complete and let c:[0, b) → M be an
inextendible ∇-geodesic ray. Then, by Proposition 1.2, there is an
orientation preserving reparameterization σ:[0,∞) → [0, b) so that
c̃ = c ◦ σ is a ∇-geodesic. Again, Lemma 2.1 implies that σ−1 is
given by (2.4). Therefore, C1

∫ b

0
v(c(τ )) dτ = limt↑b σ−1(t) = ∞, which

shows that the condition (2.3) holds along all inextendible ∇-geodesic
rays.

For a general connection, ∇, it is not clear how to choose a positive
smooth function v so that the growth condition (2.3) holds along
all inextendible ∇-geodesics rays. However, when ∇ is the metric
connection of a Riemannian metric, the behavior of geodesics is closely
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related to the properties of the distance function of the metric and this
can be exploited to find an appropriate v.

Proof of Theorem 2. If (M, g) is complete as a metric space, then
the metric connection ∇ is complete, cf. [7, p. 462], and taking ∇ = ∇
completes the proof. Therefore, assume that M is incomplete. Let M
be the completion of M as a metric space, and let ∂M = M \ M be
the boundary of M in M . For x ∈ M , let δ(x) be the distance of x
from ∂M . A standard partition of unity argument shows that there is
a smooth function v on M so that

v(x) ≥ max{1, 1/δ(x)}

for all x ∈ M . Let c:[0, b) → M be an inextendible ∇-geodesic ray.
There are two cases: b = ∞ and b < ∞. In the case b = ∞, then from
the definition of v we have v(c(t)) ≥ 1 and so

∫ b

0
v(c(t)) dt ≥ ∫ ∞

0
1 dt =

∞ and the condition (2.3) holds in this case.

In the second case, where b < ∞, the length of the velocity vector
c′(t) is constant, and thus there is a constant C > 0 so that, for all
t1, t2 ∈ [0, b), the distance d(c(t1), c(t2)) between c(t1) and c(t2) satisfies

d(c(t1), c(t2)) ≤ C|t2 − t1|.

Therefore, in the completion M , the limit p = limt↑b c(t) will exist and,
from the definition of δ as the distance from the boundary ∂M , the
estimate δ(c(t)) ≤ d(c(t), p) ≤ C|b − t| holds. This yields

∫ b

0

v(c(t)) dt ≥
∫ b

0

dt

δ(c(t))
≥

∫ b

0

dt

C|b − t| = ∞.

Thus, (2.3) holds in all cases, and therefore ∇ is complete by Proposi-
tion 2.2.

Remark 2.3. In a complete Riemannian manifold, any two points
can be joined by a geodesic. For complete connections this is no
longer true and Hicks [3] has constructed an example of a complete
connection on a manifold, M , so that for any positive integer m
there are two points of M that not only cannot be connected by a
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FIGURE 1. Let U ⊂ R2 be the compliment of the pictured rays. Then there
is a complete torsion free connection on U whose geodesics are the restriction
of the line segments of R2 to U .

geodesic, but any broken geodesic between the points must have at
least m breaks. For open sets U in R2 the behavior of geodesics
is easy to visualize and, using Theorem 2, it is trivial to generate
such examples that are also projectively flat. For example, set K :=
∪∞

k=−∞{2k} × [−1,∞) ∪ ∪∞
k=−∞{2k + 1} × (−∞, 1], which is a union

of rays parallel to the y-axis, and let U = R2 \ K, see Figure 1. Use
Theorem 1 to put a complete projectively flat connection on U that
has line segments as its geodesics and polygonal paths as its broken
geodesics. With this connection, U has the property that any broken
geodesic between the points (1/2, 0) and (m+1/2, 0) must have at least
m + 1 corners.

3. Homogeneous examples. Before specializing to two dimensions
for the proof of Theorem 1, we do the preliminary calculations in
arbitrary dimensions. This leads to higher dimensional examples.

Let ∇ be the standard flat connection on Rn, and let U := Rn \ {0}
be Rn with the origin deleted. Then any nonsingular linear map
A:Rn → Rn preserves the connection ∇, and therefore the general
linear group GL(n,R) has a transitive action on U that preserves ∇.
Let O(n) be the orthogonal group of the standard inner product, 〈 , 〉,
on Rn, and let R+ be the multiplicative group of positive real numbers.
Let G be the product group G = O(n)×R+. View G as a subgroup of
GL(n,R) by letting it act on Rn by (P, c)x = cPx. This action of G
is transitive on U and preserves the connection ∇. Let v:U → (0,∞)
be the function v(x) = 1/‖x‖. Then, if g = (P, c) ∈ G, the pull back
of v by g is (g∗v)(x) = v(gx) = ‖cPx‖−1 = c−1‖x‖−1 = c−1v(x) as
P ∈ O(n) so that ‖Px‖ = ‖x‖. The pull back of the one form dv/v is

g∗
(

dv

v

)
=

g∗dv

g∗v
=

d(g∗v)
g∗v

=
d(c−1v)
c−1v

=
dv

v
,
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and so dv/v is invariant under the action of G. Therefore, if we define
a connection ∇ on U by

(3.1)

∇XY = ∇XY + ∇XY +
1
2v

(
dv(X)Y + dv(Y )X

)
with v(x) =

1
‖x‖ ,

then ∇ will be invariant under the action of the group G. The
inextendible ∇-geodesic rays in U are the curves c:[0, b) → U given by
c(t) = x0+tx1 where x1 �= 0 and either b = ∞ or c(b) := limt↑b c(t) = 0.
In either case it is easy to check that

∫ b

0
v(c(t)) dt = ∞, and therefore

by Proposition 2.2 the connection ∇ is complete and projectively flat
on U .

To get compact examples let λ > 1 and let Γ be the cyclic subgroup
of G given by Γ := {(I, λk) : k ∈ Z} where Z is the integers. The
action of Γ on U is fixed point free and properly discontinuous, and
therefore if M is defined to be the quotient space M := Γ\U , then M
is a smooth manifold, cf. [1, Theorem 8.3, p. 97], and it is not hard
to see that M is diffeomorphic to Sn−1 × S1. Let π:U → M be the
natural projection. Then π is a covering map and Γ is the group of
deck transformations. As the connection ∇ is invariant under these
transformations, it follows there is a unique connection ∇M on M so
that π∗∇M = ∇. The ∇M -geodesics on M are π ◦ c where c is a ∇-
geodesic on U . As the ∇-geodesics in U are complete, it follows that
the ∇M geodesics in M are complete. Also this implies that π is a
projective map, and therefore ∇M is projectively flat on M .

For any g = (P, c) ∈ G and a = (I, λk) ∈ Γ we have ag = ga. As
for x ∈ U the image π(x) is the orbit π(x) = Γx we see for g ∈ Γ that
π(gx) = Γgx = gΓx = gπ(x). Therefore, there is a well-defined action
of G on M given by gπ(x) = π(gx). This action is transitive on M as
G is transitive on U .

We now claim that, if x ∈ U and y = −αx for α > 0, then there is
no geodesic from π(x) to π(y) in M . Assume, toward a contradiction,
that there is a geodesic c:[a, b] → M with c(a) = π(x) and c(b) = π(y).
Then there is a unique geodesic ĉ:[a, b] → U with ĉ(a) = x and π◦ ĉ = c.
Therefore, π(ĉ(b)) = c(b) = π(y) which implies that ĉ(b) = ay for some
a ∈ Γ. From the definition of Γ, this implies that, for some k ∈ Z,
ĉ(b) = λky = −λkαx. But as ∇ is projective with the flat metric ∇
the geodesics segments of ∇ are reparameterizations of straight line
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segments in U . But then ĉ is a reparameterization of a straight line
segment of U form ĉ(a) = x to ĉ(b) = −λkαx, which is impossible as
λkα > 0, so that any line segment connecting these points must pass
through the origin, which is not in U . This contradiction verifies our
claim that there is no geodesic of M from π(x) to π(y). Letting α vary
over the positive real numbers, we get uncountable many points π(y)
that cannot be connected to π(x) by a geodesic. As every point p ∈ M
is of the form p = π(x) this can be summarized as:

3.1. Proposition. Let M = Γ\U and ∇M be the manifold and
connection just constructed. Then M is diffeomorphic to Sn−1×S1 and
the connection ∇M on M is complete, projectively flat and homogeneous
with respect to the group action of G on M . For any p ∈ M there are
uncountable many points q that cannot be connected to p by a ∇M -
geodesic.

3.1. Proof of Theorem 1. In the case that n = 2 it is possible to be
more explicit. On U = R2\{0} there are several sets of coordinates that
will be convenient to use. First the standard Euclidean coordinates x
and y. With respect to these coordinates the standard flat connection
∇ is given by

∇∂/(∂x)
∂

∂x
= ∇∂/(∂x)

∂

∂y
= ∇∂/(∂y)

∂

∂x
= ∇∂/(∂y)

∂

∂y
= 0.

The simply connected covering space, Û , of U is diffeomorphic to R2.
Using polar coordinates r, θ on Û (with (r, θ) ∈ (0,∞) × R) we have
the usual formula for the covering map: x = r cos θ and y = r sin θ. In
polar coordinates the connection is given by

∇∂/(∂r)
∂

∂r
= 0, ∇∂/(∂r)

∂

∂θ
= ∇∂/(∂θ)

∂

∂r
=

1
r

∂

∂θ
,

∇∂/(∂θ)
∂

∂θ
= −r

∂

∂r
.

(More precisely this is the pull back of the connection ∇ to Û by the
covering map. We will still denote this connection by ∇.) The function
v = ‖(x, y)‖−1 used in the definition (3.1) of the connection ∇ is given
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in polar coordinates a v = r−1. Then dv = −r−2dr. Using this in (3.1)
gives

∇XY = ∇XY − 1
r

(dr(X)Y + dr(Y )X),

and therefore ∇ is given explicitly in polar coordinates as

∇∂/(∂r)
∂

∂r
=

−1
r

∂

∂r
, ∇∂/(∂r)

∂

∂θ
= ∇∂/(∂θ)

∂

∂r
=

1
2r

∂

∂θ
,

∇∂/(∂θ)
∂

∂θ
= −r

∂

∂r
.

The formulas for ∇ simplify even further if we replace the coordinate
r on Û by ρ related to r by r = eρ. The vector field ∂/∂ρ is related
to the vector field ∂/∂r by ∂/∂ρ = r(∂/∂r) and ∂/∂r = e−ρ(∂/∂ρ).
Therefore, in the coordinates ρ, θ the connection ∇ is given by

∇∂/(∂ρ)
∂

∂ρ
= 0, ∇∂/(∂ρ)

∂

∂θ
= ∇∂/(∂θ)

∂

∂ρ
=

1
2

∂

∂θ
,

∇∂/(∂θ)
∂

∂θ
= − ∂

∂ρ
.

This explicit form of the connection ∇ makes it clear that it is invariant
under translations ρ �→ ρ + a and θ �→ θ + b. From the construction ∇
is complete and projectively flat.

Using the coordinates ρ and θ and letting Z be the integers, then
the original open set U is naturally identified with the quotient group
R2/({0}×2πZ) (that is, identify (ρ, θ) with (ρ, θ+2kπ) for k ∈ Z). As
in the original set U , the ∇-geodesics are reparameterized line segments
and it is not hard to see that a point z ∈ U can be connected to a point
z0 on the positive real axis by a ∇-geodesic if and only if z is not on the
negative real axis. That is, z can be connected to z0 by a ∇-geodesic if
and only if |θ(z)| < π. (See Figure 2.) But, because of the homogeneity
of the connection with respect to translations θ �→ θ + b, this implies:

3.2. Lemma. Two points z1, z2 ∈ Û can be connected by a ∇-
geodesic if and only if |θ(z1) − θ(z2)| < π. Therefore, if z1, z2 satisfy
|θ(z1)− θ(z2)| ≥ mπ for some positive integer m, any piecewise broken
geodesic from z1 to z2 must have at least m breaks.
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FIGURE 2. As the connection ∇ is projective with the usual flat connection,
a point z in the set U = R2\{0} can be connected to a point z0 on the positive
real axis by a ∇-geodesic if and only if |θ(z)| < π.

Remark 3.3. There is a less geometric, but possibly more informative,
proof of this lemma. Using the coordinates ρ, θ on Û and the coordi-
nates x, y on U , the covering map from Û to U is given by x = eρ cos θ
and y = eρ sin θ. In U the ∇-geodesics are reparameterizations of
straight lines, and thus along a ∇-geodesic the coordinates x and y
are related by ax + by = 0 (if geodesic goes through the origin) or
ax+by = 1 (if it does not pass through the origin). The first case leads
to a relation between ρ and θ of the form eρ(a cos θ + b sin θ) = 0 along
the geodesic which implies θ = θ0 on the geodesic, for some constant
θ0. In the second case we get eρ(a cos θ+b sin θ) = 1 along the geodesic.
Let A =

√
a2 + b2 and let α be so that A cosα = a and A sin α = b.

Then the equation between ρ and θ becomes eρA cos(θ−α) = 1. From
this it follows that, given a point in Û with coordinates (ρ0, θ0), the
∇-geodesics of Û through this point are the line θ = θ0 and the curves
defined for |θ − α| < π/2 by the equation

(3.2) eρ cos(θ − α) = eρ0 cos(θ0 − α)

where α varies over real numbers with |α − θ0| < π/2. This makes
it clear that a point (ρ1, θ1) with |θ1 − θ0| ≥ π cannot be on a
geodesic through (ρ0, θ0). And, conversely, if |θ1 − θ0| < π, then
either θ1 = θ0, and the points are both on the geodesic θ = θ0,
or θ1 �= θ0 and straightforward calculus argument shows that there
is a unique α ∈ (θ0 − π/2, θ0 + π/2) ∩ (θ1 − π/2, θ1 + π/2) so that
eρ1 cos(θ1 − α) = eρ1 cos(θ0 − α). For this choice of α, both of the
points (ρ0, θ0) and (ρ1, θ1) will be on the ∇-geodesic defined by (3.2).

We now complete the proof of Theorem 1. Given the positive
integer m, let k be an integer with k ≥ m. Let T 2 be the torus

T 2 = Û/(Z× 2πkZ)
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(that is, identify (ρ, θ) with (ρ + j, θ + 2πkl) for j, l ∈ Z). As the
connection ∇ is translation invariant it well defined as a connection on
T 2 and will be invariant under translations of T 2 when T 2 is viewed as
a Lie group. We have already seen that ∇ is complete and projectively
flat. Let �:Û → T 2 be the covering map. We now claim that any
broken ∇-geodesic in T 2 from �(ρ0, θ0) to �(ρ0, θ0 + mπ) must have
at least m breaks. For, let c:[a, b] → T 2 be such a broken geodesic. By
the Path Lifting theorem, [2, p. 22] or [5, p. 67], there is a unique curve
ĉ:[a, b] → M with ĉ(a) = (ρ0, θ0) and � ◦ ĉ = c. This curve will also be
a broken geodesic. Also �(ĉ(b)) = c(b) = �(ρ0, θ0+mπ), and therefore
ĉ(b) = (ρ0 + j, θ0 + mπ + 2πkl) for some j, l ∈ Z. The difference in the
θ coordinates of the ends of ĉ is

|θ0 + mπ + 2πkl − θ0| = |m + 2kl|π ≥ mπ

as k ≥ m. By Lemma 3.2 this implies that ĉ has at least m breaks.
But then c = � ◦ ĉ also has at least m breaks. As �(ρ0, θ0) was an
arbitrary point of T 2 this completes the proof of Theorem 1.

Remark 3.4. The connection ∇ has another property worth noting.
If c(t) = (ρ(t), θ(t)) is a smooth curve in Û , then the equations for c to
be a ∇-geodesic are

ρ̈ = θ̇2, θ̈ = −ρ̇θ̇.

These imply

1
2

d

dt
(ρ̇2 + θ̇2) = ρ̇ρ̈ + θ̇θ̈ = ρ̇θ̇2 − θ̇ρ̇θ̇ = 0.

Therefore, ρ̇2 + θ̇2 is constant along ∇-geodesics. Thus all ∇-geodesics
have constant speed with respect to the flat Riemannian metric ds2 =
dρ2 + dθ2 on Û . As this metric is translation invariant, it is also well
defined on the torus T 2 = Û/(Z × 2πkZ), and the ∇-geodesics on T 2

will also have constant speed with respect to this metric. This can be
used to give another proof that ∇ is complete.
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