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THE DIVERGENCE-FREE JACOBIAN
CONJECTURE IN DIMENSION TWO

J.W. NEUBERGER

ABSTRACT. A special case, called the divergence-free case,
of the Jacobian conjecture in dimension two is proved.

1. Introduction. This note outlines an argument for a special case
of the Jacobian conjecture in dimension two: Suppose F : C2 → C2 is
a polynomial so that

(1) F (0) = 0, F ′(0) = I, det(F ′(z)) = 1, z ∈ C2.

where I is the identity transformation on C2.

Write

F (x, y) =
(

r(x, y) + x

s(x, y) + y

)
, (x, y) ∈ C2

where r, s have no nonzero constant or linear terms and observe that

det F ′ = {r, s} + ∇ ·
(

r

s

)
+ 1

so that (1) gives

(2) {r, s} + ∇ ·
(

r

s

)
= 0

with

{r, s} = r1s2 − r2s1, ∇ ·
(

r

s

)
= r1 + s2,

the Poisson bracket and divergence respectively of the vector field (r, s),
subscripts in these instances indicating partial derivatives in first and
second arguments.
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The main purpose of this note is to prove the following

Theorem 1. Suppose in addition to the above that

(3) {r, s} = 0, ∇ ·
(

r

s

)
= 0.

Then F is bijective, i.e., the Jacobian conjecture holds in this case.

We hasten to point out that (3) does not follow (no matter what
this writer may have suspected for some time) automatically. The
following example communicated by Hyman Bass showed the author’s
expectation to be false.

Example 1. Suppose that each of a and b is a positive integer greater
than one and

F (x, y) =
(

(xa + y)b + x

xa + y

)
, (x, y) ∈ C2.

It is easy to check that (1) holds but that (3) does not. Nevertheless
the following indicates instances in which (3) holds.

Corollary 1. Suppose that all terms of F of degree higher than one
are even. Then (3) holds.

Corollary 2. Suppose that m > n are positive integers and (n−1)2 >
m− 1. If F is such that all of its terms of degree higher than one have
their degree in [n, m], then (3) holds.

In both cases there is no term in {s, r} which has a degree in common
with a term of ∇ · (

r
s

)
. Hence these two quantities that sum to zero

must each be zero. Therefore (2) implies (3) in these two cases.

References on the Jacobian conjecture are [1, 4, 5]. An argument for
Theorem 1 is based on the following.
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Theorem 2. In order for (3) to hold, it is necessary and sufficient
that there be a linear transformation L : C2 → C and a polynomial
Q : C → C2 so that

(4) F (z) = z + Q(Lz) and L(Q(Lz)) = 0, z ∈ C2.

Before a proof of Theorem 2, three lemmas are given which indicate
that if (4) holds then Theorem 1 follows.

Lemma 1. If (4) holds, M ⊂ C2 and F (M) is bounded, then M is
bounded, i.e., F is proper.

Proof [Lemma 1]. Suppose M is a subset of C2 and F (M) is bounded.
Since L(F (M)) is then bounded, (4) yields that L(M) is also bounded.
But then Q(L(M)) is bounded and so then is M .

Lemma 2. Under (4), suppose v, w ∈ C2. There is a unique
function u : [0,∞) → C2 such that

(5) u(0) = w, u′(t) = −(F ′(u(t)))−1(F (u(t)) − v), t ≥ 0.

Moreover,

(6) q = lim
t→∞ u(t) exists and F (q) = v.

Proof [Lemma 2]. Suppose that each of w, v ∈ C2 and the equation
in (5) holds with solution u for some maximal interval [0, c), c > 0.
Then

(F (u) − v)′ = −(F (u) − v) on [0, c)

and so

(7) F (u(t)) − v = e−t(F (w) − v), t ∈ [0, c).

Assume that c is finite. Then F (u([0, c))) is bounded and therefore,
using Lemma 1, u([0, c)) is also bounded. Consequently, due to
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(5), u′([0, c))) is bounded too. But this last conclusion gives that
p = limt→c− u(t) exists. Therefore u may be extended by continuity to
[0, c] and consequently the solution u can be further extended beyond
[0, c], contradicting the maximality of [0, c). Thus c = ∞. It follows
that there is a solution u to (5) exactly as stated there. Hence, using
(5), |u′| decreases to zero exponentially and so

q = lim
t→∞ u(t)

exists. That F (q) = v follows from (7).

For v ∈ C2, define Gv : C2 → C2 so that Gv(w) = limt→∞ u(t)
where u satisfies (5). Given v ∈ C2, one says that w is in the domain
of attraction of q relative to (5), i.e., (Gv)−1(q) is this domain of
attraction.

Lemma 3. Under (4), F has an inverse defined on all of C2.

Proof [Lemma 3]. Suppose that v ∈ C2. From Lemmas 1 and 2,
it follows that every member of C2 is in the domain of attraction of
some z so that of F (z) = v. Denote by Sv the preimage of v under
F . The collection Sv has no limit point since such a limit point would
be a place at which F ′ is singular. Hence, from general principles of
ordinary differential equations, a domain of attraction of an element
of Sv is an open set. Now C2 is not the union of mutually separated
open sets. Hence, the domain of attraction of an element of Sv is all
of C2 and in fact Sv contains just one point. Thus, there cannot be
two elements q, q̄ so that F (q) = F (q̄) since two such elements would
be distinct members of Sv.

Lemmas 1, 2 and 3 imply that under (3) F is a bijection and hence
Theorem 1 follows from Theorem 2 since these lemmas follow from
Theorem 2. See also [4] in connection with this lemma. It remains to
prove Theorem 2.
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Proof [Theorem 2]. Under the hypotheses of Theorem 2, {r, s} = 0.
Now if r, s are both zero, the conclusion surely holds. Accordingly,
suppose that one of r and s is not zero, say r. Note that r is not
constant. Denote by (α, β) a point of C2 at which at least one of the
partial derivatives r1, r2 is not zero. A classical result on functional
dependence, cf. [2] for matters of differentiability and cf. [3, p. 426] for
functional dependence, gives that there is an ε > 0 and an analytic
function h with domain the open ball Bε (radius ε, center (α, β)) so
that not both of r1, r2 are zero at any point of Bε and

(8) s(x, y) = h(r(x, y)), (x, y) ∈ Bε.

Note that then

(9) s2(x, y) = h′(r(x, y)) r2(x, y), (x, y) ∈ Bε.

Equation (9) together with (3) yields that

(10) r1(x, y) + h′(r(x, y)) r2(x, y) = 0, (x, y) ∈ Bε.

For r satisfying the above and (γ, δ) ∈ Bε denote by
(
u
v

)
functions with

maximal domain in C so that
(

u

v

)′
=

(
r2

−r1

)
(u, v),

(
u

v

)
(0) =

(
γ

δ

)
.

Note that
r(u, v)′ = 0

and consequently, r(u, v) and h(r(u, v)) are constant. Denote the
common value of h′(r(u, v)) by c.

Using (10), (
u

v

)′
= r2(u, v)

(
1
c

)
.

This implies that directions of members of the range of
(
u
v

)′ are constant
and hence the range of

(
u
v

)
lies on the (complex) line

Wγ,δ =
{

s

(
1
c

)
+

(
γ

δ

)
: s ∈ C

}
,
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the line of slope c through
(
γ
δ

)
. Hence r is constant on the intersection

of this line and Bε, and so by analyticity, r is constant on all of Wγ,δ.

It will be seen that each member of the set of lines

(11) {Wγ,δ : (γ, δ) ∈ Bε}

has slope c. If two of these lines had different slopes, they would
cross; then every member of (11) would cross at least one of these
two and hence r would be constant on all of Bε, and hence all of C2, a
contradiction. Thus the members of (11) are parallel, all with slope c.
Put another way, r satisfies on Bε the partial differential equation

(12) r1 + c r2 = 0.

Hence there is a function f from a subset of C to C so that

(13) r(x, y) = f(cx − y), (x, y) ∈ Bε.

The function f clearly is a polynomial. Hence relation (13) extends by
analyticity to all of C2. Moreover (8), with h now known to be linear
and homogeneous (actually the action of h is just multiplication by c),
must extend to all of C2 and consequently the relationship (8) extends
to all of C2. The two extensions noted above give that

(
r(x, y)
s(x, y)

)
=

(
f(cx − y)
cf(cx − y)

)
, (x, y) ∈ C2.

Defining L : C2 → C and Q : C → C2 by

L

(
x

y

)
= cx − y, (x, y) ∈ C2 and Q(w) =

(
f(w)
cf(w)

)
, w ∈ C,

one has
F (z) = z + Q(Lz), z ∈ C2.

Since
LQ(Lz) = 0, z ∈ C2,

it is shown that (3) implies (4).
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Now it is to be shown that (4) implies (3). Choose Q, L so that (4)
holds. Choose a, b ∈ C such that

L

(
x

y

)
= ax + by,

(
x

y

)
∈ C2.

Denote by each of g, h a polynomial from C to C so that

Q

(
x

y

)
=

(
g(ax + by)
h(ax + by)

)
, (x, y) ∈ C2.

If a = 0 = b, then r = 0 = s and the conclusion holds, so suppose that
at least one of a, b is not zero. From (4) it follows that

ag(ax + by) + bh(ax + by) = 0, (x, y) ∈ C2,

and so
ag + bh = 0

since with proper choice for x, y, ax + by may be any member of C.
Thus (

∇ ·
(

r

s

))
(x, y) = (ag + bh)′(ax + by) = 0, (x, y) ∈ C2.

Thus (3) holds and the argument is finished.

Proof. It has already been noted that Theorem 1 follows from
Theorem 2.
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