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LINEAR PRESERVERS FOR SYLVESTER
AND FROBENIUS BOUNDS ON MATRIX RANK

LEROY B. BEASLEY, ALEXANDER E. GUTERMAN

AND CORA L. NEAL

ABSTRACT. Let A and B be n × n matrices. A clas-
sical result about the rank function is Sylvester’s inequality
which states that the rank of the product of AB is at most
min{rank (A), rank (B)} and at least rank (A) + rank (B)−n.
A generalization of Sylvester’s inequality is Frobenius’s in-
equality which states that

rank (AB) + rank (BC) ≤ rank (ABC) + rank (B).

In this paper we investigate the structure of linear operators
that preserve those ordered pairs or triples of matrices which
satisfy one of the extreme cases in these inequalities.

1. Introduction. Let F be any field, and let Mn(F) denote the
space of all n × n matrices with entries from F. Let ρ(A) denote the
rank of A. Let Ei,j be the matrix with a “1” in the (i, j) position and
zero elsewhere.

Definition 1.1. If T : Mn(F) → Mn(F) is a linear operator, we say
that T is a (U, V )-operator provided there exist nonsingular matrices
U, V ∈ Mn(F) such that either

1. T (X) = UXV for all X ∈ Mn(F) or

2. T (X) = UXtV for all X ∈ Mn(F),

where Xt denotes the transpose of X.

Note that it follows that T is a (U, V )-operator if and only if T is a
composition of operators of type 1 above and the transpose operator.

Some classical inequalities concerning the rank of sums and products
are:
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The rank sum inequality.

|ρ(A) − ρ(B)| ≤ ρ(A + B) ≤ ρ(A) + ρ(B);

Sylvester’s inequality.

ρ(A) + ρ(B) − n ≤ ρ(AB) ≤ min{ρ(A), ρ(B)};

and

Frobenius’s inequality.

ρ(AB) + ρ(BC) ≤ ρ(ABC) + ρ(B).

Here A, B, C are arbitrary matrices from Mn(F).

Definition 1.2. Given a set, F , of ordered pairs of matrices in
Mn(F) ×Mn(F) we say that T : Mn(F) → Mn(F) preserves the set
F if (A, B) ∈ F implies that (T (A), T (B)) ∈ F . Similarly, if F is a
set of ordered triples then we say that T preserves F if and only if
(A, B, C) ∈ F implies that (T (A), T (B), T (C)) ∈ F .

In this paper we shall investigate linear operators which preserve pairs
or triples of matrices which attain one of the extremes of the inequalities
above.

Let

Q1 =
{

(A, B) | ρ(A + B) = ρ(A) + ρ(B)
}
;

Q2 =
{

(A, B) | ρ(A + B) = |ρ(A) − ρ(B)|
}
;

Q3 =
{

(A, B) | ρ(AB) = min{ρ(A), ρ(B)}
}
;

Q4 =
{

(A, B) | ρ(AB) = ρ(A) + ρ(B) − n
}

;

and

Q5 =
{

(A, B, C) | ρ(AB) + ρ(BC) = ρ(ABC) + ρ(B)
}
.



LINEAR PRESERVERS ON MATRIX RANK 69

It was shown in [1, 3, 6] that linear operators that preserve Q1 or Q2

are (U, V )-operators. Here we investigate linear operators that preserve
Q3, Q4, or Q5.

In order to characterize linear preservers for these extreme rank
conditions, we need the following lemma which is an easy corollary
from Dieudonné [5], see also [2, Section 2.1].

Lemma 1.3 [2, 5]. Let F be an arbitrary field and T : Mn(F) →
Mn(F) an invertible linear transformation. If T preserves the set of
rank-n matrices, or the set of rank-1 matrices, then T is a (U, V )-
operator.

2. Preservers of the set Q3.

Throughout this section F will denote an arbitrary field. We begin
with a couple of lemmas.

Lemma 2.1. If T : Mn(F) → Mn(F) preserves the set Q3 and T is
invertible, then T preserves the set of rank-1 matrices.

Proof. Suppose that T−1 does not preserve rank-1 matrices. Then
there is some matrix A such that ρ(A) = k, k > 1, and ρ(T (A)) = 1.
Since similarity operators preserve Q3, we may assume without loss of
generality that A =

[
A1

O

]
where A1 is k×n, and T (A) =

[
at

O

]
; here at

denotes a certain nonzero row of the matrix T (A).

Now, if H is a space of matrices such that for each nonzero H ∈ H,
HT (A) �= O, we must have that dimH ≤ n. (The dimension of
the complement of H is greater than or equal to n(n − 1) since all
matrices with zero first column and arbitrary columns from 2nd until
nth annihilate T (A).)

Let K = {B = [B1 O] ∈ Mn(F) | B1 is n × k}. Then dimK = kn.
Let B ∈ K. Then ρ(BA) = ρ(B) = min(ρ(A), ρ(B)). Thus, (B, A) ∈
Q3. It follows that (T (B), T (A)) ∈ Q3, so that ρ(T (B)T (A)) =
min(ρ(T (B)), ρ(T (A))) = 1. Thus, for each C ∈ T (K), ρ(CT (A)) = 1,
or CT (A) �= O. Therefore, from the above observation, dim T (K) ≤ n.
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But T is invertible so that dim T (K) = nk, a contradiction. Thus T−1,
and hence T , preserves the set of rank-1 matrices.

Lemma 2.2. Let T : Mn(F) → Mn(F) be defined by T (X) = UXV
for some invertible matrices U and V . Then T preserves the set Q3 if
and only if T (X) = αPXP−1 for some invertible matrix P ∈ Mn(F)
and nonzero scalar α ∈ F.

Proof. It is easy to check that the transformation T (X) = αPXP−1

preserves the set Q3.

It is enough to consider transformations of the form X → XD, where
D is an arbitrary invertible matrix, instead of T (X) = UXV since the
similarity transformation preserves Q3 and U−1T (X)U = XV U =
XD. To prove the lemma we need to show that the matrix D = (dij)
is scalar.

1. Let us show first that dii �= 0 for all i, i = 1, . . . , n. For arbitrary
i we consider the matrices A1 = Ei,i, B1 = Ei,j , for some j �= i.
Thus (A1, B1) ∈ Q3 since ρ(A1B1) = 1 = ρ(A1) = ρ(B1). The
matrix D is invertible, so we have that ρ(A1D) = 1, ρ(B1D) = 1,
ρ(A1DB1D) = ρ(A1DB1). Hence, A1DB1 �= O. On the other hand,

A1D = di1Ei,1 + · · · + dinEi,n.

Thus A1DB1 = diiEi,j . Therefore, dii �= 0 for all i, i = 1, . . . , n.

2. Let us assume now that there exists i, j, i �= j, such that dij �= 0.
Then consider the matrices A2 = Ej,j − (djj/dij)Ej,i, B2 = Ej,i.
We have A2B2 = Ej,i. Therefore, ρ(A2) = ρ(B2) = ρ(A2B2) = 1.
Hence, (A2, B2) ∈ Q3. Therefore, (A2D, B2D) ∈ Q3. The matrix D is
invertible. Thus, ρ(A2D) = 1 and ρ(B2D) = 1. Then ρ(A2DB2D) = 1.
Hence, ρ(A2DB2D) = ρ(A2DB2) = 1. On the other hand,

A2DB2 =
(

Ej,j − djj

dij
Ej,i

)
DEj,i = Ej,jDEj,i − djj

dij
Ej,iDEj,i

= djjEj,i − djj

dij
(di1Ej,1 + · · · + dinEj,n)Eji

= djjEj,i − djj

dij
dijEj,jEj,i

= djjEj,i − djjEj,i = O.
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Thus ρ(A2DB2) = 0, a contradiction. Thus the matrix D is diagonal.

3. It remains to check that D = diag (d11, . . . , dnn) is indeed a scalar
matrix.

Assume that D is not scalar. Then there exists an index i such that
dii �= di+1 i+1. Let us consider the block-diagonal matrices

A3 =

⎡
⎣ Ii−1 O O

O L O
O O In−i−1

⎤
⎦

B3 =

⎡
⎣ Ii−1 O O

O M O
O O In−i−1

⎤
⎦

where L and M are the following 2 × 2-matrices:

L =
[

di+1 i+1 di i

0 0

]
, M =

[
1 0
−1 0

]
,

and Ik denotes the identity matrix of size k.

Then

A3B3 =

⎡
⎣ Ii−1 O O

O N O
O O In−i−1

⎤
⎦ ,

where N =
[

di+1 i+1−di i 0

0 0

]
. Thus, we have ρ(A3) = n − 1, ρ(B3) =

n− 1, ρ(A3B3) = n− 1 if and only if dii �= di+1 i+1, i.e., (A3, B3) ∈ Q3.
On the other hand,

A3DB3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d11

. . .
di−1 i−1

0 0
0 0

di+2 i+2

. . .
dnn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

implying that ρ(A3DB3D) = n− 2. Hence, (A3D, B3D) /∈ Q3. This is
a contradiction.



72 L.B. BEASLEY, A.E. GUTERMAN AND C.L. NEAL

Theorem 2.3. If F is an arbitrary field and T : Mn(F) → Mn(F)
is an invertible linear transformation, then T preserves the set Q3 if
and only if T (X) = αPXP−1 for some invertible matrix P ∈ Mn(F)
and nonzero scalar α ∈ F.

Proof. By Lemma 2.1, T preserves the set of rank-1 matrices. By
assumptions T is invertible. Thus, by Lemma 1.3, we have that T is a
(U, V )-operator. By Lemma 2.2, if T has the form T (X) = UXV , then
T (X) = αPXP−1 for some invertible matrix P .

Suppose T (X)=UXtV . Since similarity preserves Q3 we may assume
that T (X) = XtD where D = V U−1 is invertible. Suppose that k �= i.
Then (D−1)tEi,jEj,k = (D−1)tEi,k, i.e., ((D−1)tEij , Ej,k) ∈ Q, but
((D−1)tEi,j)tDEt

j,kD=Ej,iEk,j =O, so that (T ((D−1)tEi,j), T (Ej,k)) /∈
Q3. Thus T (X) = UXV does not preserve Q3.

Finally, we remark that linear preservers of Q3 may be singular and
nontrivial even over algebraically closed fields.

Example 2.4. Let F be an arbitrary field, and let the linear
transformation T : Mn(F) → Mn(F) be defined by T (E1,1) = E1,1,
T (E1,2) = E1,2 + E2,1, and T (Ei,j) = O for all (i, j) �= (1, 1) or (1, 2).

Let A, B ∈ Mn(F), say A =
[

a b ∗
∗ ∗ ∗

]
and B =

[
c d ∗
∗ ∗ ∗

]
. Then

T (A)T (B) =

⎡
⎣ a b 0

b 0 0
0 0 0

⎤
⎦

⎡
⎣ c d 0

d 0 0
0 0 0

⎤
⎦ =

⎡
⎣ ac + bd ad 0

bc bd 0
0 0 0

⎤
⎦ .

It is routine to show that T preserves Q3 since any pair in the image
of T is in Q3.

3. Preservers of the set Q4.

Lemma 3.1. If F is an arbitrary field and the linear transformation
T : Mn(F) → Mn(F) preserves the set Q4, then T preserves the set of
rank-n matrices.

Proof. Let A = O, and let B be any nonsingular matrix. Then,
ρ(A) = 0 and ρ(B) = n. Also, ρ(AB) = 0, so that ρ(AB) = ρ(A)+
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ρ(B)−n. It follows that ρ(T (A)T (B)) = ρ(T (A))+ρ(T (B))−n. That
is, 0 = 0 + ρ(T (B)) − n. It follows that ρ(T (B)) = n. That is, T
preserves nonsingular matrices.

Corollary 3.2. Let F be an algebraically closed field. Assume that
the linear transformation T : Mn(F) → Mn(F) preserves the set Q4.
Then T is invertible.

Proof. By Lemma 3.1 the transformation T preserves the set of invert-
ible matrices. Linear preservers of invertible matrices over algebraically
closed fields are nonsingular, see [7, Lemma 2.3] for the complex case
and [4, Theorem 2] for an arbitrary case. Hence, T is bijective.

Lemma 3.3. Let F be an arbitrary field and T : Mn(F) → Mn(F)
defined by T (X) = UXV for some invertible matrices U and V . Then
T preserves the set Q4 if and only if T (X) = αPXP−1 for some
invertible matrix P and nonzero scalar α ∈ F.

Proof. It is easy to see that transformation T (X) = αPXP−1

preserves Q4.

Similarity preserves Q4. Thus, as in the proof of Lemma 2.2, without
loss of generality we assume that T (X) = XD for some nonsingular
matrix D. It is enough to show that D is a scalar matrix.

1. We first show that D is diagonal. In order to do this we consider
the following matrices:

For any 1 ≤ i ≤ n we denote Ji = I − Ei,i. Let us take the matrices
Ai = Ei,i, Bi = Ji. We denote

Di = BiD =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1

d2
...

di−1

0
di+1

...
dn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;
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here dk is the kth row of the matrix D. One has that ρ(AiBi) = 0 =
ρ(Ai)+ρ(Bi)−n so that (Ai, Bi) ∈ Q4. It follows that ρ(AiDBiD) = O.
Since the ith row of AiDBiD is zero, and the ith row of diDi is the ith
row of AiDBiD = 0, we have that diDi is zero. So the ith row of D
is orthogonal to all columns of matrix Di. One has that ρ(Di) = n− 1
since D is invertible. But orthogonality gives a linear relation between
(n − 1) nonzero rows of matrix Di. Thus this relation is trivial, i.e.,
di,j = 0 for all j �= i. Since D is nonsingular we have that di,i �= 0.
That is, D is a nonsingular diagonal matrix.

2. In order to prove that D is scalar, we consider A′
i = Ei,i + Ei,i+1,

B′
i = E1,1 + · · · + Ei,i − Ei+1,i + Ei+2,i+2 + · · · + En,n. Then A′

iB
′
i =

Ei,i − Ei,i = O, ρ(A′
i) + ρ(B′

i) = 1 + (n − 1) = n. So we have that
(A′

i, B
′
i) ∈ Q4. Thus, (A′

iD, B′
iD) ∈ Q4. Since ρ(A′

iD) = ρ(A′
i)

and ρ(B′
iD) = ρ(B′

i), it follows that ρ(A′
iDB′

iD) = 0. Therefore,
A′

iDB′
i = O. On the other hand, one has

A′
iDB′

i = (Ei,i + Ei,i+1)(d11E1,1 + · · · + dnnEn,n)
× (E1,1 + · · · + Ei,i − Ei+1,i + Ei+2, i+2 + · · · + En,n)

= (diiEi,i + di+1 i+1Ei,i+1)
× (E1,1 + · · · + Ei,i − Ei+1,i + Ei+2, i+2 + · · · + En,n)

= (dii − di+1 i+1)Ei,i.

Hence, dii = di+1 i+1 for all i = 1, . . . , n. Thus D is a scalar matrix.

Theorem 3.4. Let F be an arbitrary field. Then the bijective linear
transformation T : Mn(F) → Mn(F) preserves the set Q4 if and only if
T (X) = αPXP−1 for some invertible matrix P ∈ Mn(F) and nonzero
scalar α ∈ F.

Proof. It is easy to check that if T (X) = αPXP−1 for some invertible
P ∈ Mn(F) then T preserves Q4.

By Lemma 3.1, T preserves the set of nonsingular matrices. Thus
by Lemma 1.3, T has the form T (X) = UXV since we assume its
invertibility. By Lemma 3.3, if T has the form T (X) = UXV , then
UV = D for some nonsingular scalar matrix D.
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Suppose T (X) = UXtV . Since similarity preserves Q3 we may
assume that T (X) = XtD where D = V U−1 is invertible. Note
that J t

i = (I − Ei,i)t = Ji for all i, i = 1, . . . , n. It is easily seen
that ((D−1)tEi,j , Jj) ∈ Q4, but ((((D−1)tEi,j)t)D, J t

jD) /∈ Q4 since
((D−1)tEi,j)tDJ t

jD = Ej,iJjD = Ej,iD �= O. Thus T (X) = UXtV
does not preserve Q4.

Corollary 3.5. Let F be an algebraically closed field. Then the
linear transformation T : Mn(F) → Mn(F) preserves the set Q4 if and
only if T (X) = αPXP−1 for some invertible matrix P ∈ Mn(F) and
nonzero scalar α ∈ F.

Proof. By Corollary 3.2, T is invertible. Hence Theorem 3.4 concludes
the proof.

4. Preservers of the set Q5.

Lemma 4.1. Let F be an arbitrary field and T : Mn(F) → Mn(F) a
bijective linear transformation that maps Q5 into Q5. Then T preserves
invertible matrices.

Proof. Consider the triple A, B, C, where A = O, B ∈ Mn(F) is
arbitrary, C ∈ Mn(F) is invertible. Then it is straightforward to check
that (A, B, C) ∈ Q5. Then (T (A), T (B), T (C)) ∈ Q5, that is

ρ(T (A)T (B)) + ρ(T (B)T (C)) = ρ(T (A)T (B)T (C)) + ρ(T (B)).

However, T (A) = O since A = O and T is linear. Thus one has

(1) ρ(T (B)T (C)) = ρ(T (B))

for all matrices B. Since T is bijective, it follows that T (C) is invertible.
Indeed, T (B) runs through all Mn(F) as far as B does. If T (C) is
singular, then it is a zero divisor in Mn(F). Thus there exists a nonzero
matrix B such that T (B)T (C) = O and equality (1) does not hold. It
is a contradiction.

Our next lemmas will show that preservers of Q5 are indeed invertible.
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Lemma 4.2. If F is an arbitrary field and T : Mn(F) → Mn(F) is
a linear transformation which preserves the set Q5, then there are no
rank-n matrices in kerT unless T ≡ O.

Proof. Suppose T preserves Q5 and T (A) = O for some A with
ρ(A) = n. Then ρ(AB)+ρ(BA) = ρ(ABA)+ρ(B) for any B ∈ Mn(F).
Thus (A, B, A) ∈ Q5, and hence (O, T (B), O) ∈ Q5, which implies that
T (B) = O. Thus, T ≡ O.

Lemma 4.3. If F is any field and A is an m × n matrix over F of
rank-k, then, for some positive integers k1 and k2 such that k1+k2 = k,
A is similar to a matrix of the form

⎡
⎢⎣

X O
Ok−k1,k O

Y O
Om−k−k2,k O

⎤
⎥⎦

where X is k1 × k and Y is k2 × k. Necessarily, ρ(X) = k1 and
ρ(Y ) = k2.

Proof. Let Q be a matrix such that QtAt is in reduced row echelon
form. Necessarily, QtAt has all zeros in rows k + 1, · · · , n. Thus AQ
has all zeros in columns k + 1, · · · , n. But then B = Q−1AQ has all
zeros in columns k + 1, · · · , n. So B =

[
B1 O

B2 O

]
where B1 is k × k. Let

P be the k × k matrix such that PB1 is in reduced row echelon form.
Let R be the (n − k) × k matrix such that

[
Ik O
R In−k

]
(P ⊕ In−k)B = C =

[
C1

C2

]
=

[
PB1 O

RPB1 + B2 O

]

so that if j is a pivot column of PB1, then the jth column of RPB1+B2

has all zero entries. Finally, let S be the (n− k)× (n− k) matrix such
that SC2 is in reduced row echelon form. Then,

(Ik ⊕ S)C = D =

⎡
⎢⎣

D1 O
Ok−k1,k O

D2 O
On−k−k2,k O

⎤
⎥⎦
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where D1 is k1 × k and D2 is k2 × k for some nonnegative integers k1

and k2 (k1 is the rank of B1).

Now,

(Ik ⊕ S)
[

Ik O
R In−k

]
(P ⊕ In−k)Q−1AQ(P ⊕ In−k)−1

×
[

Ik O
R In−k

]−1

(Ik ⊕ S)−1

= D(P−1 ⊕ In−k)
[

Ik O
−R In−k

]
(Ik ⊕ S−1)

=

⎡
⎢⎣

D1P
−1 O

Ok−k1,k O
D2P

−1 O
On−k−k2,k O

⎤
⎥⎦

has the desired form where X = D1P
−1 and Y = D2P

−1.

Lemma 4.4. If F is an arbitrary field and T : Mn(F) → Mn(F) is
a linear transformation which preserves Q5, then either T ≡ O or T is
invertible.

Proof. Suppose T �≡ 0, A ∈ kerT and ρ(A) ≥ ρ(Z) for all Z ∈ ker T .
Let ρ(A) = k and suppose k �= 0. By Lemma 4.2, k < n. Since every
similarity operator preserves Q5, by Lemma 4.3 we may assume that

A =

⎡
⎢⎣

A1 A2 O O
O O O O
A3 A4 O O
O O O O

⎤
⎥⎦

where A1 is k1 × k1, A4 is k2 × k2, k1 + k2 = k and k + k2 ≤ n.

Case 1. k1 = k. Here A =
[

A1 O

O O

]
. Let (i, j) be a pair such that

detA[{1, · · · , k} \ {i} | {1, · · · , k} \ {j}] �= 0. Let B = Ek+1,j + Ei,k+1.
Then ρ(AB) = ρ(BA) = 1 and ρ(ABA) = 0, so that (A, B, A) ∈ Q5.
Thus, T (B) = O. Expanding along the last row we obtain

det(A + B)[{1, · · · , k + 1} | {1, · · · , k + 1}]
= ± det(A + B)[{1, · · · , k} | {1, · · · , k + 1}\{j}],
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and then, expanding along the last column, we get

det(A + B)[{1, · · · , k + 1} | {1, · · · , k + 1}]
= ± det(A + B)[{1, · · · , k}\{i} | {1, · · · , k}\{j}]
= detA[{1, · · · , k} \ {i} | {1, · · · , k} \ {j}] �= 0.

That is, ρ(A+B) > k and T (A+B) = O, a contradiction to the choice
of A.

Case 2. k1 < k. Here

A =

⎡
⎢⎣

A1 A2 O O
O O O O
A3 A4 O O
O O O O

⎤
⎥⎦

and A1 is k1 × k1. Let B = Ek,k + Ek,k+1 + Ek+1,k + Ek+1,k+1. Then,
ρ(AB) = ρ(BA) = 1, and ρ(ABA) ≤ 1. Now, by the Frobenius
inequality, 2 = ρ(AB) + ρ(BA) ≤ ρ(ABA) + ρ(B) = ρ(ABA) + 1.
Thus, ρ(ABA) ≥ 1. Thus ρ(ABA) = 1, and hence (A, B, A) ∈ Q5.
Consequently T (B) = O. Expanding the determinant along the last
column three times and using its additivity by (k + 1)st row we have

det(A + B)[{1, · · · , k1, k, · · · , k + k2} | {1, · · · , k + 1}]
= − det(A + B)[{1, · · · , k1, k + 1, · · · , k + k2} | {1, · · · , k}]

+ det(A + B)[{1, · · · , k1, k, k + 2, · · · , k + k2} | {1, · · · , k}]
= −(detA[{1, · · · , k1, k + 1, · · · , k + k2} | {1, · · · , k}]

+ detA[{1, · · · , k1, k + 2, · · · , k + k2} | {1, · · · , k − 1}])
+ detA[{1, · · · , k1, k + 2, · · · , k + k2} | {1, · · · , k − 1}]

= − detA[{1, · · · , k1, k + 1, · · · , k + k2} | {1, · · · , k}] �= 0,

since ρ(A) = k. That is, ρ(A + B) > k and T (A + B) = O, a
contradiction to the choice of A.

Since we have reached a contradiction in each case, we conclude that
k = 0 and the lemma follows.
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Lemma 4.5. Let F be an arbitrary field, T : Mn(F) → Mn(F) and
T (X) = UXV for some invertible matrices U and V . Then T preserves
the set Q5 if and only if T (X) = αPXP−1 for some invertible matrix
P ∈ Mn(F) and nonzero scalar α ∈ F.

Proof. Let us consider arbitrary matrices (Y, Z) ∈ Q3. If ρ(Y ) ≤
ρ(Z), then ρ(Y Z) = ρ(Y ). Thus, ρ(OY ) + ρ(Y Z) = ρ(OY Z) +
ρ(Y ), so that (O, Y, Z) ∈ Q5. Thus, ρ(T (O)T (Y )) + ρ(T (Y )T (Z)) =
ρ(T (O)T (Y )T (Z)) + ρ(T (Y )). That is, ρ(T (Y )T (Z)) = ρ(T (Y )), and
since T (X) = UXV , ρ(T (Y )) ≤ ρ(T (Z)). Thus, (T (Y ), T (Z)) ∈ Q3.
If ρ(Z) ≤ ρ(Y ), (Y, Z, O) ∈ Q5, and similar to the above argument,
(T (Y ), T (Z)) ∈ Q3. Thus, T preserves Q3. By Theorem 2.3 the lemma
follows.

Theorem 4.6. Let F be an arbitrary field and T : Mn(F) → Mn(F)
a bijective linear transformation. Then T preserves the set Q5 if and
only if T (X) = αPXP−1 for some invertible matrix P ∈ Mn(F) and
nonzero scalar α ∈ F.

Proof. If T (X) = αPXP−1 for some invertible P ∈ Mn(F), then
clearly T preserves Q5.

By Lemma 4.1, T preserves the set of nonsingular matrices. Thus,
by Lemma 1.3, T is a (U, V )-operator.

Suppose T (X) = UXtV . Since similarity preserves Q3 we may
assume that T (X) = XtD where D = V U−1 is invertible. It is easily
seen that ((D−2)tEi,j , I, Jj) ∈ Q5, but (T ((D−2)tEi,j), T (I), T (Jj)) /∈
Q5 since ((D−2)tEi,j)tDIDJ t

jD = Ej,iJjD = Ej,iD �= O. Thus,
T (X) = UXtV does not preserve Q5. Thus, by Lemma 4.5, the
theorem follows.

Corollary 4.7. If F is an arbitrary field and T : Mn(F) → Mn(F)
is a linear transformation, then T preserves the set Q5 if and only if
T (X) = αPXP−1 for some invertible matrix P ∈ Mn(F) and scalar
α ∈ F.
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Proof. By Lemma 4.4, T ≡ O (here α = 0) or T is invertible. By
Theorem 4.6 the result follows.
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Arch. Math. 1 (1949), 282 287.

6. Alexander Guterman, Linear preservers for matrix inequalities and partial
orderings, Linear Algebra Appl. 331 (2001), 75 87.

7. M Marcus and R. Purves, Linear transformations on algebras of matrices II,
The invariance of the elementary symmetric functions, Canad. J. Math. 11 (1959),
383 396.

Department of Mathematics, Utah State University, Logan, Utah 84322-
3900
E-mail address: lbeasley@math.usu.edu

Faculty of Algebra, Department of Mathematics and Mechanics, Moscow
State University, Moscow, 119992, Russia,
E-mail address: guterman@list.ru

Mathematical Sciences, CAS 154E, University of Alaska Anchorage,
3211 Providence Drive, Anchorage, AK 99508-4614
E-mail address: coraneal@aol.com


