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WEAKLY KRULL AND RELATED DOMAINS
OF THE FORM D+M , A+XB[X] AND A+X2B[X]

DAVID F. ANDERSON, GYU WHAN CHANG AND JEANAM PARK

ABSTRACT. Let T = K + M and R = D + M be integral
domains, where K is a field, M is a nonzero maximal ideal
of T , and D is a proper subring of K. We show that R is a
weakly Krull domain, respectively, WFD, AWFD, GWFD, if
and only if ht M = 1, D is a field, and T is a weakly Krull
domain, respectively, WFD, AWFD, GWFD. Let A � B
be an extension of integral domains, R = A + XB[X], and
D = A + X2B[X]. We also show that R is a weakly Krull
domain if and only if D is a weakly Krull domain, if and only
if BA−{0} is a field, qf(A) ∩ B = A, and B[X] is a weakly
Krull domain; that R is a WFD, respectively AWFD, if and
only if qf(A) ∩ B = A, B[X] is a WFD, respectively AWFD,
and for each 0 �= b ∈ B, there is a unit u of B such that ub ∈ A
(respectively, an integer n = n(b) ≥ 1 and a unit u of B such
that ubn ∈ A); and that if charB �= 0, then R is an AWFD if
and only if D is an AWFD.

1. Introduction. In this paper, we determine when three different
pullback constructions yield weakly Krull domains, weakly factorial
domains, or almost weakly factorial domains. The first two pullbacks
we consider are the well known D + M and A + XB[X] constructions,
and the third concerns domains of the form A + X2B[X].

Let R be an integral domain. Then R is called a weakly Krull domain
if R = ∩P∈X1(R)RP , where X1(R) is the set of height-one prime ideals
of R, and R has finite character. Examples of weakly Krull domains
include Krull domains, one-dimensional Noetherian domains, and one-
dimensional semi-quasi-local domains. It is well known that if R is
weakly Krull, then t-dim R = 1 [9, Lemma 2.1], that is, every prime
t-ideal of R has height-one. A nonzero element a of R is said to be
primary if aR is a primary ideal of R. As in [8], we will call R a weakly
factorial domain (WFD) if each nonzero nonunit of R is a product of
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primary elements. In [11, Theorem], it was shown that R is a WFD if
and only if R is a weakly Krull domain and Clt(R) = 0, where Clt(R)
is the t-class group of R. This is the analog of the following well known
characterization of UFDs: R is a UFD if and only if R is a Krull domain
and Cl (R) = 0, where Cl (R) is the divisor class group of R.

As in [9], an integral domain R is called an almost weakly factorial
domain (AWFD) if for each nonzero nonunit x ∈ R, there is an integer
n = n(x) ≥ 1 such that xn is a product of primary elements. A Krull
domain R is called an almost factorial domain if Cl (R) is torsion. As
the weakly Krull domain analog of this, R is an AWFD if and only if
R is a weakly Krull and Clt(R) is torsion [9, Theorem 3.4]. It is easy
to show that a Krull domain R is an almost factorial domain if and
only if every nonzero prime ideal of R contains a primary element [5,
Proposition 3.1]. But it is not known whether R is an AWFD if and
only if every nonzero prime ideal of R contains a primary element. As
in [5], we will call R a generalized weakly factorial domain (GWFD)
if every nonzero prime ideal of R contains a primary element. It is
known that WFD ⇒ AWFD ⇒ GWFD ⇒ weakly Krull domain ⇒
t-dim R = 1.

Let T = K + M be an integral domain, where K is a field and M
is a nonzero maximal ideal of T . If D is a proper subring of K, then
R = D+M is a proper subring of T . This construction has been studied
extensively and has proved very useful for constructing examples, see
[10, 13, 15, 22]. In Section 2, we show that R is a weakly Krull
domain, respectively WFD, AWFD, GWFD, if and only if htM = 1,
D is a field, and T is a weakly Krull domain, respectively WFD, AWFD,
GWFD.

Let A � B be an extension of integral domains. Then R = A+XB[X]
and D = A + X2B[X] are proper subrings of B[X] and B[X2, X3],
respectively. The A + XB[X] construction has also proved useful for
constructing examples, see [2, 22, 24]. In Section 3, we prove that R is
a weakly Krull domain if and only if BA−{0} is a field, qf(A)∩B = A,
and B[X] is a weakly Krull domain; and that R is a WFD, respectively
AWFD, if and only if qf(A) ∩ B = A, B[X] is a WFD, respectively
AWFD, and for each 0 �= b ∈ B, there is a u ∈ U(B) such that
ub ∈ A, respectively an integer n = n(b) ≥ 1 and u ∈ U(B) such
that ubn ∈ A. Now let {Xα} be a nonempty set of indeterminates
over A, Nv = {f ∈ A[{Xα}]|(Af )v = A}, B = A[{Xα}]Nv

, and
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R = A + XB[X]. As corollaries, we have that R is a WFD if and
only if A is a weakly factorial GCD-domain and that if A is integrally
closed, then R is an AWFD if and only if A is an almost weakly factorial
AGCD-domain.

In the final section, we show that D = A+X2B[X] is a weakly Krull
domain if and only if BA−{0} is a field, qf(A) ∩ B = A, and B[X] is
a weakly Krull domain. Unlike the R = A + XB[X] case mentioned
above, D = A + X2B[X] is never a WFD and is not an AWFD if
char B = 0. However, we do show that if char B �= 0, then D is an
AWFD if and only if qf(A) ∩ B = A, B[X] is an AWFD, and for each
0 �= b ∈ B, there is an integer n = n(b) ≥ 1 and u ∈ U(B) such that
ubn ∈ A.

All rings R considered in this paper are commutative integral domains
with quotient field qf(R), U(R) is the group of units of R, and
X1(R) denotes the set of height-one prime ideals of R. As usual, for
f = anXn+ · · ·+a0 ∈ qf(R)[X], the content of f is the fractional ideal
Af = (a0, . . . , an). Recall that, for nonzero fractional ideals I and J
of R, (I : J) = {x ∈ qf(R)|xJ ⊆ I}, I−1 = (R : I) = {x ∈ qf(R)|xI ⊆
R}, Iv = (I−1)−1, and It = ∪{(a1, . . . , an)v|0 �= (a1, . . . , an) ⊆ I}.
We say that I is a divisorial (or v-)ideal, respectively t-ideal, if Iv = I,
respectively It = I. Note that any divisorial ideal is also a t-ideal. It
is well known that every proper integral t-ideal is contained in some
(necessarily prime) t-ideal maximal among proper integral t-ideals, that
every prime ideal minimal over a t-ideal is a t-ideal, and that for nonzero
fractional ideals I, J of R, (IJ)t = (IJt)t = (ItJt)t and (It)t = It.

A fractional ideal I of R is said to be t-invertible if (II−1)t = R.
If a fractional ideal I is t-invertible, then It = Jt for some finitely
generated fractional ideal J , and hence It is a divisorial ideal. The
set of t-invertible fractional t-ideals of R forms an abelian group under
the t-product I ∗ J = (IJ)t. The t-class group of R is Clt(R) the
group of t-invertible fractional t-ideals of R modulo its subgroup of
principal fractional ideals. For R a Krull domain, Clt(R) = Cl (R);
while for R a Prüfer domain or one-dimensional integral domain,
Clt(R) = C(R) = Pic(R), the ideal class group, or Picard group,
of R. The reader is referred to [16, Sections 32 and 34], [17] and [24]
for the t-operation; to [10, 13, 15, 22] for D +M constructions; to [2,
22, 25] for A + XB[X] constructions; to [1, 7, 10, 14] for the t-class
group; and to [16, 20] for standard definitions and notations.
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2. The subring R = D + M of T = K + M . Throughout this
section, T = K+M and R = D+M are integral domains, where K is a
field, M is a nonzero maximal ideal of T , and D is a proper subring of K.
In this section, we prove that R is a weakly Krull domain, respectively
WFD, AWFD, GWFD, if and only if htM = 1, D is a field, and T is
a weakly Krull domain, respectively WFD, AWFD, GWFD.

The following results are well known. For easy reference, we collect
them in two lemmas.

Lemma 2.1. Let S be a multiplicative subset of an integral domain
R and I a nonzero fractional ideal of R. Then

(1) (IRS)t = (ItRS)t, and if I is t-invertible, then (IRS)t = ItRS.

(2) If R is a weakly Krull domain, respectively WFD, AWFD, GWFD,
then RS is a weakly Krull domain, respectively WFD, AWFD, GWFD.

Proof. (1) is in [19, Lemma 3.4] and [14, Lemma 2.9]. For (2), see
[7, Proposition 4.7 and Theorem 4.8], and use the fact that if aR is a
primary ideal, then so is aRS .

Lemma 2.2. Let T = K + M and R = D + M , where K is a field,
M is a nonzero maximal ideal of T , and D is a proper subring of K.

(1) The height of M as a prime ideal of R is equal to its height as a
prime ideal of T .

(2) M is a divisorial ideal, and hence a t-ideal, of R.

Proof. These are [10, Proposition 2.1 (2) and (3)].

Theorem 2.3. Let T = K +M and R = D +M , where K is a field,
M is a nonzero maximal ideal of T , and D is a proper subring of K.
Then R is a weakly Krull domain if and only if ht M = 1, D is a field,
and T is a weakly Krull domain.

Proof. ⇒. Assume that R is a weakly Krull domain. Note that
M is a t-ideal of R by Lemma 2.2 (2), and hence ht M = 1 because
t-dim R = 1. Assume that D is not a field, and let aD be a proper
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nonzero ideal of D. Then aD + M = a(D + M) is a proper nonzero
principal ideal of R. Let Q be a prime ideal of R minimal over aD+M ;
then Q is a prime t-ideal of R and M � Q. Since M is a t-ideal by
Lemma 2.2 (2), t-dim R ≥ 2, which is contrary to the fact that t-
dimR = 1. Thus D is a field. (Here is another proof: It is necessary
that ht M = 1. Otherwise, the intersections of R with respect to the
height-one prime ideals would be T . Similarly, it is necessary that D
is a field. Otherwise the same intersection would be qf(D) + M .)

Next, we show that T is weakly Krull. Let Q be a prime ideal of T
such that Q �= M , and let P = Q ∩ R. Then P is a prime ideal of
R such that P �= M and RP = TQ [10, Proposition 2.1 (2)]. Hence
TQ = RP is weakly Krull by Lemma 2.1 (2). Moreover, since ht M = 1,
T = ∩Q∈X1(T )TQ. Since T is an overring of R and R is weakly Krull,
the intersection T = ∩Q∈X1(T )TQ also has finite character, and hence
T is a weakly Krull domain.

⇐. Assume that ht M = 1, D is a field and T is weakly Krull. Let
P be a prime ideal of R such that P �= M . Then T ⊆ RP because for
any k ∈ K, k = (km)/m ∈ RP for m ∈ M − P . Thus RP = TPRP ∩T .
Since T is weakly Krull and htM = 1, R = ∩P∈X1(R)RP . Moreover,
since T contains R and for each P ∈ X1(R)−{M}, RP = TQ for some
Q ∈ X1(T ), the intersection has finite character. Thus R is a weakly
Krull domain.

The case where T is quasilocal in our next theorem was observed in
[5, Remark 2.5 (3)].

Theorem 2.4. Let T = K +M and R = D +M , where K is a field,
M is a nonzero maximal ideal of T , and D is a proper subring of K.
Then R is a GWFD if and only if ht M = 1, D is a field, and T is a
GWFD.

Proof. ⇒. Assume that R is a GWFD. Since a GWFD is weakly
Krull [5, Corollary 2.3], ht M = 1, D is a field, and T is weakly Krull
by Theorem 2.3. Thus it suffices to show that each height-one prime
ideal of T is the radical of a principal ideal [5, Theorem 2.2]. Let Q be
a height-one prime ideal of T and let P = Q ∩ R.
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Case 1. P = M . Since R is a GWFD and M is a height-one prime
ideal of R, M =

√
xR for some x ∈ R, and hence M =

√
xT .

Case 2. P �= M . Then TQ = RP and ht P = 1. Thus P =
√

aR for
some a ∈ R. Assume that Q′ is a prime ideal of T containing a. Then
Q′ ∩R is a prime ideal of R containing a, and hence P ⊆ Q′ ∩R. Thus
Q ⊆ Q′, which implies that Q =

√
aT .

⇐. Assume that D is a field, ht M = 1, and T is a GWFD. Since R is
weakly Krull by Theorem 2.3, it suffices to show that every height-one
prime ideal of R is the radical of a principal ideal [5, Theorem 2.2]. Let
P be a height-one prime ideal of R.

Case 1. P = M . Since M is a height-one prime ideal of T , M =
√

xT
for some x ∈ M � R, and hence M =

√
xR.

Case 2. P �= M . Then RP = TPRP ∩T ; so PRP ∩ T is a height-one
prime ideal of T , and thus PRP ∩ T =

√
xT for some x ∈ T . Since

P �= M , x �∈ M , and hence x = a+m = a(1+(m/a)) for some nonzero
a ∈ K. Note that since a is a unit in T , xT = (1/a)xT = (1+(m/a))T .
Also, note that 1 + (m/a) ∈ R and PRP ∩ T is the unique height-one
prime ideal of T containing 1+(m/a). Thus P is the unique height-one
prime ideal of R containing 1+(m/a), and hence P =

√
(1 + (m/a))R.

Theorem 2.5. Let T = K +M and R = D +M , where K is a field,
M is a nonzero maximal ideal of T , and D is a proper subring of K.
Then R is an AWFD if and only if ht M = 1, D is a field, and T is an
AWFD.

Proof. ⇒. Assume that R is an AWFD. By Theorem 2.3 and [9,
Theorem 3.4], it suffices to show that if J is a t-invertible t-ideal of T ,
then (Jn)t is principal for some integer n ≥ 1, i.e., Clt(T ) is torsion.
Since M is a t-ideal of T (note that htM = 1) and J is t-invertible,
JJ−1 � M . Thus there is a u ∈ J−1 such that uJ � M . Replacing
J with uJ , we may assume that J � M . Let x+m ∈ K +M . If
x = 0, then x+m ∈ M � R; and if x �= 0, then x is a unit of T and
1+(m/x) ∈ D+M = R. Hence there is a finitely generated ideal I of
R such that J = (IT )t.
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Since J � M and M is a t-ideal of T , I � M , and hence IRM = RM .
For P ∈ X1(R) − {M}, let Q = PRP ∩ T . Then Q ∈ X1(T ) and
RP = TQ. Note that JTQ is principal [19, Corollary 2.7]. Thus
(IRP )t = (ITQ)t = ((IT )tTQ)t = (IT )tTQ = JTQ is principal by
Lemma 2.1 (1) (note that Q is a prime t-ideal of T and J is t-invertible).
Hence I is t-locally principal. Since I is finitely generated, I is t-
invertible [19, Corollary 2.7], and thus (In)t = aR for some a ∈ R and
integer n ≥ 1 since Clt(R) is torsion [9, Theorem 3.4].

We claim that (Jn)t = aT . Let Q ∈ X1(T ) − {M} and P = Q ∩ R.
Then TQ = RP and (Jn)tTQ = (((IT )t)n)tTQ = (((IT )n)tTQ)t =
((IT )nTQ)t = ((ITQ)n)t = ((IRP )n)t = (InRP )t = ((In)tRP )t =
(aRP )t = aRP = aTQ, Lemma 2.1 (1). Also, since I � M , aT � M ,
and hence (Jn)tTM = TM = (aT )TM . Thus (Jn)t = ∩Q∈X1(T )(Jn)tTQ

= ∩Q∈X1(T )(aT )TQ = aT [19, Proposition 2.8].

⇐. Assume that ht M = 1, D is a field, and T is an AWFD. Let I
be a t-invertible t-ideal of R. As in the beginning of the above proof,
we may assume that I � M . Note that for each Q ∈ X1(T ) − {M},
Q ∩ R ∈ X1(R) and RQ∩R = TQ. Thus II−1 � P for all P ∈ X1(R)
implies that II−1 � Q for all Q ∈ X1(T ). Hence IT is a t-invertible
ideal of T . Since T is an AWFD, (((IT )t)n)t = (InT )t = aT for some
integer n ≥ 1 and a = b + m ∈ K + M = T . Since I � M , a /∈ M and
hence b �= 0. Thus aT = (1 + (m/b))T and 1 + (m/b) ∈ R; so we may
assume that a ∈ R. Note that (In)t is a t-ideal of R, and that for P ∈
X1(R)− {M} and Q := PRP ∩ T , (InRP )t = (InTQ)t = ((InT )tTQ)t,
Lemma 2.1 (1). So by [19, Proposition 2.8], we have

(In)t = ∩P∈X1(R)(In)tRP

= (In)tRM ∩ (∩{(In)tRP |P ∈ X1(R) and P �= M})
= RM ∩ (∩{(In)tTQ|Q ∈ X1(T ) and Q �= M})
= aRM ∩ (∩{aTQ|Q ∈ X1(T ) and Q �= M})
= ∩P∈X1(R)aRP = aR.

Hence R is an AWFD.

The proof of Theorem 2.5 yields the following theorem as a special
case for n = 1. The “⇐” implication in Theorem 2.6 also follows from
Theorem 2.3 and [10, Proposition 3.11] since R is a WFD if and only
if R is weakly Krull and Clt(R) = 0 [11, Theorem].
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Theorem 2.6. Let T = K + M and R = D + M , where K is a
field, M is a nonzero maximal ideal of T and D is a proper subring of
K. Then R is a WFD if and only if ht M = 1, D is a field and T is a
WFD.

Remark 2.7. Let T = K +M and R = D +M , where K is a field, M
is a nonzero maximal ideal of T , and D is a proper subring of K.

(a) Then R is Noetherian if and only if T is Noetherian and D is a field
with [K : D] < ∞ [15, Theorem 4]. Thus for T = C[X] = C+XC[X],
by Theorem 2.6 we have that R1 = R+ XC[X] is a Noetherian WFD,
while R2 = Q + XC[X] is a non-Noetherian WFD.

(b) It is well known that dimR = max{dim D+ ht M , dimT}. Thus
dimR = dim T when D is a subfield of K. We next give an example
where R is weakly Krull and dimR = 2 (for more details, see [18,
Examples 28 and 29, pp. 62 65]). Let K be any field, X and Y
indeterminates over K, and S = K[X, Y ]. Let T1 ⊂ K(X, Y ) be a
DVR with maximal ideal P such that T1 = K + P with (X, Y )S ⊂ P ,
and let T2 = K[X, Y ](X−1,Y ). Then T = T1 ∩ T2 is a two-dimensional
Noetherian UFD with exactly two maximal ideals, M = P ∩ T and
N = (X − 1, Y )(X−1,Y ) ∩ T , where ht M = 1 and ht N = 2. Note
that T = K + M = K + N . Let k be a proper subfield of K. By
Theorem 2.3, R = k + M is weakly Krull (in fact, a WFD, but not a
UFD), while A = k+N is not weakly Krull. Also, it is possible to have
R be Noetherian and/or integrally closed by suitable choice of k. This
construction may be easily generalized to obtain a UFD of the form
T = K + M , where dimT is any specified positive integer or infinity
and ht M = 1. Thus R = k +M will be weakly Krull (a WFD, but not
a UFD) with dim R =dim T and ht M = 1.

3. The ring R = A+XB[X]. Let A � B be an extension of integral
domains, and let X be an indeterminate over B. Let R = A + XB[X];
then R is the subring of B[X] whose constant terms are in A. In this
section, we show that R is a weakly Krull domain if and only if BA−{0}
is a field, qf(A) ∩ B = A, and B[X] is a weakly Krull domain; that R
is a WFD, respectively AWFD, if and only if qf(A)∩B = A, B[X] is a
WFD, respectively AWFD, and for each 0 �= b ∈ B, there is a u ∈ U(B)
such that ub ∈ A, respectively an integer n = n(b) ≥ 1 and u ∈ U(B)
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such that ubn ∈ A. Let {Xα} be a nonempty set of indeterminates
over A, Nv = {f ∈ A[{Xα}]|(Af )v = A} and B = A[{Xα}]Nv

. As
corollaries, we have that R = A + XB[X] is a WFD if and only if A
is a weakly factorial GCD-domain and that if A is integrally closed,
then R is an AWFD if and only if A is an almost weakly factorial
AGCD-domain.

We first determine when XB[X] is a maximal t-ideal of R.

Lemma 3.1. Let A � B be an extension of integral domains and
R = A + XB[X]. Then (R : XB[X]) = {(1/X)f(X)|f(X) ∈ (A :
B) + XB[X]}.

Proof. It is clear that {(1/X)f(X)|f(X) ∈ (A : B) + XB[X]} is con-
tained in (R : XB[X]). For the converse, let u ∈ (R : XB[X]). Then
uXB[X] ⊆ R � B[X]. Thus uX ∈ B[X], and hence u = (1/X)f(X)
for some f(X) ∈ B[X]. Thus f(X)B[X] = (1/X)f(X)XB[X] =
uXB[X] ⊆ A + XB[X]. Hence f(0)B ⊆ A; so f(0) ∈ (A : B). Thus
f(X) ∈ (A : B) + XB[X], which completes the proof.

Lemma 3.2 [3, Lemma 2.2]. Let A � B be an extension of integral
domains and R = A+XB[X]. Then XB[X] is a divisorial prime ideal
of R.

Proof. Clearly XB[X] is a prime ideal of R. Assume that XB[X] �
(XB[X])v and let a + Xb(X) ∈ (XB[X])v − XB[X]. Then a �= 0 and
(a + Xb(X))(R : XB[X]) ⊆ A + XB[X].

Case 1. (A : B) = 0. Then (R : XB[X]) = B[X] by Lemma 3.1.
Thus (a + Xb(X))B[X] ⊆ A + XB[X]. In particular, aB ⊆ A, and
hence a ∈ (A : B) = 0, a contradiction.

Case 2. (A : B) �= 0. Let 0 �= c ∈ (A : B) and b′(X) ∈ B[X];
then (1/X)(c + Xb′(X)) ∈ (R : XB[X]) by Lemma 3.1. Thus
(a + Xb(X))(1/X)(c + Xb′(X)) ∈ A + XB[X] � B[X], and hence
(1/X)ac ∈ B[X], a contradiction.

Thus XB[X] = (XB[X])v.
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Lemma 3.3. Let A � B be an extension of integral domains and
R = A + XB[X]. Then XB[X] is a maximal t-ideal of R if and only
if qf(A) ∩ B = A.

Proof. (⇒). Assume that XB[X] is a maximal t-ideal of R and
qf(A) ∩B �= A. Let a/b ∈ (qf(A) ∩ B)− A; then a/b(bA + XB[X]) ⊆
A + XB[X]. Thus R � (bA + XB[X])−1, and hence XB[X] �
(bA + XB[X])v � R, which is contrary to the fact that XB[X] is
a maximal t-ideal of R. Thus qf(A) ∩ B = A.

(⇐). Suppose that qf(A) ∩ B = A. Let 0 �= a ∈ A. For
u ∈ (a, X)−1, ua ∈ R ⊆ B[X], and hence u ∈ qf(B)[X]. Also, since
uX ∈ R ⊆ B[X], u ∈ B[X]. If u(0) = 0, then u ∈ XB[X] ⊆ R. If
u(0) �= 0, then u(0)a ∈ A, and hence u(0) ∈ a−1A ⊆ qf(A). Thus
u(0) ∈ qf(A) ∩ B = A; so u ∈ A + XB[X] = R. Hence (a, X)−1 = R,
and thus (a, X)v = R, which implies that (aA + XB[X])t = R.
Therefore XB[X] is a maximal t-ideal of R.

It is clear that XB[X] is a height-one prime ideal of B[X]. But
this need not be true as a prime ideal of R. In fact, ht R(XB[X]) =
dimBA−{0}[X] [25, Lemma 2.6], and hence ht R(XB[X]) = 1 if and
only if BA−{0} is a field. In particular, XB[X] is a height-one maximal
t-ideal of R if and only if qf(A) ∩ B = A and BA−{0} is a field. Also,
recall that B[X] is weakly Krull if and only if B is a weakly Krull
UMT-domain [7, Proposition 4.11]. (As in [17], an integral domain B
is said to be a UMT-domain if every nonzero prime ideal of B[X] which
contracts to zero in B is a maximal t-ideal.)

Theorem 3.4. Let A � B be an extension of integral domains and
R = A + XB[X]. Then the following statements are equivalent.

(1) R is a weakly Krull domain.

(2) XB[X] is a height-one maximal t-ideal of R and B[X] is a weakly
Krull domain.

(3) BA−{0} is a field, qf(A) ∩ B = A, and B[X] is a weakly Krull
domain.
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Proof. (1) ⇒ (2). Let S = {Xn}n≥0; then RS = B[X]S =
B[X, X−1]. Since R is weakly Krull, RS = B[X]S is also weakly Krull
by Lemma 2.1 (2). Moreover, since B[X] = B[X]S ∩ B[X]XB[X] and
XB[X] is a height-one prime ideal of B[X], B[X] is weakly Krull.
Also, since R is weakly Krull and XB[X] is a t-ideal of R, XB[X] is a
height-one maximal t-ideal of R.

(2) ⇔ (3). This follows from Lemma 3.3 and [25, Lemma 2.6].

(3) ⇒ (1). We show that R = RS ∩ RXB[X], where S = {Xn}n≥0.
Let f = h/g ∈ RS ∩ RXB[X], where f ∈ B[X], h ∈ R, and g ∈
R − XB[X]. If f(0) = 0, then f ∈ XB[X] � R. If f(0) �= 0, then
f(0) = h(0)/g(0) ∈ B ∩ q(A) = A. Thus f(X) ∈ A + XB[X] = R,
and hence R = RS ∩ RXB[X]. Thus R is a weakly Krull domain
since RS = B[X]S is weakly Krull (Lemma 2.1 (2)) and RXB[X] is
one-dimensional quasilocal, and hence weakly Krull, [25, Lemma 2.6].

Theorem 3.5. Let A � B be an extension of integral domains and
R = A + XB[X]. Then the following statements are equivalent.

(1) R is an AWFD.

(2) XB[X] is a (height-one) maximal t-ideal of R, B[X] is an AWFD,
and for each 0 �= b ∈ B, there is an integer n = n(b) ≥ 1 and a ∈ A
such that aB = bnB.

(3) qf(A) ∩ B = A, B[X] is an AWFD and, for each 0 �= b ∈ B,
there is an integer n = n(b) ≥ 1 and u ∈ U(B) such that ubn ∈ A.

Proof. (1) ⇒ (2). Assume that R is an AWFD. Since an AWFD is
weakly Krull [9, Theorem 3.4], XB[X] is a (height-one) maximal t-ideal
of R and B[X] is weakly Krull by Theorem 3.4. Let S = {Xn}n≥0;
then RS = B[X]S , and hence B[X]S is an AWFD by Lemma 2.1 (2).
Moreover, since X is a prime element of B[X], Clt(B[X]) ∼= Clt(B[X]S)
is torsion [7, Corollary 4.9]. Thus, since B[X] is weakly Krull, B[X] is
an AWFD [9, Theorem 3.4].

Let 0 �= b ∈ B. Then bB ∩ A �= 0 since BA−{0} is a field by
Theorem 3.4. For 0 �= c ∈ bB ∩ A, let I = (c, bX) be the ideal of
R generated by c and bX. We claim that I is t-invertible. Since I is
finitely generated, it suffices to show that I is t-locally principal [19,
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Corollary 2.7]. Let P be a maximal t-ideal of R. If P = XB[X],
then IRP = RP since c /∈ P . Assume that P �= XB[X]. Then
PRS � RS , and hence IRP = (IRS)PRS

= (bRS)PRS
= bRP (note

that IRS = IB[X]S = (c, b)B[X]S = bB[X]S = bRS). Thus I, and
hence It, is t-invertible. Since R is an AWFD, there is an integer n ≥ 1
such that (In)t = aR for some a ∈ R [9, Theorem 3.4]. Also, since
cn ∈ (In)t, a ∈ A. Thus aB[X]S = aRS = (In)tRS = (InRS)t =
((IRS)n)t = ((bRS)n)t = (bnRS)t = bnRS = bnB[X]S (the third
equality follows from the fact that (In)t is t-invertible, Lemma 2.1 (1).
Thus aB = aB[X]S ∩ B = bnB[X]S ∩ B = bnB.

(2) ⇒ (3). Let 0 �= b ∈ B. Then bnB = aB for some a ∈ A and integer
n ≥ 1 by the assumption. Thus ubn = a ∈ A for some u ∈ U(B). Also,
since XB[X] is a maximal t-ideal of R, qf(A)∩B = A by Lemma 3.3.

(3) ⇒ (1). We first show that: (#) if gB[X] is primary for 0 �= g ∈ R,
then so is gR. Note that BA−{0} is a field since bB ∩ A �= for all
0 �= b ∈ B. Also, since an AWFD is weakly Krull [9, Theorem 3.4], R
is weakly Krull (Theorem 3.4), and hence t-dimR = 1 [9, Lemma 2.1].
Thus to prove that gR is primary, it suffices to show that

√
gR is a prime

ideal [5, Lemma 2.1]. If
√

gB[X] = XB[X], then
√

gR = XB[X].
Assume that

√
gB[X] �= XB[X] and let S = {Xn}n≥0. Then g(0) �= 0

and gRS ∩ R ⊆ gB[X]S ∩ B[X] = gB[X] since gB[X] is primary.
Hence if h ∈ gRS ∩ R, then h = gb(X) for some b(X) ∈ B[X]. If
b(0) = 0, then b(X) ∈ XB[X] � R, and hence h ∈ gR. If b(0) �= 0,
then b(0) = h(0)/g(0) ∈ qf(A) ∩ B = A. Thus b(X) ∈ R, and
hence h ∈ gR. Thus gRS ∩ R = gR. Also, since

√
gRS is a prime

ideal,
√

gR =
√

gRS ∩ R is a prime ideal (note that gB[X], and hence
gB[X]S = gRS is primary).

Let 0 �= f ∈ R. Since R � B[X] and B[X] is an AWFD, there is
an integer n ≥ 1 such that fn = Xmf1 · · · fl for some integer m ≥ 0
and primary elements fi of B[X] with each fi(0) �= 0. Also, since
fi(0) ∈ B, there is an integer ei ≥ 1 and ui ∈ U(B) such that
uif

ei
i (0) ∈ A. Let e = e1 · · · el, êi = e/ei, u = uê1

1 · · ·uêl

l , and
gi = (uif

ei
i )êi . Then gi ∈ R and ufen = Xemg1 · · · gl. Note that√

giB[X] =
√

(uif
ei
i )êiB[X] =

√
fiB[X], t-dim R = 1, and gi ∈ R.

Thus giB[X] is primary [5, Lemma 2.1], and hence giR is primary by
(#).
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Case 1. m ≥ 1. Then fen = (u−1Xem)g1 · · · gl. Since u−1Xem ∈ R
and (u−1Xem)B[X] is primary, (u−1Xem)R is primary by (#). Thus
fen has a primary factorization in R.

Case 2. m = 0. Then ufen(0) = g1(0) · · · gl(0), and hence u =
(g1(0) · · · gl(0))/(fen(0)) ∈ qf(A) ∩ U(B) = U(A) ⊆ U(R), where the
equality qf(A) ∩ U(B) = U(A) follows from the fact that qf(A) ∩
U(B) ⊆ qf(A) ∩ B = A. Thus fen = u−1g1 · · · gl, and hence fen has a
primary factorization in R.

Therefore R is an AWFD.

An integral domain R is a Prüfer v-multiplication domain (PVMD)
if each finite type t-ideal is t-invertible; equivalently, RP is a valuation
domain for each maximal t-ideal P of R [19, Theorem 3.2]. An integral
domain R is called an almost GCD-domain (AGCD-domain) if for all
nonzero a, b ∈ R, there is an integer n = n(a, b) ≥ 1 such that anR∩bnR
is principal; equivalently, (an, bn)v is principal. It is known that if R is
an AGCD-domain, then Clt(R) is torsion [12, Theorem 3.4]; that if R
is integrally closed, then R is an AGCD-domain if and only if R is a
PVMD with Clt(R) torsion [23, Corollary 3.8 and Theorem 3.9]; and
that if R is integrally closed, then R[X] is an AWFD if and only if R
is an almost weakly factorial AGCD-domain [5, Theorem 3.3].

Corollary 3.6. Let A � B be an extension of integral domains such
that B is integrally closed, and let R = A+XB[X]. If R is an AWFD,
then A and B are each almost weakly factorial AGCD-domains.

Proof. Assume that R is an AWFD. We first prove that A is an
AWFD. Since A � R, it suffices to show that for 0 �= a ∈ A,
if aR is primary, then so is aA. Assume that aR is primary and
let S = {Xn}n≥0. Then aRS = aB[X]S is primary, and hence
aB = aB[X]S ∩ B is primary. Since qf(A) ∩ B = A by Theorem 3.5,
aB ∩ A = aA. Thus aA is primary since

√
aA =

√
aB ∩ A.

Next, we show that A is an AGCD-domain. Note that B is an
AGCD-domain since B[X] is an AWFD by Theorem 3.5 and B is
integrally closed [5, Theorem 3.3]. Let 0 �= a1, a2 ∈ A. Then there
is an integer n = n(a1, a2) ≥ 1 such that an

1B ∩ an
2B = bB for some
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b ∈ B since B is an AGCD-domain. Let m ≥ 1 be an integer such
that ubm ∈ A for some u ∈ U(B), Theorem 3.5. Since an

1B ∩ an
2B is

t-invertible, anm
1 B ∩ anm

2 B = ((an
1B ∩ an

2B)m)t = (bB)m = bmB, cf.
[12, Lemma 3.3]. Thus amn

1 A ∩ amn
2 A = (amn

1 B ∩ A) ∩ (amn
2 B ∩ A) =

(amn
1 B ∩ amn

2 B) ∩ A = bmB ∩ A = ubmB ∩ A = ubmA, the first and
last equalities follow from the fact that qf(A) ∩ B = A. Thus A is an
AGCD-domain. It follows from Theorem 3.5 and [5, Theorem 3.3] that
B is also an almost weakly factorial AGCD-domain.

Let A be an integral domain. In [7, Corollary 4.13], it was proved
that A is a weakly Krull PVMD if and only if A[X] is weakly Krull
and Clt(A) = Clt(A[X]) for one indeterminate. The same argument
given in the proof of [7, Corollary 4.13] shows that A is a weakly Krull
PVMD if and only if A[{Xα}] is weakly Krull and Clt(A)Clt(A[{Xα}])
for any nonempty set {Xα} of indeterminates.

Corollary 3.7. Let A be an integrally closed domain, {Xα} a
nonempty set of indeterminates over A, Nv = {f ∈ A[{Xα}]|(Af )v =
A}, B = A[{Xα}]Nv

, and R = A + XB[X]. Then R is an AWFD if
and only if A is an almost weakly factorial AGCD-domain.

Proof. Assume that R is an AWFD. Since A is integrally closed,
A[{Xα}], and hence B = A[{Xα}]Nv

is integrally closed. Thus A is
an almost weakly factorial AGCD-domain by Corollary 3.6. For the
converse, assume that A is an almost weakly factorial AGCD-domain.
Then A is a weakly Krull PVMD with Clt(A) torsion [5, Theorem
3.3] ⇔ A[{Xα}] is a weakly Krull PVMD with Clt(A[{Xα}]) = Clt(A)
torsion ⇒ B = A[{Xα}]Nv

is a weakly Krull PVMD with Clt(B) torsion
(see Lemma 2.2 (2) for weakly Krull, [19, Theorem 3.7] for PVMD and
[7, Theorem 4.8] for Clt(B) torsion) ⇔ B[X] is an AWFD [5, Theorem
3.3].

Let 0 �= f/g ∈ B, where f ∈ A[{Xα}] and g ∈ Nv. Since A is an
integrally closed AGCD-domain, there is an integer n ≥ 1 such that
(Afn)t = (An

f )t = aA for some a ∈ A. Let fn = af ′ for f ′ ∈ A[{Xα}].
Then f ′ ∈ Nv; thus, f ′/gn ∈ U(B) such that (f/g)ngn/f ′ = a ∈ A.

Let c/b ∈ qf(A) ∩ U(B), where 0 �= b, c ∈ A. Since c/b ∈ U(B),
there are h, h1 ∈ Nv such that ch = bh1. Thus cA = c(Ah)t =
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b(Ah1)t = bA, and hence c/b ∈ U(A). Thus, qf(A) ∩ U(B) = U(A).
Let 0 �= d ∈ qf(A) ∩ B. The above paragraph shows that there is
an integer n ≥ 1 and u ∈ U(B) such that udn ∈ A. In particular,
u ∈ d−nA ∩ U(B) ⊆ qf(A) ∩ U(B) = U(A); so dn ∈ A. Since A is
integrally closed, d ∈ A. Thus qf(A) ∩ B = A. By Theorem 3.5, R is
an AWFD.

We next give the WFD analog of Theorem 3.5. Recall that for an
integral domain R, R[X] is a WFD if and only if R is a weakly factorial
GCD-domain, and hence R is integrally closed, [8, Theorem 17]. The
“(3) ⇒ (1)” implication in Theorem 3.8 also follows from Theorem 3.4
and [4, Corollary 4.11].

Theorem 3.8. Let A � B be an extension of integral domains and
R = A + XB[X]. Then the following statements are equivalent.

(1) R is a WFD.

(2) XB[X] is a (height-one) maximal t-ideal of R, B[X] is a WFD
and, for each 0 �= b ∈ B, there is an a ∈ A such that aB = bB.

(3) qf(A) ∩ B = A, B[X] is a WFD and, for each 0 �= b ∈ B, there
is a u ∈ U(B) such that ub ∈ A.

(4) qf(A) ∩ B = A, B is a weakly factorial GCD-domain, and for
each 0 �= b ∈ B, there is a u ∈ U(B) such that ub ∈ A.

(5) U(B)∩ qf(A) = U(A), B is a weakly factorial GCD domain, and
for each 0 �= b ∈ B, there is a u ∈ U(B) such that ub ∈ A.

Proof. The proofs of (1) ⇒ (2) ⇒ (3) ⇒ (1) are similar to the proof
of Theorem 3.5, (3) ⇔ (4) is [8, Theorem 17], and (4) ⇒ (5) follows
directly from the fact that qf(A)∩U(B) ⊆ qf(A)∩B = A. For (5) ⇒
(4), let 0 �= a ∈ qf(A)∩B. Then there is a u ∈ U(B) such that ua ∈ A.
Thus u ∈ a−1A ∩ U(B) ⊆ qf(A) ∩ U(B) = U(A); so a = u−1(ua) ∈ A.
Hence qf(A) ∩ B = A.

Corollary 3.9. Let A � B be an extension of integral domains and
R = A + XB[X]. If R is a WFD, then A and B are each weakly
factorial GCD-domains.
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Proof. The proof is similar to the proof of Corollary 3.6.

It is well known that A is a GCD-domain if and only if A is a PVMD
with Clt(A) = 0 [14, Corollary 1.5]. Thus an argument similar to that
given in the proof of Corollary 3.7 also proves the following corollary.

Corollary 3.10. Let A be an integral domain, {Xα} a nonempty
set of indeterminates over A, Nv = {f ∈ A[{Xα}]|(Af )v = A},
B = A[{Xα}]Nv

, and R = A + XB[X]. Then R is a WFD if and
only if A is a weakly factorial GCD-domain.

Corollary 3.11. Let A be a subring of a field K and R = A+XK[X].
Then the following statements are equivalent.

(1) R is a weakly Krull domain.

(2) R is a WFD.

(3) R is an AWFD.

(4) R is a GWFD.

(5) A is a field.

Proof. The implications (2) ⇒ (3) ⇒ (4) ⇒ (1) hold for any integral
domain R. The implications (1) ⇔ (5) and (2) ⇔ (5) follow from
Theorem 3.4 and Theorem 3.8, respectively.

Remark 3.12. (a) Let A = Z � Z[t] = B. Then A and B are each
(almost) weakly factorial GCD-domains. However, R = A + XB[X] is
not (almost) weakly factorial by Theorems 3.5 and 3.8. In fact, R is
not even a weakly Krull domain by Theorem 3.4. Thus the converses
to Corollaries 3.6 and 3.9 are false. However, it is interesting to note
that Clt(R) = 0 [3, Theorem 4.9].

(b) Let A � B be an extension of integral domains. If B is inte-
gral over A, then BA−{0} is a field. If A is also integrally closed, then
qf(A) ∩ B = A. So in this case, R = A + XB[X] is weakly Krull
if and only if B[X] is weakly Krull by Theorem 3.4. Specifically, let
A = Z � Z[i] = B. Then R = A+XB[X] is weakly Krull. However, R
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is not an AWFD by Theorem 3.5. In fact, Clt(R) = Z/2Z⊕ (
⊕∞

n=1 Z)
by [3, Example 4.16].

(c) We have already observed that if B[X] is a WFD, then B, and
hence B[X], is integrally closed. However, R = R + XC[X] is a WFD
which is not integrally closed.

4. The subring D = A + X2B[X] of R = A + XB[X]. As
in Section 3, let A � B be an extension of integral domains, X
an indeterminate over B, R = A + XB[X] and D = A + X2B[X].
Then D = R ∩ B[X2, X3], and hence D is a subring of both R and
B[X2, X3]. The integral domain B[X2, X3] has recently been studied
by the authors in [6]. In this section, we prove that D = A+X2B[X] is
a weakly Krull domain if and only if BA−{0} is a field, qf(A)∩B = A,
and B[X] is a weakly Krull domain; and that if charB �= 0, then D is
an AWFD if and only if qf(A) ∩ B = A, B[X] is an AWFD, and for
each 0 �= b ∈ B, there is an integer n = n(b) ≥ 1 and u ∈ U(B) such
that ubn ∈ A.

Lemma 4.1 (cf. [6, Lemma 2.4]). Let A � B be an extension
of integral domains, R = A + XB[X] and D = A + X2B[X]. Let
P be a prime ideal of D. Then there is a unique prime ideal of
R lying over P . Thus the natural map Spec (R) → Spec (D), given
by Q → Q ∩ D, is an order-preserving bijection. In particular,
ht D(X2B[X]) = htR(XB[X]).

Proof. Let P be a prime ideal of D. Since D ⊆ R is an integral
extension, there is a prime ideal Q of R lying over P .

Case 1. X2B[X] ⊆ P . Then XB[X] ⊆ Q. Thus the result follows
from the fact that D/X2B[X] ∼= A ∼= R/XB[X].

Case 2. X2B[X] � P . Then there is a b(X) ∈ B[X] such that
X2b(X) /∈ P . For any f(X) ∈ B[X], X2b(X)f(X) ∈ D, and thus
f(X) = (X2b(X)f(X))/(X2b(X)) ∈ DP . Hence R ⊆ B[X] ⊆ DP ,
which implies that RPDP∩R = DP . Thus PDP ∩ R is a unique prime
ideal of R lying over P .

Our next lemma is the analog of Lemmas 3.1 3.3.
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Lemma 4.2. Let A � B be an extension of integral domains and
D = A + X2B[X]. Then

(1) (D : X2B[X]) = B[X].

(2) X2B[X] is a divisorial prime ideal of D.

(3) X2B[X] is a maximal t-ideal of D if and only if qf(A) ∩ B = A.

Proof. (1) It is clear that B[X] ⊆ (D : X2B[X]). For the converse,
let u ∈ (D : X2B[X]). Then uX2B[X] ⊆ D ⊆ B[X2, X3], and hence
u = (1/X2)f(X) for some f(X) ∈ B[X2, X3]. If f(0) �= 0, then
uX2X = f(X)X /∈ B[X2, X3], and so uX2B[X] � D. Thus f(0) = 0,
and hence u ∈ B[X].

(2) By (1), we need only show that (D : B[X]) = X2B[X]. Clearly,
X2B[X] ⊆ (D : B[X]), and the converse follows from the fact that
B[X] contains the identity.

(3) The proof is similar to that of Lemma 3.3.

Theorem 4.3. Let A � B be an extension of integral domains and
D = A + X2B[X]. Then the following statements are equivalent.

(1) D is a weakly Krull domain.

(2) X2B[X] is a height-one maximal t-ideal of D and B[X] is a weakly
Krull domain.

(3) BA−{0} is a field, qf(A) ∩ B = A, and B[X] is a weakly Krull
domain.

(4) R = A + XB[X] is a weakly Krull domain.

Proof. By a similar argument as given in the proof of (1) ⇒ (2)
of Theorem 3.4, one can easily prove (1) ⇒ (2). (2) ⇒ (3) follows
from the remarks preceding Theorem 3.4 and Lemmas 4.1 and 4.2. (3)
⇔ (4) is Theorem 3.4. For (3) ⇒ (1), let S = {Xn|n = 0, 2, 3, . . . }
and S̄ = {Xn}n≥0; then DS = B[X]S = B[X]S̄ . Recall from [7,
Proposition 4.11] and [6, Proposition 2.7] that B[X] is weakly Krull
if and only if B[X2, X3] is weakly Krull. Thus DS ∩ DX2B[X] ⊆
B[X2, X3]S ∩ B[X2, X3]X2B[X] = B[X2, X3]. The argument given in
the proof of (3) ⇒ (1) of Theorem 3.4 also shows that DS ∩DX2B[X] =
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D. Thus D is a weakly Krull domain since DS = B[X]S is weakly
Krull, Lemma 2.1 (2), and DX2B[X] is one-dimensional quasilocal (and
hence weakly Krull) by [25, Lemma 2.6] and Lemma 4.1.

Remark 4.4. (a) Let A � B be an extension of integral domains,
K = qf(B) and D = A + X2B[X]. Assume that D is a weakly Krull
domain. Let f = X+1 and Qf = fK[X]∩D. Note that Qf � X2B[X],
and so QfDX2B[X] = DX2B[X]. Let S = {Xn|n = 0, 2, 3, . . . }; then
DS = B[X]S and QfD[X]S � DS . Since Af = B, fK[X] ∩ B[X] =
fB[X], cf. [16, Theorem 28.1], and thus QfDS = fB[X]S . In
particular, Qf is t-locally principal. Also, since D is weakly Krull,
Qf is t-invertible [9, Lemma 2.2].

Suppose that Qf = gD for some g ∈ D. Then fK[X]S = QfK[X]S =
gK[X]S ; so g = Xmuf for some integer m and u ∈ K, which is contrary
to the facts that uf /∈ D and both f and g are not divisible by X in
K[X]. Thus, D cannot be a WFD. A similar argument also shows that
if charB = 0, then D is not an AWFD.

(b) By [21, (2.22) Examples], there is a monomorphism ϕ : A →
Pic (D) ⊆ Clt(D) given by ϕ(a) = [(1+aX, X2)], where A is considered
as an abelian group under addition and Pic(D) is the Picard group of
D. Thus Clt(D) �= 0 and Clt(D) is not torsion if charB = 0. This
observation gives another proof that D is never a WFD, and is not an
AWFD if char B = 0.

In our final result, we determine when D = A+X2B[X] is an AWFD
when charB �= 0.

Theorem 4.5. Let A � B be an extension of integral domains with
charB = p �= 0. Then the following statements are equivalent.

(1) D = A + X2B[X] is an AWFD.

(2) X2B[X] is a (height-one) maximal t-ideal of D, B[X] is an
AWFD, and for each 0 �= b ∈ B, there is an integer n = n(b) ≥ 1
and a ∈ A such that aB = bnB.

(3) qf(A) ∩ B = A, B[X] is an AWFD, and for each 0 �= b ∈ B,
there is an integer n = n(b) ≥ 1 and u ∈ U(B) such that ubn ∈ A.

(4) R = A + XB[X] is an AWFD.
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Proof. The proof of (1) ⇒ (2) is a simple modification of the proof
of (1) ⇒ (2) of Theorem 3.5, (2) ⇒ (3) is Lemma 4.2 (3), and (3) ⇔
(4) is in Theorem 3.5.

(3) ⇒ (1). Note that if h ∈ B[X], then hp ∈ B[X2, X3] since
char B = p; and that for 0 �= g ∈ D, if gB[X] is primary, then gD
is also primary (for the proof, see the first paragraph of the proof of
(3) ⇒ (1) of Theorem 3.5 and note that if h = gb(X) ∈ gDS ∩D, then
b(X) ∈ B[X2, X3]). Let 0 �= f ∈ D � B[X]. Since B[X] is an AWFD,
there is an integer n ≥ 1 such that fn = Xmf1 · · · fl for some integer
m ≥ 0 and primary elements fi of B[X] with each fi(0) �= 0. Thus
fpn = Xpmfp

1 · · · fp
l with each fp

i ∈ B[X2, X3] and fp
i (0) �= 0. By the

same argument given in the second paragraph of the proof of (3) ⇒
(1) of Theorem 3.5, one can easily show that there is an integer e ≥ 1
such that fepn has a primary factorization in D. Thus D is an AWFD.

Corollary 4.6. Let A be a subring of a field K and D = A+X2K[X].
Then

(1) D is weakly Krull if and only if A is a field.

(2) D is never a WFD.

(3) D is an AWFD if and only if A is a field and charK �= 0.

Proof. This follows directly from Theorem 4.3, Remark 4.4 and
Theorem 4.5, respectively. It also follows from the results in Section 2
together with the fact that Clt(K[X2, X3]) = Pic (K[X2, X3]) = K as
additive abelian groups [21, p. 40].

Example 4.7. As observed in Remark 2.7 (a), R = R+XC[X] is a
WFD. However, D = R + X2C[X] is weakly Krull, but not an AWFD
by Corollary 4.6.
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