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REPRESENTATIONS AND INTERPOLATIONS OF
WEIGHTED HARMONIC BERGMAN FUNCTIONS

KYESOOK NAM

ABSTRACT. On the setting of the upper half-space of the
Euclidean n-space, we study representation theorems and in-
terpolation theorems for weighted harmonic Bergman func-
tions. Also, we consider the harmonic (little) Bloch spaces as
limiting spaces.

1. Introduction. Let H denote the upper half space Rn−1 × R+

where R+ denotes the set of all positive real numbers. We will write
points z ∈ H as z = (z′, zn) where z′ ∈ Rn−1 and zn > 0.

For α > −1 and 1 ≤ p < ∞, let bp
α = bp

α(H) denote the weighted har-
monic Bergman space consisting of all real-valued harmonic functions
u on H such that

‖u‖Lp
α

:=
(∫

H

|u(z)|p dVα(z)
)1/p

< ∞

where dVα(z) = zα
ndz and dz is the Lebesque measure on Rn. Then we

can see easily that the space bp
α is a Banach space. In particular, b2

α

is a Hilbert space. Hence, there is a unique Hilbert space orthogonal
projection Πα of L2

α onto b2
α which is called the weighted harmonic

Bergman projection. It is known that this weighted harmonic Bergman
projection can be realized as an integral operator against the weighted
harmonic Bergman kernel Rα(z, w). See Section 2.

In [6], many fundamental weighted harmonic Bergman space prop-
erties have been studied. In this paper, we study the representation
property of bp

α-functions and the interpolation by bp
α-functions. Our

methods are taken from those in [4] and based on estimates of the
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weighted harmonic Bergman kernel in [6]. Related results for spaces of
harmonic functions were given in [7] and [8].

The following theorems are special cases of the representation results
and the interpolation results, respectively.

Theorem 1.1. Let α > −1, and let 1 < p < ∞. There exists
a sequence {zm} of points in H and a constant C with the following
properties. For (λm) ∈ lp, define u by

(1.1) u(z) =
∑

λmz(n+α)(1−1/p)
mn Rα(z, zm).

Then u ∈ bp
α with ∫

H

|u|p dVα ≤ C
∑

|λm|p.

Conversely, given u ∈ bp
α, there exists a sequence (λm) ∈ lp such that

(1.1) holds and ∑
|λm|p ≤ C

∫
H

|u|p dVα.

The corresponding theorem for p = 1 is also available with a certain
restriction.

Theorem 1.2. Let α > −1, and let 1 ≤ p < ∞. There exists
a sequence {zm} of points in H and a constant C with the following
properties. For u ∈ bp

α, we have∑
z(n+α)
mn |u(zm)|p ≤ C

∫
H

|u|p dVα.

Conversely, given (λm) ∈ lp, there exists a function u ∈ bp
α such that

z
(n+α)/p
mn u(zm) = λm for all m and∫

H

|u|p dVα ≤ C
∑

|λm|p.

These two properties of holomorphic Bergman spaces were studied in
[5] and [9]. In [5], the representation properties of harmonic Bergman
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functions, as well as harmonic Bloch functions, were also proved on the
unit ball in Rn. See [2] for the interpolation properties of holomorphic
(little) Bloch functions. On the setting of the half-space of Rn, Choe
and Yi [4] have studied these two properties of harmonic Bergman
spaces. In [4], the harmonic (little) Bloch spaces are also considered as
limiting spaces of bp.

In Section 2 we give some basic properties related to the space bp
α,

the harmonic Bloch space B̃ and the little harmonic Bloch space B̃0.
In Section 3 we collect some technical lemmas which will be used in
later sections. In Section 4 and Section 5 we study the representation
theorems for bp

α, B̃ and B̃0. In Section 6 and Section 7 we prove the
interpolation theorems for bp

α, B̃ and B̃0.

Constants. Throughout the paper the same letter C will denote vari-
ous positive constants, unless otherwise specified, which may change at
each occurrence. The constant C may often depend on the dimension n
and some parameters like δ, p, α or β, but it will be always independent
of particular functions, points or sequences under consideration. For
nonnegative quantities A and B, we will often write A � B or B � A
if A is dominated by B times some positive constant. Also, we write
A ≈ B if A � B and B � A.

2. Preliminaries. In this section we summarize preliminary results
on bp

α, as well as the harmonic Bloch space B̃ from [6]. Let α > −1 and
let 1 ≤ p < ∞. First, we introduce the fractional derivative.

Let D denote the differentiation with respect to the last component,
and let u ∈ bp

α. Then the mean value property, Jensen’s inequality and
Cauchy’s estimate yield

(2.1) |Dku(z)| � z−(n+α)/p−k
n

for each z ∈ H and for every nonnegative integer k.

Let Fβ be the collection of all functions v on H satisfying |v(z)| � z−β
n

for β > 0, and let F = ∪β>0Fβ. If v ∈ F , then v ∈ Fβ for some β > 0.
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In this case, we define the fractional derivative of v of order −s by

(2.2) D−sv(z) =
1

Γ(s)

∫ ∞

0

ts−1v(z′, zn + t) dt

for the range 0 < s < β. (Here, Γ is the Gamma function.)

If u ∈ bp
α, then for every nonnegative integer k, Dku ∈ F by (2.1).

Thus for s > 0, we define the fractional derivative of u of order s by

(2.3) Dsu = D−([s]−s)D[s]u.

Here, [s] is the smallest integer greater than or equal to s and D0 = D0

is the identity operator. If s > 0 is not an integer, then −1 < [s]−s−1 <
0 and [s] ≥ 1. Thus we know from (2.1) that, for each z ∈ H and for
every u ∈ bp

α,

Dsu(z) =
1

Γ([s] − s)

∫ ∞

0

t[s]−s−1D[s]u(z′, zn + t) dt

always makes sense.

Let P (z, w) be the extended Poisson kernel on H and

Pz(w) := P (z, w) =
2

nV (B)
zn + wn

|z − w|n

where z, w ∈ H and w = (w′,−wn) and B is the open unit ball in Rn.
It is known that the weighted harmonic Bergman projection Πα of L2

α

onto b2
α is

Παf(z) =
∫
H

f(w)Rα(z, w) dVα(w)

for all f ∈ L2
α where Rα(z, w) is the weighted harmonic Bergman kernel

and its explicit formula is

(2.4) Rα(z, w) =
1

Cα
Dα+1Pz(w)

and Cα = (−1)[α]+1Γ(α + 1)/2α+1. Also, it is known that

(2.5) |Dβ
zn

Rα(z, w)| ≤ C

|z − w|n+α+β
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for all z, w ∈ H. Here, β > −n−α and the constant C is dependent only
on n, α and β. Using (2.5), we know Rα(z, ·) ∈ bq

α for all 1 < q ≤ ∞.
Thus, Πα is well defined whenever f ∈ Lp

α for 1 ≤ p < ∞. Also, for
1 ≤ p < ∞, u ∈ bp

α, z ∈ H,

(2.6) u(z) =
∫
H

u(w)Rβ(z, w) dVβ(w)

whenever β ≥ α. Furthermore, we have a useful norm equivalence. If
α > −1, 1 ≤ p < ∞ and (1 + α)/p + γ > 0, then

(2.7) ‖u‖Lp
α
≈ ‖wγ

nDγu‖Lp
α

as u ranges over bp
α.

Set z0 = (0, 1). A harmonic function u on H is called a Bloch function
if

‖u‖B = sup
w∈H

wn|∇u(w)| < ∞,

where ∇u denotes the gradient of u. We let B denote the set of Bloch
functions on H and let B̃ denote the subspace of functions in B that
vanish at z0. Then the space B̃ is a Banach space under the Bloch
norm ‖ ‖B.

A function u ∈ B̃ is called a harmonic little Bloch function if it has
the following vanishing condition

lim
z→∂∞H

zn|∇u(z)| = 0

where ∂∞H denotes the union of ∂H and {∞}. Let B̃0 denote the set
of all harmonic little Bloch functions on H. It is not hard to verify that
B̃0 is a closed subspace of B̃. Let C0 denote the set of all continuous
functions on H vanishing at ∞.

Because Rα(z, ·) is not in L1
α, Παf is not well defined for f ∈ L∞. So

we need the following modified Bergman kernel. For z, w ∈ H, define

R̃α(z, w) = Rα(z, w) − Rα(z0, w).

Then, there is a constant C = C(n, α) such that

(2.8) |R̃α(z, w)| ≤ C

( |z − z0|
|z − w|n+α|z0 − w| +

|z − z0|
|z − w||z0 − w|n+α

)
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for all z, w ∈ H. Thus, (2.8) implies that R̃α(z, ·) ∈ L1
α for each fixed

z ∈ H and then we can define Π̃α on L∞ by

Π̃αf(z) =
∫
H

f(w)R̃α(z, w) dVα(w)

for f ∈ L∞. Then, it turns out that Π̃α is a bounded linear map from
L∞ onto B̃. Also, Π̃α has the following property: If γ > 0 and v ∈ B̃
then

(2.9) Π̃α(wγ
nDγv)(z) = Cv(z)

where C = C(α, γ). The Bloch norm is also equivalent to the normal
derivative norm: If γ > 0, then

(2.10) ‖u‖B ≈ ‖wγ
nDγu‖∞

as u ranges over B̃. (See [6] for details.)

3. Technical lemmas. In this section we prove technical lemmas
which will be used in later sections. We first introduce a distance
function on H which is useful for our purposes. The pseudohyperbolic
distance between z, w ∈ H is defined by

ρ(z, w) =
|z − w|
|z − w| .

This ρ is an actual distance. (See [4].) Note that ρ is horizontal
translation invariant and dilation invariant. In particular,

(3.1) ρ(z, w) = ρ(φa(z), φa(w))

for z, w ∈ H where φa(a ∈ H) denotes the function defined by

φa(z) =
(

z′− a′

an
,

zn

an

)
for z ∈ H. Note that the Jacobian of φ−1

a is an
n. For z ∈ H and

0 < δ < 1, let Eδ(z) denote the pseudohyperbolic ball centered at z
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with radius δ. Note that φz(Eδ(z)) = Eδ(z0) by the invariance property
(3.1). Also, a simple calculation shows that

(3.2) Eδ(z) = B

((
z′,

1 + δ2

1 − δ2
zn

)
,

2δ

1 − δ2
zn

)
so that B(z, δzn) ⊂ Eδ(z) ⊂ B(z, 2δ(1− δ)−1zn) where B(z, r) denotes
the Euclidean ball centered at z with radius r. From (3.2), we have
two lemmas which will be used many times in this paper. For proofs
of the following lemmas, see [4].

Lemma 3.1. For z, w ∈ H, we have

1 − ρ(z, w)
1 + ρ(z, w)

≤ zn

wn
≤ 1 + ρ(z, w)

1 − ρ(z, w)
.

This lemma implies the following lemma.

Lemma 3.2. For z, w ∈ H, we have

1 − ρ(z, w)
1 + ρ(z, w)

≤ |z − s|
|w − s| ≤

1 + ρ(z, w)
1 − ρ(z, w)

for all s ∈ H.

The following lemma is used to prove the representation theorem.
If α is a nonnegative integer, then it is proved in [4]. Therefore, to
complete the proof of the following lemma, we only need to show the
case that α is not an integer.

Lemma 3.3. Let α > −1 and β be real. Then

∣∣zβ
nRα(s, z) − wβ

nRα(s, w)
∣∣ ≤ Cρ(z, w)

zβ
n

|z − s|n+α

whenever ρ(z, w) < 1/2 and s ∈ H.
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Proof. Suppose β = 0 and let k = [α]. Then k − α > 0. From the
proof of Lemma 3.4 in [4], it is easily seen that

|Rk(s, z) − Rk(s, w)| ≤ Cρ(z, w)
|z − s|n+k

.

Thus we get from (2.4),

(3.3) |Rα(s, z) − Rα(s, w)|
≤ C

∫ ∞

0

∣∣Dk+1Ps(z′, zn + t) − Dk+1Ps(w′, wn + t)
∣∣tk−α−1 dt

≤ C

∫ ∞

0

ρ
(
(z′, zn + t), (w′, wn + t)

)
|(z′, zn + t) − s|n+k

tk−α−1 dt

≤ Cρ(z, w)
1

|z − s|n+α
.

Now, let β be a real number. Then from (3.3) and (2.5), we have∣∣zβ
nRα(s, z) − wβ

nRα(s, w)
∣∣

≤ zβ
n |Rα(s, z) − Rα(s, w)| + zβ

n |Rα(s, w)|
∣∣∣∣∣1 −

(
wn

zn

)β
∣∣∣∣∣

≤ Cρ(z, w)
zβ
n

|z − s|n+α
+ Cρ(z, w)

zβ
n

|w − s|n+α

≤ Cρ(z, w)
zβ
n

|z − s|n+α
.

The last two inequalities of the above hold by Lemma 3.1 and
Lemma 3.2. The proof is complete.

Let α > −1, and let 1 ≤ p < ∞. Define Πβ on the weighted Lebesque
space Lp

α by

Πβf(z) =
∫
H

f(w)Rβ(z, w) dVβ(w)

for each f ∈ Lp
α and every z ∈ H. Then we show in the following lemma

Πβ is a bounded projection on Lp
α. For the proof of the following lemma,

see Theorem 4.3 in [6].
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Lemma 3.4. Suppose α > −1, 1 ≤ p < ∞ and α + 1 < (β + 1)p.
Then Πβ is bounded projection of Lp

α onto bp
α.

By simple estimation, we have the next lemma which will be used
frequently. For the proof of the following lemma, see Lemma 2.1 in [6].

Lemma 3.5. For b < 0,−1 < a + b, we have∫
H

wa+b
n

|z − w|n+a
dw ≤ Czb

n

for every z, w ∈ H.

Lemma 3.6. Let α > −1, 1 ≤ p < ∞, and let (1 + α)/p + γ > 0.
Suppose 0 < δ < 1. Then

zn+pγ
n |Dγu(z)|p ≤ C

δn+pk

∫
Eδ(z)

|u(w)|p dw

for all z ∈ H and for every u harmonic on H where k = [γ] if γ > −1
and k = 0 if γ ≤ −1. The constant C = C(n, p, γ) is independent of δ.

Proof. Since k is a nonnegative integer, we have from Lemma 3.6 of
[4],

zn+pk
n |Dku(z)|p ≤ C

δn+pk

∫
Eδ(z)

|u(w)|p dw.

Suppose that γ is not a nonnegative integer. Then, we have from (2.3),

|Dγu(z)| ≤ 1
Γ(k − γ)

∫ ∞

0

|Dku(z′, zn + t)| tk−γ−1 dt

≤ C

δ(n+pk)/p

∫ ∞

0

tk−γ−1

(zn + t)(n+pk)/p
dt

(∫
Eδ(z)

|u(w)|p dw

)1/p

≤ C

z
(n+pk)/p−(k−γ)
n δ(n+pk)/p

(∫
Eδ(z)

|u(w)|p dw

)1/p

.

The proof is complete.
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If γ satisfies the condition of Lemma 3.6, we can show Dγu is
harmonic on H. If γ is a nonnegative integer, then Dγu is harmonic on
H, because it is a partial derivative of a harmonic function. If γ is not
a nonnegative integer, we see also Dγu is harmonic on H by passing
the Laplacian through the integral.

The notation |E| denotes the Lebesque measure of a Borel subset E
of H. Let |E|α denote Vα(E). The following lemma is proved by using
the mean value property and Cauchy’s estimates.

Lemma 3.7. Suppose u is harmonic on some proper open subset Ω
of Rn. Let α > −1 and let 1 ≤ p < ∞. Then, for a given open ball
E ⊂ Ω,

∫
E

|u(z) − u(a)|p dVα(z) ≤ C
|E|p/n|E|α

d(E, ∂Ω)n+p

∫
Ω

|u(w)|p dw

for all a ∈ E. The constant C depends only on n, α and p.

4. Representation on weighted harmonic Bergman func-
tions. In this section we prove the representation property of bp

α-
functions. Let {zm} be a sequence in H, and let 0 < δ < 1. We say
that {zm} is δ-separated if the balls Eδ(zm) are pairwise disjoint or
simply say that {zm} is separated if it is δ-separated for some δ. Also,
we say that {zm} is a δ-lattice if it is δ/2-separated and H = ∪Eδ(zm).
Note that any “maximal” δ/2-separated sequence is a δ-lattice.

From [4], we have the following three lemmas.

Lemma 4.1. Fix a 1/2-lattice {am}, and let 0 < δ < 1/8. If {zm}
is a δ-lattice, then we can find a rearrangement {zij : i = 1, 2, . . . , j =
1, 2, . . . , Ni} of {zm} and a pairwise disjoint covering {Dij} of H with
the following properties:

(a) Eδ/2(zij) ⊂ Dij ⊂ Eδ(zij)

(b) E1/4(ai) ⊂ ∪Ni

j=1Dij ⊂ E5/8(ai)

(c) zij ∈ E1/2(ai) for all i = 1, 2, . . . , and j = 1, 2, . . . , Ni.
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Lemma 4.2. Let r > 0 and let 0 < (1 + r)η < 1. If {zm} is an
η-separated sequence, then there is a constant M = M(n, r, η) such that
more than M of the balls Erη(zm) contain no point in common.

Lemma 4.3. Let Ni be the sequence defined in Lemma 4.1. Then

sup
i

Ni ≤ Cδ−n

for some constant C depending only on n.

Analysis similar to that in the proof of Lemma 3.4 shows the following
lemma which is used in the proof of Proposition 4.5.

Lemma 4.4. Let α > −1, 1 ≤ p < ∞ and α + 1 < (β + 1)p. For
f ∈ Lp

α, define

Φβf(z) =
∫
H

f(w)
wβ

n

|z − w|n+β
dw

for z ∈ H. Then, Φβ : Lp
α → Lp

α is bounded.

Let {zm} be a sequence in H. Let α > −1, 1 ≤ p < ∞ and
α + 1 < (β + 1)p. For (λm) ∈ lp, let Qβ(λm) denote the series defined
by

(4.1) Qβ(λm)(z) =
∑

λmz(n+β)(1−1/p)+(β−α)/p
mn Rβ(z, zm),

for z ∈ H. For a sequence {zm} good enough, Qβ(λm) will be harmonic
on H. We say that {zm} is a bp

α-representing sequence of order β if
Qβ(lp) = bp

α. Lemma 4.4 implies the following proposition which shows
Qβ(lp) ⊂ bp

α if the underlying sequence is separated.

Proposition 4.5. Let α > −1, 1 ≤ p < ∞ and α + 1 < (β + 1)p.
Suppose {zm} is a δ-separated sequence. Then Qβ : lp → bp

α is bounded.

Proof. For (λm) ∈ lp, put f =
∑ |λm|z(n+β)(1−1/p)+(β−α)/p

mn |Eδ(zm)|−1
β

χm where χm is the characteristic function of Eδ(zm). By (2.5) and
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Lemma 3.2, there exists a constant C = C(n, β, δ) such that

|Rβ(z, zm)| ≤ C

|z − zm|n+β
≤ C

|z − w|n+β

for all w ∈ Eδ(zm) and z ∈ H. Thus, we get

|Qβ(λm)(z)| ≤ C
∑

|λm|z
(n+β)(1−1/p)+(β−α)/p
mn

|Eδ(zm)|β
×
∫

Eδ(zm)

wβ
n

|z − w|n+β
dw = CΦβf(z).

Note from (3.2) and Lemma 3.1 that |Eδ(zm)|α ≈ zn+α
mn . Thus, we

obtain from Lemma 4.4 that

‖Qβ(λm)‖p
Lp

α
≤ C

∑
|λm|pz(n+β)(p−1)+(β−α)

mn |Eδ(zm)|−p
β |Eδ(zm)|α

≤ C
∑

|λm|p.
This shows that Qβ : lp → Lp

α is bounded and the series in (4.1)
converges in norm. Since every term in the series (4.1) is harmonic, the
series converges uniformly on compact subsets of H. Consequently, we
have Qβ : lp → bp

α is bounded. This completes the proof.

Now, we prove the main theorem in this section.

Theorem 4.6. Let α > −1, 1 ≤ p < ∞ and α + 1 < (β + 1)p. Then
there exists δ0 > 0 with the following property. Let {zm} be a δ-lattice
with δ < δ0 and let Qβ : lp → bp

α be the associated linear operator as in
(4.1). Then there is a bounded linear operator Pβ : bp

α → lp such that
QβPβ is the identity on bp

α. In particular, {zm} is a bp
α-representing

sequence of order β.

Proof. Let u ∈ bp
α. We may assume δ < 1/8. Fix a 1/2-lattice

{am}. Find a rearrangement {zij} of {zm}, as well as a pairwise disjoint
covering {Dij} of H, for which all properties of Lemma 4.1 are satisfied.
Note from Lemma 3.1 and (3.2) that there exist C1 and C2 independent
of δ such that

(4.2) C−1
1 <

wn

zijn
< C1, C−1

2 δnzn+α
ijn < |Eδ(zij)|α < C2δ

nzn+α
ijn
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for all w ∈ Eδ(zij) because δ < 1/8. Then, we have from (a) in
Lemma 4.1 and Lemma 3.6 that

(4.3) z
n+α−(n+β)p
ijn |Dij |pβ |u(zij)|p ≤ Cδn(p−1)

∫
Dij

|u(w)|p wα
n dw.

Let Tu denote the sequence
(
z
(n+β)(1/p−1)−(β−α)/p
ijn |Dij |βu(zij)

)
. Then

we have from (4.3) that

‖Tu‖p
lp ≤ Cδn(p−1)

∑∫
Dij

|u(w)|p wα
n dw = C‖u‖p

Lp
α
.

This shows that T : bp
α → lp is bounded and thus QβT is bounded on

bp
α by Proposition 4.5.

Now, we show that QβT is invertible on bp
α for all δ sufficiently

small. Let χij denote the characteristic function of Dij . Then we
know from Lemma 3.4, u = Πβu = Πβ [

∑
uχij ]. Since QβTu(z) =∑ |Dij |βu(zij)Rβ(z, zij), we have u − QβTu = u1 + u2 where

u1(z) = Πβ

[∑(
u − u(zij)

)
χij

]
(z),

u2(z) =
∑

u(zij)
∫

Dij

Rβ(z, w) − Rβ(z, zij) dVβ(w).

Note from (c) in Lemma 4.1 that Dij ⊂ Eδ(zij) ⊂ E1/2+δ(ai) ⊂
E5/8(ai). Hence, we have from (4.2)

d(Eδ(zij), ∂E2/3(ai)) ≥ d(E5/8(ai), ∂E2/3(ai)) ≥ Cain ≥ Czijn

for some absolute constant C. Thus, we get from Lemma 3.7 and (4.2)
that∫

Dij

|u(w) − u(zij)|p dVα(w)

≤ C
|Eδ(zij)|p/n|Eδ(zij)|α

d(Eδ(zij), ∂E2/3(ai))n+p

∫
E2/3(ai)

|u(w)|p dw

≤ Cδn+p

∫
E2/3(ai)

|u(w)|p wα
n dw
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for all i, j. Here, the constant C is independent of i, j and δ. Thus, for
each fixed i, Lemma 4.3 implies

(4.4)
Ni∑
j=1

∫
Dij

|u(w) − u(zij)|p dVα(w) ≤ Cδp

∫
E2/3(ai)

|u|p dVα.

Therefore, we get from Lemma 3.4 that

(4.5)

‖u1‖p
Lp

α
≤ C

∥∥∑
i,j

(
u − u(zij)

)
χij

∥∥p

Lp
α

= C
∑
i,j

∫
Dij

|u(w) − u(zij)|p dVα(w)

≤ Cδp
∑

i

∫
E2/3(ai)

|u|p dVα ≤ Cδp‖u‖p
Lp

α
.

The last inequality of the above holds by Lemma 4.2. Here, the constant
C is independent of δ.

Now, we show ‖u2‖Lp
α
≤ Cδ‖u‖Lp

α
for some constant C independent

of δ. Note from Lemma 3.3 and Lemma 3.2 that∫
Dij

|Rβ(z, w) − Rβ(z, zij)| dVβ(w) ≤ C

∫
Dij

ρ(w, zij)
|z − zij |n+β

dVβ(w)

≤ Cδ
1

|z − ai|n+β
|Dij |β .

Then, we have from (4.3) and (4.2) that

(4.6)

|u2(z)| ≤ Cδ
∑
i,j

1
|z − ai|n+β

|Dij |β |u(zij)|

≤ Cδ
∑
i,j

zβ−α
ijn

|z − ai|n+β

∫
Dij

|u| dVα

≤ Cδ
∑

i

aβ−α
in

|z − ai|n+β

∫
E2/3(ai)

|u| dVα.

The last inequality of the above holds (b) in Lemma 4.1. Note from
Lemma 3.2 and (4.2) that

(4.7)
aβ−α

in

|z − ai|n+β
≤ C

|E2/3(ai)|α

∫
E2/3(ai)

wβ
n

|z − w|n+β
dw.
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Let λi =
(∫

E2/3(ai)
|u(w)|p dVα(w)

)1/p

, and let χi be the characteristic
function of E2/3(ai). If p = 1, we have from (4.6) and (4.7)

|u2(z)| ≤ Φβ

[
Cδ
∑

i

λi|E2/3(ai)|−1
α

χi

]
(z).

Thus, Lemma 4.4 and Lemma 4.2 yield

(4.8) ‖u2‖L1
α
≤ Cδ

∑
i

|λi| = Cδ
∑

i

∫
E2/3(ai)

|u| dVα ≤ Cδ‖u‖L1
α
.

Here, the constant C is independent of δ. Assume that p > 1. Hölder’s
inequality and (4.7) imply that (4.6) is less than or equal to

Cδ
∑

i

aβ−α
in

|z − ai|n+β
|E2/3(ai)|1/q

α

(∫
E2/3(ai)

|u|p dVα

)1/p

≤ Cδ
∑

i

λi|E2/3(ai)|1/q−1
α

∫
E2/3(ai)

1
|z − w|n+β

dVβ(w)

≤ Φβ

[
Cδ
∑

i

λi|E2/3(ai)|−1/p
α

χi

]
(z)

where q is the index conjugate to p. Now, Lemma 4.4 and Lemma 4.2
yield

(4.9) ‖u2‖p
Lp

α
≤ Cδp

∑
i

|λi|p ≤ Cδp‖u‖p
Lp

α
.

Here, the constant C is independent of δ. Let I be the identity on bp
α.

Then (4.5), (4.8) and (4.9) imply ‖QβT − I‖ ≤ Cδ for some constant
C independent of δ. Therefore, QβT is invertible for all δ sufficiently
small. For such δ, set Pβ = T (QβT )−1. This completes the proof.

Since Dγu is harmonic and we have (2.7), we can have a similar result
with Proposition 4.8 of [4].
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Proposition 4.7. Let α > −1, 1 ≤ p < ∞, and let (1 + α)/p + γ >
0. If {zm} is a δ-lattice with δ sufficiently small, then

‖u‖p
Lp

α
≈
∑

zn+α+pγ
mn |Dγu(zm)|p

as u ranges over bp
α.

5. Representation on B̃ and B̃0. In this section we prove the
representation property of B̃-functions and B̃0-functions. Let {zm} be
a sequence in H, and let β > −1. For (λm) ∈ l∞, let

(5.1) Q̃β(λm)(z) =
∑

λmzn+β
mn R̃β(z, zm)

for z ∈ H. We say that {zm} is a B̃-representing sequence of order β

if Q̃β(l∞) = B̃. We also say that {zm} is a B̃0-representing sequence of
order β if Q̃β(C0) = B̃0. As in the case of bp

α-representation, we begin
with a observation that a separated sequence represents a part of the
whole space. The proof of the following proposition is the same with
that of Proposition 4.9 in [4].

Proposition 5.1. Let β > −1 and suppose {zm} is a δ-separated
sequence. Then, Q̃β : l∞ → B̃ is bounded. In addition, Q̃β maps C0

into B̃0.

If γ is a positive integer, then the following lemma is proved in [4].
Therefore to complete the proof of the lemma, we only need to show
the case that γ is not an integer.

Lemma 5.2. Let γ > 0. Then

|zγ
n Dγu(z) − wγ

n Dγu(w)| ≤ Cρ(z, w)‖u‖B

for all z, w ∈ H and u ∈ B̃.

Proof. Let u ∈ B̃. Fix z, w ∈ H. By (2.10), we may assume
ρ(z, w) < 1/2. Note from (2.9) that u(z) = CΠ̃α(snDu)(z) =
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C
∫
H

snDu(s)R̃α(z, s) dVα(s). Thus, from the definition of the frac-
tional derivative, we have

(5.2) |zγ
nDγu(z) − wγ

nDγu(w)|
≤ C

∫ ∞

0

∣∣zγ
nD[γ]u(z′, zn + t) − wγ

nD[γ]u(w′, wn + t)
∣∣ t[γ]−γ−1 dt

≤ C

∫ ∞

0

∫
H

|snDu(s)| ∣∣zγ
nD[γ]

zn
R̃α

(
(z′, zn + t), s

)
− wγ

nD[γ]
wn

R̃α

(
(w′, wn + t), s

)∣∣ dVα(s) t[γ]−γ−1 dt.

Note that D
[γ]
zn R̃α

(
(z′, zn + t), s

)
= D

[γ]
zn Rα

(
(z′, zn + t), s

)
= CRα+[γ](

(z′, zn + t), s
)
. Thus, Lemma 3.3 and Fubini’s theorem imply that

(5.2) is less than or equal to

(5.3) C‖u‖B
∫ ∞

0

∫
H

∣∣zγ
nRα+[γ]

(
(z′, zn + t), s

)
− wγ

nRα+[γ]

(
(w′, wn + t), s

)∣∣ dVα(s) t[γ]−γ−1 dt

≤ Cρ(z, w)‖u‖Bzγ
n

∫
H

∫ ∞

0

t[γ]−γ−1

|(z′, zn + t) − s|n+α+[γ]
dt dVα(s).

Note that |(z′, zn + t)− s| ≈ |z − s|+ t for s ∈ H, t > 0. Thus, (5.3) is
less than or equal to

Cρ(z, w)‖u‖Bzγ
n

∫
H

∫ ∞

0

t[γ]−γ−1

(|z − s| + t)n+α+[γ]
dt dVα(s)

≤ Cρ(z, w)‖u‖Bzγ
n

∫
H

sα
n

|z − s|n+α+γ
ds ≤ Cρ(z, w)‖u‖B

after applying change of variable t = |z − s|t and Lemma 3.5. This
completes the proof.

Having Proposition 5.1 and Lemma 5.2, we can modify the proof of
Theorem 4.6 to obtain a similar B̃-representation theorem.
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Theorem 5.3. Let β > −1. Then there exists a positive number δ0

with the following property. Let {zm} be a δ-lattice with δ < δ0, and let
Q̃β : l∞ → B̃ be the associated linear operator as in (5.1). Then there
exists a bounded linear operator P̃β : B̃ → l∞ such that Q̃βP̃β is the
identity on B̃. Moreover, P̃β maps B̃0 into C0. In particular, {zm} is
both a B̃-representing and B̃0-representing sequence of order β.

Lemma 5.2 yields the following result for B̃ analogous to Proposi-
tion 4.7.

Proposition 5.4. Let γ > 0. Let {zm} be a δ-lattice with δ
sufficiently small. Then

‖u‖B ≈ sup
m

zγ
mn |Dγu(zm)|

as u ranges over B̃.

6. Interpolation on bp
α. In this section we prove the interpolation

theorem for the space bp
α. Let {zm} be a sequence on H. Let α > −1,

1 ≤ p < ∞ and (1 + α)/p + γ > 0. For u ∈ bp
α, let Tγu denote the

sequence of complex numbers defined by

(6.1) Tγu =
(
z(n+α)/p+γ
mn Dγu(zm)

)
.

If Tγ(bp
α) = lp, we say that {zm} is a bp

α-interpolating sequence of order
γ.

The following two lemmas are used to prove that separation is
necessary for bp

α-interpolation.

Lemma 6.1. Let α > −1, 1 ≤ p < ∞ and (1 + α)/p + γ > 0. Let
{zm} be a bp

α-interpolating sequence of order γ. Then, Tγ : bp
α → lp is

bounded.

Proof. Assume uj → u in bp
α and Tγuj → (λm) in lp. By the closed

graph theorem, we need to show Tγu = (λm). Note from Lemma 3.6,
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Lemma 3.1 and (2.7) that

N∑
m=1

zn+α+pγ
mn |Dγu(zm) −Dγuj(zm)|p

≤ C

N∑
m=1

∫
Eδ(zm)

|wγ
nDγ(u − uj)(w)|p wα

n dw

≤ CN ‖u − uj‖p
Lp

α
.

Thus, we have

‖Tγu − (λm)‖p
lp =

∞∑
m=1

∣∣z(n+α)/p+γ
mn Dγu(zm) − λm

∣∣p
≤ C

N∑
m=1

zn+α+pγ
mn |Dγu(zm) −Dγuj(zm)|p

+ C

N∑
m=1

|z(n+α)/p+γ
mn Dγuj(zm) − λm|p

+
∞∑

m=N+1

∣∣z(n+α)/p+γ
mn Dγu(zm) − λm

∣∣p
≤ CN‖u − uj‖p

Lp
α

+ ‖Tγuj − (λm)‖p
lp

+
∞∑

m=N+1

∣∣z(n+α)/p+γ
mn Dγu(zm) − λm

∣∣p

for every N . Taking first the limit j → ∞ and then N → ∞, we have
Tγu = (λm). This completes the proof.

The following lemma is a bp
α-version of Lemma 5.2 which is the result

of B̃-functions. If γ is a nonnegative integer, then the following lemma
is proved in [4]. Therefore to complete the proof of the lemma, we only
need to show the case that γ is not a nonnegative integer.
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Lemma 6.2. Let α > −1, 1 ≤ p < ∞ and (1 + α)/p+ γ > 0. Then,∣∣z(n+α)/p+γ
n Dγu(z) − w(n+α)/p+γ

n Dγu(w)
∣∣ ≤ Cρ(z, w)‖u‖Lp

α

for all z, w ∈ H and u ∈ bp
α.

Proof. Let u ∈ bp
α and fix z, w ∈ H. By Lemma 3.6, we may assume

ρ(z, w) < 1/2. Note from (2.6) that u(z) =
∫
H

u(s)Rα(z, s) dVα(s).
Thus, letting k = [γ] if γ > −1 and k = 0 if γ ≤ −1, we have from
Lemma 3.3 and Fubini’s theorem that

(6.2)
∣∣z(n+α)/p+γ

n Dγu(z) − w(n+α)/p+γ
n Dγu(w)

∣∣
≤ C

∫ ∞

0

∫
H

|u(s)| ∣∣z(n+α)/p+γ
n Dk

zn
Rα

(
(z′, zn + t), s

)
− w(n+α)/p+γ

n Dk
wn

Rα

(
(w′, wn + t), s

)∣∣ dVα(s) tk−γ−1 dt

≤ Cρ(z, w)
∫
H

|u(s)|z(n+α)/p+γ
n

×
∫ ∞

0

tk−γ−1

(|z − s| + t)n+α+k
dt dVα(s)

≤ Cρ(z, w)
∫
H

|u(s)| z
(n+α)/p+γ
n

|z − s|n+α+γ
dVα(s)

after applying change of variable t = |z − s|t. If p = 1, then we have
from (6.2),

|z(n+α)/p+γ
n Dγu(z) − w(n+α)/p+γ

n Dγu(w)| ≤ Cρ(z, w)‖u‖L1
α

because n+α+γ > 0. Assume 1 < p < ∞. Note that (1 + α)/p+γ > 0
implies n+α < (n+α+γ)q where q is the index conjugate to p. Thus,
Hölder’s inequality and Lemma 3.5 imply that (6.2) is less than or equal
to

Cρ(z, w)‖u‖Lp
α

(∫
H

z
(n+α)q/p+γq
n

|z − s|(n+α+γ)q
dVα(s)

)1/q

≤ Cρ(z, w)‖u‖Lp
α
.

The proof is complete.
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Since we have Lemma 6.1 and Lemma 6.2, the proof of the following
proposition is the same as that of Proposition 5.3 in [4] and thus
omitted.

Proposition 6.3. Let α > −1, 1 ≤ p < ∞ and (1 + α)/p + γ > 0.
Every bp

α-interpolating sequence of order γ is separated.

The following lemma is used to prove bp
α-interpolation theorem.

Lemma 6.4. Let α > −1, 1 < p < ∞ and (1 + α)/p + γ > 0. Let
{zm} be a δ-separated sequence. Then, for (λm) ∈ lp, we have

∣∣∣∑λmz(n+α)/q
mn DγRα(zm, w)

∣∣∣p ≤ Cδn(1−p)w−(1+α+pγ)/q
n

×
∑

|λm|pz(1+α)/q
mn |DγRα(zm, w)|

for w ∈ H and q is the index conjugate to p. The constant C is
independent of δ.

Proof. Note from Lemma 3.6, (2.5) and Lemma 3.5 that

∑
z(n+α)−(1+α)/p
mn |DγRα(zm, w)|

≤ Cδ−n
∑

zα−(1+α)/p
mn

∫
Eδ/2(zm)

|DγRα(s, w)| ds

≤ Cδ−n

∫
H

s
α−(1+α)/p
n

|s − w|n+α+γ
ds

≤ Cδ−nw−(1+α)/p−γ
n

because 1/3 < zmn/sn < 3 for s ∈ Eδ/2(zm). Here, the constant C is
independent of δ. Thus, applying Hölder’s inequality to the following
two functions,

|λm|z(1+α)/pq
mn |DγRα(zm, w)|1/p, z(n+α)/q

mn z−(1+α)/pq
mn |DγRα(zm, w)|1/q,



258 K. NAM

we have∣∣∣∑λmz(n+α)/q
mn DγRα(zm, w)

∣∣∣p
≤
(∑

|λm|pz(1+α)/q
mn |DγRα(zm, w)|

)
×
(∑

z(n+α)−(1+α)/p
mn |DγRα(zm, w)|

)p/q

≤ Cδ−np/qw−(1+α+pγ)/q
n

∑
|λm|pz(1+α)/q

mn |DγRα(zm, w)|.
Here, the constant C is independent of δ. The proof is complete.

Now, we prove the main theorem of this section.

Theorem 6.5. Let α > −1, 1 ≤ p < ∞ and (1 + α)/p + γ > 0.
Then there exists a positive number δ0 with the following property. Let
{zm} be a δ-separated sequence with δ > δ0, and let Tγ : bp

α → lp

be the associated linear operator as in (6.1). Then there is a bounded
linear operator Sγ : lp → bp

α such that TγSγ is the identity on lp. In
particular, {zm} is a bp

α-interpolating sequence of order γ.

Proof. Fix γ. Note that Dk+1Pz(w) = C(k)
∑k+2

m=0 C(m)(zn + wn)m/
|z − w|n+k+m for some nonnegative integer k. Thus, for the case that
both α and γ are nonnegative integers, wn+α+γ

n DγRα(w, w) is constant.
Assume that both α and γ are not nonnegative integers. Let k = [γ] if
γ > −1, and let k = 0 if γ ≤ −1. Then we have

wn+α+γ
n DγRα(w, w)

= Cwn+α+γ
n

∫ ∞

0

∫ ∞

0

Dk+[α]+1 P
(
(w′, wn + s), (w′, wn + t)

)
× t[α]−α−1 dt sk−γ−1 ds

= Cwn+α+γ
n

k+[α]+2∑
m=0

C(m)
∫ ∞

0

∫ ∞

0

t[α]−α−1sk−γ−1

(2wn + s + t)n+k+[α]
dt ds.

Thus, applying change of variable, we have that wn+α+γ
n DγRα(w, w) is

constant depending only on α and γ. For the remaining case, we have
the same result. Thus, we will let dα,γ denote wn+α+γ

n DγRα(w, w).
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Let 1 < p < ∞. Fix (λm) ∈ lp. Let Qα(λm) denote the function by

(6.3) Qα(λm)(z) =
∑

λmz(n+α)/q
mn Rα(z, zm)

where z ∈ H and q is the index conjugate to p. By Proposition 4.5, we
have Qα : lp → bp

α is a bounded operator. Thus, TγQα is bounded on
lp by Lemma 6.1.

We show that TγQα is invertible on lp for all δ sufficiently close to 1.
Let I denote the identity on lp, and let (αj) denote the jth component of
the sequence of (TγQα − dα,γI) (λm). Since the series in (6.3) converges
uniformly on compact subsets of H, interchanging differentiation and
sum yields

αj = z
(n+α)/p+γ
jn DγQα(λm)(zj) − dα,γλj

= z
(n+α)/p+γ
jn

∑
m �=j

λmz(n+α)/q
mn DγRα(zm, zj).

Thus, Lemma 6.4 gives

|αj |p ≤ Cδn(1−p)z
(n+α+γ)−(1+α)/q
jn

∑
m �=j

|λm|p z(1+α)/q
mn |DγRα(zm, zj)|

so that

(6.4)

∑
|αj |p ≤ Cδn(1−p)

∞∑
m=1

|λm|p z(1+α)/q
mn

×
∑
j �=m

z
(n+α+γ)−(1+α)/q
jn |DγRα(zm, zj)|

:= Cδn(1−p)
∞∑

m=1

|λm|p βm

where

βm = z(1+α)/q
mn

∑
j �=m

z
(n+α+γ)−(1+α)/q
jn |DγRα(zm, zj)|.
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By Lemma 3.6 and Lemma 3.1, we have

βm ≤ Cδ−nz(1+α)/q
mn

∑
j �=m

z
α+γ−(1+α)/q
jn

∫
Eδ/2(zj)

|DγRα(zm, s)| ds

≤ Cδ−nz(1+α)/q
mn

∑
j �=m

∫
Eδ/2(zj)

sα+γ−(1+α)/q
n |DγRα(zm, s)| ds

≤ Cδ−nz(1+α)/q
mn

∫
H\Eδ(zm)

s
α+γ−(1+α)/q
n

|s − zm|n+α+γ
ds

= Cδ−n

∫
H\Eδ(z0)

s
α+γ−(1+α)/q
n

|s − z0|n+α+γ
ds

for all m. Here, the constant C is independent of δ. The last equality
of the above holds by change of variable s = φ−1

zm
(s). Thus, (6.4) is less

than or equal to

Cδ−np

∫
H\Eδ(z0)

s
α+γ−(1+α)/q
n

|s − z0|n+α+γ
ds.

Consequently, we obtain

(6.5) ‖TγQα − dα,γI‖lp ≤ Cδ−n

(∫
H\Eδ(z0)

s
α+γ−(1+α)/q
n

|s − z0|n+α+γ
ds

)1/p

for some constant C independent of δ. Since Lemma 3.5 yields∫
H

s
α+γ−(1+α)/q
n

|s − z0|n+α+γ
ds < ∞,

the integral in (6.5) tends to 0 as δ ↗ 1. Thus TγQα is invertible on lp

for all δ sufficiently close to 1. For such δ, put Sγ = Qα (TγQα)−1.

Let p = 1. Fix (λm) ∈ l1. Let Qα+1(λm) denote by

Qα+1(λm)(z) =
∑

λmzmnRα+1(z, zm)

for z ∈ H. Then Proposition 4.5 and Lemma 6.1 yield that Qα+1 :
l1 → b1

α is bounded and TγQα+1 is bounded on l1. Now, we show
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that TγQα+1 is invertible on l1 for all δ sufficiently close to 1. Let αj

denote the jth component of the sequence (TγQα+1 − dα+1,γI) (λm).
Differentiating term by term yields

αj = zn+α+γ
jn DγQα+1(λm)(zj) − dα+1,γλj

= zn+α+γ
jn

∑
m �=j

λmzmnDγRα+1(zj , zm).

Thus we have from Lemma 3.6 and Lemma 3.1 that∑
|αj | ≤ Cδ−n

∑
m

∑
j �=m

|λm|
∫

Eδ/2(zj)

zmnwα+γ
n

|zm − w|n+α+γ+1
dw

≤ Cδ−n
∑
m

|λm|
∫
H\Eδ(zm)

zmnwα+γ
n

|zm − w|n+α+γ+1
dw

= Cδ−n

(∑
m

|λm|
)∫

H\Eδ(z0)

wα+γ
n

|z0 − w|n+α+γ+1
dw

where the constant C is independent of δ. Since α+γ > −1, Lemma 3.5
yields ∫

H

wα+γ
n

|z0 − w|n+α+γ+1
dw < ∞.

Thus, TγQα+1 is invertible on l1 for all δ sufficiently close to 1. For
such δ, put Sγ = Qα+1 (TγQα+1)

−1. The proof is complete.

7. Interpolation on B̃ and B̃0. In this section we consider the
interpolation theorems for B̃ and B̃0. Let γ > 0, and let {zm} be a
sequence in H. For u ∈ B̃, define

(7.1) T̃γu =
(
zγ
mnDγu(zm)

)
.

Then (2.10) implies
T̃γ : B̃ −→ l∞

is bounded. If T̃γ(B̃) = l∞, {zm} is called a B̃-interpolating sequence
of order γ. Also, if T̃γ(B̃0) = C0, {zm} is called a B̃0-interpolating
sequence of order γ.
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The following proposition shows that separation is also necessary for
B̃0 interpolation. Since we have Lemma 5.2, the proof of the following
proposition is the same as that of Proposition 5.6 in [4].

Proposition 7.1. Let γ > 0. Every B̃-interpolating sequence of
order γ is separated. Also, every B̃0-interpolating sequence of order γ
is separated.

Having Proposition 5.1, we can modify the proof of Theorem 6.5 to
the following theorem.

Theorem 7.2. Let γ > 0. Then there exists a positive number δ0

with the following property. Let {zm} be a δ-separated sequence with
δ > δ0, and let T̃γ : B̃ → l∞ be the associated linear operator as in
(7.1). Then there exists a bounded linear operator S̃γ : l∞ → B̃ such
that T̃γS̃γ is the identity on l∞. Moreover, S̃γ maps C0 into B̃0. In
particular, {zm} is both a B̃-interpolating and B̃0-interpolating sequence
of order γ.
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