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THE ARC LENGTH OF THE LEMNISCATE |wn+c| = 1

CHUNJIE WANG AND LIZHONG PENG

ABSTRACT. Let sn(c) be the arc length of the lemniscate
|wn + c| = 1, c ∈ [0,∞). We obtain some properties of the
function sn(c). In particular, we prove that sn(c) ≤ sn(1),
c ∈ [0,∞). We also give the sharp bound for sn(1)−2n, that
is,

4 log 2 < sn(1) − 2n ≤ 2(π − 1).

1. Introduction. For a polynomial p of degree n, {z ∈ C
∣∣ |p(z)| =

C} is a curve in the plane known as a lemniscate, where C is a
nonnegative constant. Lemniscates have a lot of interesting properties
and applications, see, e.g., [7]. In 1958 Erdös, Herzog and Piranian
proposed the following.

Conjecture A [3]. Suppose p(z) is a monic polynomial of degree n,
that is,

p(z) =
n∏

k=1

(z − αk),

where αk ∈ C, k = 1, 2, . . . , n. Write

En(p) =
{
z ∈ C

∣∣ |p(z)| = 1
}
.

Then the length |En(p)| is maximal when p(z) = zn + 1, which is of
length 2n + O(1).

This problem has been reposed by Erdös several times, see also [2].
Pommerenke obtained many important results on this problem, [9 12],
and gave the first upper estimate [12] for the length of En(p), namely
|En(p)| ≤ 74n2. In 1995 Borwein [1] proved that |En(p)| ≤ 8π en
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(≤ 69n). In 1999 Eremenko and Hayman [4] improved Borwein’s result:
|En(p)| ≤ α0n, where α0 < 9.173. By the way, Conjecture A was proved
in [13] in the case n = 2.

For any c ∈ C, the lemniscate |wn + c| = 1 has a parametric
representation wn + c = eiθ. Since the lemniscate |wn + c| = 1 is
n-fold symmetric, that is, invariant under the rotation w → e(2πi)/nw.
Let sn(c) be the arc length of the lemniscate |wn+ c| = 1. Then we
have sn(c) = sn(|c|).

In the sequel we consider the lemniscate |wn+ c| = 1, where c ≥ 0
and n ≥ 2. Note that

dw =
1
n

(eiθ − c)(1/n)−1 ieiθ dθ;

we obtain

sn(c) = n

∫
|wn+c|=1

|dw|

=
∫ 2π

0

∣∣eiθ − c
∣∣(1/n)−1

dθ

=
∫ 2π

0

(
1 + c2 − 2c cos θ

)[1/(2n)]−1/2
dθ.

2. Some properties of the function sn(c). In this section we
discuss some properties of the function sn(c). In particular, we prove
that Conjecture A holds for the family of lemniscates |wn+ c| = 1.

In the following we consider the function

(1) sn(c) =
∫ 2π

0

Δα dθ, c ≥ 0,

where α ∈ (−1/2,−1/4] is a fixed real number, and

Δ = 1 + c2 − 2c cos θ = (c − cos θ)2 + sin2 θ.

It is easy to see that

(2) cos θ − c =
1 − c2 − Δ

2c
.
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Lemma 1. When 0 < c < 1 we have∫ 2π

0

Δ−1 dθ =
2π

1 − c2
,

∫ 2π

0

Δ−2 dθ =
2π(1 + c2)
(1 − c2)3

.

Using the residue theorem, we can easily obtain Lemma 1, see also
[8, p. 195] for a variant version.

Lemma 2. For α − 1 < β < α < 0, we have

(
1
2π

∫ 2π

0

Δβ dθ

)1/−β ∫ 2π

0

Δα dθ ≤
∫ 2π

0

Δα−1 dθ.

Proof. Applying Hölder’s inequality, we obtain

1
2π

∫ 2π

0

Δα dθ ≤
(

1
2π

∫ 2π

0

Δβ dθ

)−α/−β

,

and (
1
2π

∫ 2π

0

Δβ dθ

)(1−α)/−β

≤ 1
2π

∫ 2π

0

Δα−1 dθ.

Taking products on both sides yields the desired result.

Theorem 1. s′n(c) ≥ 0, 0 < c < 1; s′n(c) ≤ 0, c > 1.

Proof. Differentiating (1) under the integral sign, we have

(3) s′n(c) = −2α

∫ 2π

0

Δα−1(cos θ − c) dθ.

If 0 < c < 1, combining (3) with (2), we conclude that

1
−α

s′n(c) =
1 − c2

c

[∫ 2π

0

Δα−1 dθ − 1
1 − c2

∫ 2π

0

Δα dθ

]
.
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An application of Lemma 2 for β = −1 and Lemma 1 yields s′n(c) ≥ 0.

If c > 1 it follows easily from (3) that s′n(c) ≤ 0. This completes the
proof of Theorem 1.

Note that sn(c) is continuous on [0,∞). Theorem 1 implies that

sn(c) ≤ sn(1), c ∈ [0,∞).

Thus Conjecture A holds for the special family of lemniscates |wn+ c| =
1. In particular, when 0 ≤ c ≤ 1, we have

2π = sn(0) ≤ sn(c) ≤ sn(1).

Theorem 2. For any 0 < c < 1 or c > 1, we have s′′n(c) ≥ 0.

Proof. Differentiating (3) under the integral sign and integrating by
parts, we have

s′′n(c)
−2α

= −
∫ 2π

0

(α − 1)Δα−2 · 2 (c − cos θ)2 dθ −
∫ 2π

0

Δα−1 dθ

= −2
∫ 2π

0

(α − 1)Δα−1 dθ + 2
∫ 2π

0

(α − 1)Δα−2 sin2 θ dθ

−
∫ 2π

0

Δα−1 dθ

= (1 − 2α)
∫ 2π

0

Δα−1 dθ + c−1

∫ 2π

0

sin θd
(
Δα−1

)
= (1 − 2α)

∫ 2π

0

Δα−1 dθ − c−1

∫ 2π

0

Δα−1 cos θ dθ.

That is,

(4)
s′′n(c)
−2α

= c−1

∫ 2π

0

Δα−1(c − cos θ) dθ − 2α

∫ 2π

0

Δα−1dθ.

If 0 < c < 1, combining (4) with (2), we conclude that

s′′n(c)
−2α

=
1

2c2

[
(−4αc2)

∫ 2π

0

Δα−1 dθ +
∫ 2π

0

Δα dθ

− (1 − c2)
∫ 2π

0

Δα−1 dθ

]
.
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Invoking Jensen’s inequality, see, e.g., [5], we get

(∫ 2π

0
Δ1+αΔ−2dθ∫ 2π

0
Δ−2dθ

)1/(1+α)

≤
∫ 2π

0
Δ−1dθ∫ 2π

0
Δ−2dθ

.

It follows from a straightforward calculation and Lemma 1 that

(1 − c2)
∫ 2π

0

Δα−1 dθ ≤ 2π(1 + c2)−1−3α(1 − c4)1+2α(1 − c2)−1

< 2π(1 + c2)−1−3α(1 − c2)−1.

On the other hand, Lemma 2 and 2π = sn(0) ≤ sn(c) give

−4αc2

∫ 2π

0

Δα−1 dθ +
∫ 2π

0

Δα dθ ≥ −4αc2

1 − c2

∫ 2π

0

Δα dθ +
∫ 2π

0

Δα dθ

≥ 2π

1 − c2
(1 − c2− 4αc2).

To prove s′′n(c) ≥ 0 for 0 < c < 1, it suffices to show that

(5) 1 − c2− 4αc2 ≥ (1 + c2)−1−3α.

Note that, for a fixed r ∈ [0, 1), we have the following inequality

(1 + x)r ≤ 1 + rx, x > 0.

Using the above inequality for 0 < −1 − 3α < 1/2, we obtain that

(1 + c2)−1−3α ≤ 1 + (−1 − 3α) c2 ≤ 1 − c2− 4αc2.

If −1 − 3α ≤ 0, note that

1 − c2− 4αc2 ≥ 1, (1 + c2)−1−3α ≤ 1,

and (5) follows.

If c > 1 it follows easily from (4) that s′′n(c) ≥ 0. This completes the
proof of Theorem 2.
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Remark. Many problems in the analysis of Bergman spaces involve
estimating integral operators whose kernel is a power of the Bergman
kernel. For any real β, let

Jβ(z) =
∫ 2π

0

dθ

|1 − ze−iθ|1+β
, |z| < 1.

Then we have the following estimate for Jβ(z).

Proposition [6]. When |z| → 1− we have

Jβ(z) ∼

⎧⎪⎨
⎪⎩

1 β < 0,
log
[
1/
(
1 − |z|2)] β = 0,

[1/
(
1 − |z|2)β ] β > 0.

Note that sn(c) is precisely Jβ(z) when z = c ≥ 0 and −1/2 < α =
−[(1 + β)/2] ≤ −1/4.

3. Estimate of sn(1) − 2n. In this section we will give the sharp
bound for sn(1) − 2n, that is,

4 log 2 < sn(1) − 2n ≤ 2 (π − 1).

Write x = 1/n, where 0 < x ≤ 1. Then it follows easily from (1) that

sn(1) = 2
∫ π

0

(2 − 2 cos θ)(x/2)−(1/2)
dθ

= 2
∫ π

0

(
2 sin

θ

2

)x−1

dθ

= 4
∫ π/2

0

(2 sin θ)x−1 dθ.

Write

(6)
sn(1) − 2n

2
= 2

∫ π/2

0

(2 sin θ)x−1 dθ − 1
x

:= f(x).
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Differentiating under the integral sign, we have

(7) f ′(x) = 2
∫ π/2

0

(2 sin θ)x−1 log(2 sin θ) dθ +
1
x2

,

and

(8) f ′′(x) = 2
∫ π/2

0

(2 sin θ)x−1 log2 (2 sin θ) dθ − 2
x3

.

Lemma 3. For any fixed x ∈ (0, 1] and a > 1, let

λ(t) = tx−1 log2 t, 0 < t < 1;

η(s) = as
(
s2 log2 a − 2s log a + 2

)
, s > 0.

Then we have the following inequalities:

λ′(t) < 0, 0 < t < 1;

η′(s) > 0, s > 0.

Proof. It follows from a straightforward calculation that

λ′(t) = tx−2 log t [(x − 1) log t + 2] < 0,

and
η′(s) = s2as log3 a > 0.

This completes the proof.

Theorem 3. For any 0 < x < 1, we have f ′′(x) > 0.

Proof. Note that

2
π

θ < sin θ < θ, θ ∈
(
0,

π

2

)
.
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From the above inequality, Lemma 3 and (8), we have

f ′′(x) > 2
∫ π/6

0

(2 sin θ)x−1 log2 (2 sin θ) dθ − 2
x3

> 2
∫ π/6

0

(2θ)x−1 log2 (2θ) dθ − 2
x3

=
1
x3

[(π

3

)x (
x2 log2 π

3
− 2x log

π

3
+ 2
)
− 2
]

> 0.

This completes the proof of Theorem 3.

Theorem 4. For any 0 < x < 1, we have f ′(x) > 0.

Proof. From (7) and L’Hospital’s rule, we get

f ′(0)

= lim
x→0+

∫ π/2

0

[
2(2 sin θ)x−1 log(2 sin θ)+x(2 sin θ)x−1 log2(2 sin θ)

]
dθ.

Integrating by parts, we have

∫ [
2 (2 sin θ)x−1 log(2 sin θ) + x(2 sin θ)x−1 log2 (2 sin θ)

]
dθ

=
∫

2 (2 sin θ)x−1 log(2 sin θ) dθ +
∫

log2(2 sin θ)
2 cos θ

d [(2 sin θ)x]

=
log2(2 sin θ)

2 cos θ
(2 sin θ)x −

∫
log2(2 sin θ)
(2 cos θ)2

(2 sin θ)x+1 dθ

=
log2(2 sin θ)

2 cos θ
(2 sin θ)x − 1

4

∫
(2 sin θ)x+1 log2 (2 sin θ) d(tan θ)

=
1
2

cos θ(2 sin θ)x log2 (2 sin θ)

+
1
4

∫
(2 sin θ)x+1

[
(x + 1) log2 (2 sin θ) + 2 log(2 sin θ)

]
dθ.
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From the above we obtain

f ′(0) = lim
x→0+

[
1
4

∫ π/2

0

(2 sin θ)x+1[(x+1) log2(2 sin θ)+2 log(2 sin θ)] dθ

]

=
1
4

∫ π/2

0

(2 sin θ)
[
log2(2 sin θ) + 2 log(2 sin θ)

]
dθ

>
1
4

∫ π/2

0

2 (2 sin θ) log(2 sin θ) dθ

= 2 log 2 − 1 > 0.

Thus Theorem 3 implies the desired result.

Remark. From the proof of Theorem 4 we can obtain

f ′(0) = 2 log2 2 − π2

24
.

But we have not used this sharp value of f ′(0).

Theorem 5. For any positive integer n, we have

4 log 2 < sn(1) − 2n ≤ 2 (π − 1).

Proof. From (6) we can easily get f(1) = π − 1. Now we turn to the
calculation on

f(0) = lim
x→0+

f(x).

From (6) we obtain

f(x) = 2x

∫ π/2

0

(sin θ)x−1 dθ −
∫ π/2

0

(sin θ)x−1 cos θ dθ

= (2x− 1)
∫ π/2

0

(sin θ)x−1 dθ +
∫ π/2

0

(sin θ)x−1(1 − cos θ) dθ

:= I1(x) + I2(x).
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It is easy to see that

lim
x→0+

I2(x) =
∫ π/2

0

1 − cos θ

sin θ
dθ =

∫ π/2

0

tan
θ

2
dθ = log 2.

Let t = tan(θ/2). We have

I1(x) = (2x− 1)
∫ 1

0

(
2t

1 + t2

)x−1 2
1 + t2

dt

=
2x (2x− 1)

x

∫ 1

0

1
(1 + t2)x

d(tx)

=
2x (2x− 1)

x

[
1
2x

+ 2x

∫ 1

0

(
t

1 + t2

)x+1

dt

]
.

Taking limits on both sides, we obtain

lim
x→0+

I1(x) = log 2.

Thus we conclude that

f(0) = lim
x→0+

f(x) = 2 log 2.

Observe that 2 log 2 = f(0) < f(1) = π−1. It follows from Theorem 4
and (6) that

4 log 2 < sn(1) − 2n ≤ 2 (π − 1).

This completes the proof of Theorem 5.
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