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EXISTENCE AND BEHAVIOR
OF SOLUTIONS OF THE RATIONAL EQUATION

xn+1 = (axn−1 + bxn)/(cxn−1 + dxn)xn, n = 0, 1, 2, . . .

L.C. MCGRATH AND C. TEIXEIRA

ABSTRACT. We investigate the existence and behavior of
the solutions of the equation in the title, where a, b, c, and d
are real numbers, and the initial conditions are real numbers.

1. Introduction and preliminaries. Consider the equation

(1) xn+1 =
axn−1 + bxn

cxn−1 + dxn
xn, n = 0, 1, . . .

where the parameters
a, b, c, d

are given real numbers and the initial conditions x−1, x0 are arbitrary
real numbers.

This work is motivated by Problem 1572 in Mathematics Magazine,
April 1999, [5].

Our first goal is to give a detailed description of the set

G = {(x−1, x0) ∈ R2 : Eq. (1) is well defined for all n ≥ 0}.

The set G ⊂ R2 is the set of good initial conditions. The complement
of G ⊂ R2 is called the forbidden set of equation (1) and is denoted by
F . That is,

F = {(x−1, x0) ∈ R2 : Eq. (1) is not well defined for some n ≥ 0}.

Our second goal is to understand the short and long term behavior of
the solutions of equation (1) when (x−1, x0) ∈ G.
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It follows from equation (1) that, formally,

xn+1

xn
=

axn−1 + bxn

cxn−1 + dxn
=

a + b(xn/xn−1)
c + d(xn/xn−1)

, n = 0, 1, . . . .

By the change of variables

zn =
xn

xn−1
,

the above equation reduces to the Riccati equation

zn+1 =
a + bzn

c + dzn
, n = 0, 1, . . .

with
z0 =

x0

x−1
.

When studying the asymptotic behavior of solutions of equation (1),
infinite products are utilized. We shall use the following results from
[3].

Theorem A. Let {ak}∞k=0 be a sequence of positive numbers less
than one. Consider the following

∞∏
k=0

(1 + ak) ,
∞∏

k=0

(1 − ak) .

Then the following statements are true.

(1) If
∑∞

k=0 ak converges, then both products converge to finite,
nonzero limits.

(2) If
∑∞

k=0 ak diverges, then the first product diverges to +∞ and
the second product diverges to 0.

Theorem B. Consider the following

(2)
∞∏

k=0

(1 + ak).
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Then the following statement is true.

If
∑∞

k=0 |ak| converges, then (2) converges.

2. The Riccati equation. In this section we recall known results
of the Riccati difference equation:

(3) zn+1 =
a + bzn

c + dzn
, n = 0, 1, . . .

where the parameters a, b, c, d are real numbers. These results will be
useful in the sequel.

To avoid degenerate cases, we assume throughout this section without
further mention that

|a| + |b| �= 0 and |c| + |d| �= 0.

We will also assume throughout this section, unless otherwise men-
tioned, that

d �= 0 and bc − ad �= 0.

Indeed when d = 0, equation (3) is a linear equation, while if

d �= 0 and bc − ad = 0,

equation (3) reduces to the trivial equation

zn+1 =
bzn + (bc/d)

dzn + c
=

b(dzn + c)
d(dzn + c)

=
b

d
, n = 0, 1, . . . .

Finally, we note that when

(4) b + c = 0 and z0 �= − c

d
,

the solution {zn}∞n=0 of equation (3) is periodic with period two.

Unless stated otherwise, throughout the remainder of this section, we
shall assume that

(5) d �= 0, bc − ad �= 0, and b + c �= 0.
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The change of variables

zn =
b + c

d
wn − c

d
for n = 0, 1, . . .

transforms equation (3) into the difference equation with one parameter

(6) wn+1 = 1 − R
wn

, n = 0, 1, . . .

where the parameter R, which we call the Riccati number of equation
(3), is the nonzero real number given by

R =
bc − ad

(b + c)2
,

and where the initial condition w0 of equation (6) is

w0 =
dz0 + c

b + c
.

We make the further change of variables

{
wn =

un+1

un
for n = 0, 1, . . .

u0 = 1

which reduces equation (6) to the second order linear difference equa-
tion

(7) un+2 − un+1 + Run = 0, n = 0, 1, . . .

with initial conditions

u0 = 1 and u1 = w0.

Finally, we denote by λ1 and λ2 the roots of the characteristic equation
of equation (7),

λ1 =
1 −√

1 − 4R
2

and λ2 =
1 +

√
1 − 4R
2

.
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2.1 The forbidden set and explicit solution of the Riccati
equation (2). Let G be the set of all initial conditions z0 ∈ R such
that the solution {zn}∞n=0 of equation (3) exists for all n ≥ 0. Set

F = R − G.

Then F is the set of initial conditions z0 ∈ R such that the solution of
equation (3) with initial condition z0 fails to exists after a finite number
of terms. That is, F is the forbidden set of the Riccati difference
equation (3).

When b + c = 0, the forbidden set of equation (3) is the singleton

F =
{
− c

d

}
,

while in the degenerate cases where d(bc − ad) = 0, the forbidden set
of equation (3) is empty.

The next three theorems give an explicit description of the forbidden
set F of equation (3) when (5) holds. The first theorem gives an explicit
description of F and also provides a closed form expression for the
solutions of equation (3), when

R <
1
4
.

Theorem 2.1. Assume that (5) holds and that R < 1/4. Then the
forbidden set F of equation (3) is given by

(8) F =
{

b + c

d

(
λ1λ

n
2 − λ2λ

n
1

λn
2 − λn

1

)
− c

d
: n ≥ 1

}
.

For any initial condition z0 /∈ F , the solution of equation (3) is given
by

(9) zn =
b + c

d

(
c1λ

n+1
1 + c2λ

n+1
2

c1λn
1 + c2λn

2

)
− c

d
for n = 0, 1, . . .

where

c1 =
λ2(b + c) − (dz0 + c)

(b + c)(λ2 − λ1)
and c2 =

(dz0 + c) − λ1(b + c)
(b + c)(λ2 − λ1)

.
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Corollary 2.1. Assume that R < 1/4, and let {zn}∞n=0 be a solution
of equation (3) that exists forever. Then the following statements are
true.

(i) Suppose

z0 =
b + c

d
λ1 − c

d
.

Then
zn =

b + c

d
λ1 − c

d
for all n ≥ 0.

(ii) Suppose

z0 =
b + c

d
λ2 − c

d
.

Then
zn =

b + c

d
λ2 − c

d
for all n ≥ 0.

(iii) Suppose

z0 �= b + c

d
λ1 − c

d
and z0 �= b + c

d
λ2 − c

d
.

Then
lim

n→∞ zn =
b + c

d
λ2 − c

d
.

Corollary (2.1) states that if we choose an initial condition on an
equilibrium point, the solution remains there. Otherwise, the solution
converges to the larger (in absolute value) of the two equilibrium points.

The next theorem gives an explicit description of F and also provides
a closed form expression for the solutions of equation (3), when

R =
1
4
.

Theorem 2.2. Assume (5) holds, and that R = 1/4. Then the
forbidden set F of equation (3) is given by

(10) F =
{

n(b − c) − b − c

2dn
: n ≥ 1

}
.



SOLUTIONS OF THE RATIONAL EQUATION 655

For any initial condition z0 /∈ F , the solution of equation (3) is given
by

(11)
zn =

b + c

d

(
(b + c) + (n + 1)(2dz0 + c − b)

2(b + c) + 2n(2dz0 + c − b)

)
− c

d

for n = 0, 1, . . . .

Corollary 2.2. Assume that R = 1/4, and let {zn}∞n=0 be a solution
of equation (3) that exists forever. Then the following statements are
true.

(i) Suppose z0 = (b − c)/2d; then zn = (b − c)/2d for all n ≥ 0.

(ii) Suppose z0 �= (b − c)/2d; then limn→∞ zn = (b − c)/2d.

Corollary (2.2) states that, if we choose an initial condition on the
unique equilibrium point it remains there. Otherwise, the solution
converges to the unique equilibrium point. Finally, we give an explicit
description of F and also provide a closed form expression for the
solutions of equation (3), when

R >
1
4
.

Theorem 2.3. Assume that (5) holds, and that R > 1/4. Let
θ ∈ (0, π/2) be such that

cos θ =
1

2
√R and sin θ =

√
4R− 1
2
√R .

Then the forbidden set F of equation (3) is given by

(12)

F =

{
b − c

2d
− (b + c)

√
4R− 1

2d
cot (nθ) : n ≥ 1 and sin(nθ) �= 0

}
.
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For any initial condition z0 /∈ F , the solution of equation (3) is given
by
(13)

zn =
b + c

d

(√R (cos((n+1)θ) + (2w0 − 1)/(
√

4R− 1) sin((n+1)θ)
)

cos(nθ) + (2w0 − 1)/
√

4R− 1 sin(nθ)

)

− c

d
where w0 = (dz0 + c)/b + c.

Corollary 2.3. Assume that R > 1/4, and let {zn}∞n=0 be a solution
of equation (3) that exists forever. Then the following statements are
true.

(i) Assume that θ = (p/q)π, where p and q are relatively prime.
Let k be the first positive integer such that (kq)/p is an integer. Then
{zn}∞n=0 is periodic with prime period (kq)/p.

(ii) Assume that θ is an irrational multiple of π. Then {zn}∞n=0 is
dense in the reals.

2.2 The zero set of the Riccati equation (3). In this section we
give a complete description of the zero set Z of equation (3)

Z = {z0 ∈ R : Eq. (3) equals zero for some n ≥ 0}.
As we shall see, Z plays an important role in obtaining the forbidden
set F of equation (1).

First assume that
d = 0.

As |c| + |d| �= 0, equation (3) reduces to the linear equation

(14) zn+1 =
b

c
zn +

a

c
, n = 0, 1, . . . .

For n ≥ 1, the solution of equation (14) is

zn =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a

c
if b = 0

z0 +
na

c
if b �= 0 and b = c(

z0 − a

c − b

)(
b

c

)n

+
a

c − b
if b �= 0 and b �= c.
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Therefore when d = 0, the zero set Z of equation (3) is given by

(15) Z =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{0} if b = 0{
−na

c
: n ≥ 0

}
if b �= 0 and b = c{

a

c − b

[
1 −

(c

b

)n]
: n ≥ 0

}
if b �= 0 and b �= c.

Clearly, when d �= 0 and bc − ad = 0, the zero set of equation (3) is

(16) Z = {0} .

Next assume that d �= 0, bc − ad �= 0 and b + c = 0. Then every
solution of equation (3) with z0 �= b/d, is periodic with period two;
namely, the solution is the two cycle

. . . , z0,
a + bz0

−b + dz0
, . . . .

Hence, when d �= 0, bc−ad �= 0 and b+c = 0, the zero set of equation
(3) is

(17) Z =

{ {0} if b = 0{
0, −a

b

}
if b �= 0.

The following theorem gives an explicit description of Z when (5)
holds.

Theorem 2.4. Assume that (5) holds. Then the following state-
ments are true:

(i) Suppose R < 1/4. Then the zero set Z of equation (3) is given
by

Z = {0} ∪
{

(b + c)
d

(R(b + c)(λn
2 − λn

1 ) + c(λn
1λ2 − λ1λ

n
2 )

(b + c)(λn+1
2 − λn+1

1 ) + c(λn
1 − λn

2 )

)
− c

d
:

n ≥ 1
}

.
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(ii) Suppose R = 1/4. Then the zero set Z of equation (3) is given
by

Z = {0} ∪
{

b + c

2d

(
2c + (b − c)n

b + c + (b − c)n

)
− c

d
: n ≥ 1

}
.

(iii) Suppose R > 1/4. Let θ ∈ (0, π/2) be such that

cos θ =
1

2
√R and sin θ =

√
4R− 1
2
√R .

For n ≥ 0, set

Kn =
(

b+c

2d

)(√
4R− 1(c cos(nθ) −√R (b+c) cos((n+1)θ))√R (b+c) sin((n + 1)θ) − c sin(nθ)

+ 1

)

− c

d
.

Then the zero set Z of equation (3) is given by

Z = {0, K0, K1, . . . , } .

3. Special cases of equation (1). In this section we describe the
forbidden set and behavior of solutions of the special cases of equation
(1). Throughout this section we will assume that

|a| + |b| �= 0 and |c| + |d| �= 0.

3.1 The case d = 0. In the case d = 0 equation (1) reduces to

(18) xn+1 =
axn−1 + bxn

cxn−1
xn, n = 0, 1, . . . .

Theorem 3.1. Assume that d = 0 and b = 0. Let {xn}∞n=−1 be a
solution of equation (1). Then

xn+1 =
a

c
xn, n = 0, 1, . . . .
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Theorem 3.2. Assume d = 0, b �= 0, a �= 0 and b = c. Let
{xn}∞n=−1 be a solution of equation (1). Then the following statements
are true.

1. The forbidden set F of equation (1) is given by

F =
{

(x−1, x0) : x−1 = 0 or
x0

x−1
∈
{−na

c
, for n ≥ 0

}}
.

2. limn→∞ |xn| = +∞.

Proof. Let
xn = xn−1zn for n = 0, 1, . . . .

Then equation (18) reduces to

zn+1 = zn +
a

c
for n = 0, 1, . . . ,

whose solution is given by

zn = z0 +
na

c
, for n ≥ 1.

Thus,

xn = x−1

n∏
k=0

zk = x−1

n∏
k=0

(
z0 +

ka

c

)
for n = 0, 1, . . . ,

from which the results follow.

Theorem 3.3. Assume that d = 0, b �= 0, a �= 0 and b �= c. Let
{xn}∞n=−1 be a solution of equation (1). Then the following statements
are true.

1. The forbidden set F of equation (1) is given by

F =
{

(x−1, x0) : x−1 = 0 or
x0

x−1
∈
{

a

c−b

[
1 −

(c

b

)n]
,

for n ≥ 0
}}

.
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2. Assume x0/x−1 = a/(c − b). Then the following statements are
true.

(i) If |a/(c − b)| < 1, then limn→∞ xn = 0.

(ii) If |a/(c − b)| > 1, then limn→∞ |xn| = +∞.

(iii) If a/(c − b) = 1, then xn = x−1 for n ≥ 0.

(iv) If a/(c − b) = −1, then {xn}∞n=−1 is periodic with period two.

3. Assume x0/x−1 �= a/(c − b). Then the following statements are
true.

(i) If |b/c| < 1 and |a/(c − b)| < 1, then limn→∞ xn = 0.

(ii) If |b/c| < 1 and |a/(c − b)| > 1, then limn→∞ |xn| = +∞.

(iii) If |b/c| < 1 and a/(c − b) = 1, then {xn}∞n=−1 converges.

(iv) If |b/c| < 1 and a/(c − b) = −1, then {xn}∞n=−1 converges to a
prime period two solution.

(v) If |b/c| > 1, then limn→∞ |xn| = +∞.

Proof. Let
xn = xn−1zn for n = 0, 1, . . . .

Then equation (18) reduces to

zn+1 =
b

c
zn +

a

c
for n = 0, 1, . . . ,

whose solution is given by

zn =
(

z0 − a

c − b

)(
b

c

)n

+
a

c − b
, for n ≥ 0.

Proof of statement (2). Observe that

xn = x−1

n∏
k=0

zk = x−1

n∏
k=0

(
a

c − b

)
for n = 0, 1, . . .

from which the results follow.
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Proof of statement (3). Observe that

xn = x−1

n∏
k=0

zk = x−1

n∏
k=0

((
z0 − a

c−b

)(
b

c

)n

+
a

c−b

)

for n = 0, 1, . . . .

The proofs of statements (i), (ii) and (v) are clear.

The proofs of statements (iii) and (iv) will follow.

Proof of statement (iii). Observe that

zn =
bn (z0(c − b) − a) + acn

(c − b)cn

=
z0b

n(c − b) + a(cn − bn)
(c − b)cn

= 1 +
(c − b) [z0b

n − cn] + a(cn − bn)
(c − b)cn

= 1 +
(c − b) [z0(b/c)n − 1] + a (1 − (b/c)n)

(c − b)
.

Let

ak =
(c − b)

[
z0(b/c)k − 1

]
+ a

(
1 − (b/c)k

)
(c − b)

.

We will show that the infinite series
∞∑

k=0

|ak|

is convergent.

We will use the limit comparison test with the convergent geometric
series

bk =
∞∑

k=0

∣∣∣∣ (b/c)k

c − b

∣∣∣∣.

lim
k→∞

|ak|
bk

=
∣∣∣∣(c − b)

[
z0 −

(
c

b

)k]
+ a

((
c

b

)k

− 1
)∣∣∣∣

=
∣∣∣∣a
[
z0 −

(
c

b

)k]
+ a

((
c

b

)k

− 1
)∣∣∣∣

= |a(z0 − 1)|.
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Observe that we assumed a �= 0, z0 = x0/x−1 �= a/(c − b) = 1.

Thus, we have a positive limit, and the proof follows from Theo-
rem (B) and the fact that

xn = x−1

n∏
k=0

(1 + ak),

where ak is defined above.

Proof of statement (iv). Observe that

zn =
bn(z0(c − b) − a) + acn

(c − b)cn
.

Thus,

−zn =
abn − z0b

n(c − b) − acn

(c − b)cn

=
a(bn − cn) − z0b

n(c − b)
(c − b)cn

= 1 +
a(bn − cn) − (c − b) [z0b

n + cn]
(c − b)cn

= 1 +
(a/cn)(bn − cn) − (c − b)/cn[z0b

n + cn]
(c − b)

= 1 +
a((b/c)n − 1) − (c − b)[z0(b/c)n + 1]

(c − b)
.

Let

ak =
a((b/c)k − 1) − (c − b)[z0(b/c)k + 1]

(c − b)
.

We will show that the infinite series

∞∑
k=0

|ak|

is convergent.
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We will use the limit comparison test with the convergent geometric
series

bk =
∞∑

k=0

∣∣∣∣ (b/c)k

c − b

∣∣∣∣.

lim
k→∞

|ak|
bk

=
∣∣∣∣a
(

1 −
(

c

b

)k)
− (c − b)

[
z0 +

(
c

b

)k]∣∣∣∣
=
∣∣∣∣a
(

1 −
(

c

b

)k)
+ a

[
z0 +

(
c

b

)k]∣∣∣∣
= |a(1 + z0)|.

Observe that we assumed a �= 0, z0 = x0/x−1 �= a/(c − b) = −1.

Thus, we have a positive limit and the proof follows from Theorem (B)
and the fact that

xn = x−1(−1)n−1
n∏

k=0

(1 + ak)

where ak is defined above.

Theorem 3.4. Assume that a = 0 and d = 0. Let {xn}∞n=−1 be a
solution of equation (1). Then the following statements are true.

1. The forbidden set F of equation (1) is given by

F = {(x−1, x0) : x−1 = 0 or x0 = 0}.

2. If |b/c| < 1, then limn→∞ xn = 0.

3. If |b/c| > 1, then limn→∞ |xn| = +∞.

4. If |b/c| = 1 and |x0/x−1| < 1, then limn→∞ xn = 0.

5. If |b/c| = 1 and |x0/x−1| > 1, then limn→∞ |xn| = +∞.

6. If b/c = 1 and x0/x−1 = 1, then {xn}∞n=−1 = x−1 for n ≥ 0.

7. If b/c = 1 and x0/x−1 = −1, then {xn}∞n=−1 is periodic with
period two.

8. If b/c = −1 and |x0/x−1| = 1, then {xn}∞n=−1 is periodic with
period four.
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Proof. Observe that

xn = x−1

n∏
k=0

zk = x−1

n∏
k=0

(
x0

x−1

(
b

c

)n)
for n = 0, 1, . . . ,

from which the results follow.

3.2 The case bc − ad = 0.

Theorem 3.5. Assume bc − ad = 0. Let {xn}∞n=−1 be a solution of
equation (1). Then the following statements are true.

1. The forbidden set F of equation (1) is given by

F = {(x−1, x0) : x−1 = 0 or x0 = 0}.

2. If |b/d| < 1, then limn→∞ xn = 0.

3. If |b/d| > 1, then limn→∞ |xn| = +∞.

4. If b/d = 1, then {xn}∞n=−1 = x−1 for n ≥ 0.

5. If b/c = −1, then {xn}∞n=−1 is periodic with period two.

Proof. Observe that

xn = x−1

n∏
k=0

zk = x−1

n∏
k=0

(
b

d

)
for n = 0, 1, . . . ,

from which the results follow.

3.3 The case b + c = 0.

Theorem 3.6. Assume b+ c = 0. Let {zn}∞n=0 be the solution of the
associated Riccati equation. Then the following statements are true.

1. The forbidden set F of equation (1) is given by

F =
{

(x−1, x0) : x−1 = 0 or x0 = 0 or
x0

x−1
=

b

d

or
x0

x−1
=

−a

d

}
.
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2. If z0z1 < −1, then limn→∞ |xn| = +∞.

3. If z0z1 = −1, then {xn}∞n=−1 is periodic with period four.

4. If z0z1 ∈ (−1, 1), then limn→∞ xn = 0.

5. If z0z1 = 1, then {xn}∞n=−1 is periodic with period two.

6. If z0z1 > 1, then limn→∞ |xn| = +∞.

Throughout the remainder of the paper we assume that

(19) abcd �= 0, bc − ad �= 0 and b + c �= 0.

4. The forbidden set of equation (1). In this section we describe
the forbidden set, F , of equation (1). Recall that the forbidden set is
the set of initial conditions (x−1, x0) ∈ R2 such that the solution of
equation (1) with initial conditions (x−1, x0) fails to exist after a finite
number of terms. Recall that F is the forbidden set and Z is the zero
set of the Riccati equation.

Theorem 4.1. Assume that R < 1/4. The forbidden set F of
equation (1) is given by

F = {(0, 0)} ∪
{

(x−1, x0) : x−1 �= 0 and
x0

x−1
∈ F

}

∪
{

(x−1, x0) : x−1 �= 0 and
x0

x−1
∈ Z

}
,

where

F =
{

b + c

d

(
λ1λ

n
2 − λ2λ

n
1

λn
2 − λn

1

)
− c

d
: n ≥ 1

}

and

Z = {0}∪
{

(b+c)
d

(R(b+c)(λn
2 − λn

1 ) + c(λn
1λ2− λ1λ

n
2 )

(b+c)(λn+1
2 − λn+1

1 ) + c(λn
1 − λn

2 )

)
− c

d
: n ≥ 1

}
.

Proof. Let {xn}∞n=−1 be a solution of equation (1), and set zn =
xn/xn−1 for n ≥ 0. Note that {zn}∞n=0 is a solution of equation (3).
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Clearly (x−1, x0) ∈ F precisely when x0/x−1 ∈ F ∪ Z from which the
proof follows.

The proof of the next two theorems is similar and will be omitted.

Theorem 4.2. Assume that R = 1/4. The forbidden set F of
equation (1) is given by

F = {(0, 0)} ∪
{

(x−1, x0) : x−1 �= 0 and
x0

x−1
∈ F

}

∪
{

(x−1, x0) : x−1 �= 0 and
x0

x−1
∈ Z

}

where

F =
{

n(b − c) − b − c

2dn
: n ≥ 1

}
and

Z = {0} ∪
{

b + c

2d

(
2c + (b − c)n

b + c + (b − c)n

)
− c

d
: n ≥ 1

}
.

Theorem 4.3. Assume that R > 1/4. The forbidden set F of
equation (1) is given by

F = {(0, 0)} ∪
{

(x−1, x0) : x−1 �= 0 and
x0

x−1
∈ F

}

∪
{

(x−1, x0) : x−1 �= 0 and
x0

x−1
∈ Z

}
,

where F is given by equation (12) and Z is given in Theorem (2.4)
(iii).

In the subsequent section we describe the behavior of solutions of
equation (1) for all values of the Riccati number R. Note that we may
assume without loss of generality that d > 0.

5. Dynamics of equation (1). In this section we describe the
behavior of solutions of equation (1) for all the values of the Riccati
number R.
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5.1 The case R < 1/4.

Theorem 5.1. Assume that (19) holds and that R < 1/4. Let
{xn}∞n=−1 be a solution of equation (1) such that x0/x−1 = (b+c)/dλ1

−(c/d). Then the following statements are true.

(i) Suppose that (b + c)/dλ1− c/d < −1. Then limn→∞ |xn| = +∞.

(ii) Suppose that (b + c)/dλ1−c/d = −1. Then {xn}∞n=−1 is periodic
with period two.

(iii) Suppose that (b + c)/dλ1 − c/d ∈ (−1, 1). Then limn→∞ xn = 0.

(iv) Suppose that (b+c)/dλ1− c/d =1. Then xn = x−1 for all n ≥0.

(v) Suppose that (b + c)/dλ1 − c/d > 1. Then limn→∞ |xn| = +∞.

Proof. Recall that

xn = xn−1zn for n = 0, 1, . . . .

Thus

xn = x−1

n∏
k=0

zk = x−1

n∏
k=0

b + c

d
λ1 − c

d
for n = 0, 1, . . . .

This observation, which follows from Corollary (2.1), completes the
proof.

The proof of the next theorem is similar and will be omitted.

Theorem 5.2. Assume that (19) holds and R < 1/4. Let {xn}∞n=−1

be a solution of equation (1) such that x0/x−1 = (b + c)/cλ2 − c/d.
Then the following statements are true.

(i) Suppose that (b + c)/cλ2 − c/d < −1. Then limn→∞ |xn| = +∞.

(ii) Suppose that (b + c)/cλ2−c/d = −1. Then {xn}∞n=−1 is periodic
with period two.

(iii) Suppose that (b + c)/cλ2 − c/d ∈ (−1, 1). Then limn→∞ xn = 0.

(iv) Suppose that (b+c)/cλ2− c/d =1. Then xn = x−1 for all n ≥0.

(v) Suppose that (b + c)/cλ2 − c/d > 1. Then limn→∞ |xn| = +∞.
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Theorem 5.3. Assume (19) holds, and R < 1/4. Let {xn}∞n=−1 be
a solution of equation (1) such that x0/x−1 �= (b + c)/dλ1 − c/d and
x0/x−1 �= (b + c)/dλ2 − c/d.

Then the following statements are true.

(i) Suppose that (b+c)/dλ2 − c/d < −1. Then limn→∞ |xn| = +∞.

(ii) Suppose that (b + c)/dλ2 − c/d = −1. Then {xn}∞n=−1 converges
to a prime period two solution.

(iii) Suppose that (b + c)/dλ2−(c/d) ∈ (−1, 1). Then limn→∞ xn = 0.

(iv) Suppose (b + c)/dλ2 − c/d = 1. Then {xn}∞n=−1 converges.

(v) Suppose that (b + c)/dλ2 − c/d > 1. Then limn→∞ |xn| = +∞.

Proof. Statements (i), (iii) and (v). Recall that

xn = xn−1zn for n = 0, 1, . . . .

Thus

xn = x−1

n∏
k=0

zk for n = 0, 1, . . . .

It follows from Corollary 2.1 (iii) that limk→∞ zk = (b + c)/dλ2 − c/d,
from which the result follows.

Statement (ii). The proof of statement (iv) is similar.

Note the following:

zn =
b + c

d

(
c1λ

n+1
1 + c2λ

n+1
2

c1λn
1 + c2λn

2

)
− c

d
for n = 0, 1, . . . .

We assumed (λ2(b + c) − c)/d = −1, which implies that λ2 = (c − d)/
(b + c).

By the definition of λ1 and λ2 we have λ1 + λ2 = 1.

Solving for λ1 = 1 − λ2 = (b + c − (c − d))/(b + c) = (b + d)/(b + c).

Using the definition of c1 and c2, we have:

c1 =
d(1 − (x0/x−1)) + b − c

c − b − 2d

c2 =
d(x0/x−1) + c − b − d

c − b − 2d
.
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Consider the following simplification.

−zn =
c

d
− b + c

d

(
c1λ

n+1
1 + c2λ

n+1
2

c1λn
1 + c2λn

2

)

=
c(c1λ

n
1 + c2λ

n
2 ) − (b + c)(c1λ

n+1
1 + c2λ

n+1
2 )

d(c1λn
1 + c2λn

2 )

=
d(c1λ

n
1 + c2λ

n
2 )

d(c1λn
1 + c2λn

2 )

+
−d(c1λ

n
1 + c2λ

n
2 )+ c(c1λ

n
1 + c2λ

n
2 ) − (b+c)(c1λ

n+1
1 + c2λ

n+1
2 )

d(c1λn
1 + c2λn

2 )

= 1 +
(

(c − d)(c1λ
n
1 + c2λ

n
2 ) − (b + c)(c1λ

n+1
1 + c2λ

n+1
2 )

d(c1λn
1 + c2λn

2 )

)
.

Let

an =
(c − d)(c1λ

n
1 + c2λ

n
2 ) − (b + c)(c1λ

n+1
1 + c2λ

n+1
2 )

d(c1λn
1 + c2λn

2 )
.

We will now simplify an.

Divide numerator and denominator of an by the expression 1/λn+1
2 .

Thus

an =
(c−d)(c1/λ2(λ1/λ2)n + c2/λ2) − (b+c)(c1(λ1/λ2)(λ1/λ2)n + c2)

d((c1/λ2)(λ1/λ2)n + c2/λ2)

=
(c − d)/λ2(c1(λ1/λ2)n + c2) − (b + c)(c1(λ1/λ2)(λ1/λ2)n + c2)

d(c1/λ2(λ1/λ2)n + c2/λ2)

=
(b + c)(c1(λ1/λ2)n + c2) − (b + c)(c1λ1λ2(λ1/λ2)n + c2)

d(c1/λ2(λ1/λ2)n + c2/λ2)

=
(b + c)[c1(λ1/λ2)n[(λ2 − λ1)/λ2] ]

d(c1/λ2(λ1/λ2)n + c2/λ2)

=
(b + c)[c1(λ1/λ2)n[c − b − 2d/c + d] ]

d(c1/λ2(λ1/λ2)n + c2/λ2)

=
(b + c)[c1(λ1/λ2)n[c − b − 2d/c + d] ]

d/λ2[c1(λ1/λ2)n + c2]

=
(c − b − 2d)[c1(λ1/λ2)n]

d[c1(λ1/λ2)n + c2]
.
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We will show that the infinite series

∞∑
n=0

|an|

is convergent. We will use the limit comparison test with the convergent
geometric series

bn =
∞∑

n=0

∣∣∣∣
(

λ1

λ2

)n∣∣∣∣
lim

n→∞
bn

|an| =
|dc2|

|(c − b − 2d)c1| .

Observe that we assumed

x0

x−1
�= λ1(b + c) − c

d

and

x0

x−1
�= λ2(b + c) − c

d
.

These assumptions are equivalent to c2 �= 0 and c1 �= 0, respectively.

Lastly, c − b − 2d �= 0, otherwise λ1 = λ2.

Thus, we have a positive limit and the proof follows from Theorem (B)
and the fact that

xn = x−1(−1)n−1
n∏

k=0

(1 + ak),

where ak is defined above.

5.2 The case R = 1/4.

Theorem 5.4. Assume that (19) holds and R = 1/4. Let {xn}∞n=−1

be a solution of equation (1) such that (b − c)/2d < −1. Then
limn→∞ |xn| = +∞.
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Proof. Recall that

xn = xn−1zn for n = 0, 1, . . . .

Thus,

xn = x−1

n∏
k=0

zk for n = 0, 1, . . . .

The result follows from Corollary 2.2.

Theorem 5.5. Assume that (19) holds and R = 1/4. Let {xn}∞n=−1

be a solution of equation (1) such that (b − c)/2d = −1. Then the
following statements are true.

(i) Suppose that x0/x−1 = (b − c)/2d. Then {xn}∞n=−1 is periodic
of period two.

(ii) Suppose that x0/x−1 �= (b − c)/2d and b + d < 0. Then
limn→∞ |xn| = +∞.

(iii) Suppose that x0/x−1 �= (b − c)/2d and b + d > 0. Then
limn→∞ xn = 0 for all n ≥ −1.

(iv) Suppose that x0/x−1 �= (b − c)/2d and b+d = 0. Then {xn}∞n=−1

is periodic of period two.

Proof.

Statement (i). Recall that

xn = xn−1zn for n = 0, 1, . . . ,

and so

xn = x−1

n∏
k=0

(−1) for n = 0, 1, . . . ,

from which statement (i) follows.

Statement (ii). Recall that

xn = xn−1zn for n = 0, 1, . . . ,
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and so

xn = x−1

n∏
k=0

zk = x−1(−1)n−1
n∏

k=0

(−zk) = x−1(−1)n−1
n∏

k=0

(1 + ak)

where

ak =
−(b + d)((x0/x−1) + 1)

(b + d) + dk((x0/x−1) + 1)
for k = 0, 1, . . . .

Claim. There exists an N ≥ 1 such that ak ∈ (0, 1) for k ≥ N + 1.
Thus,

xn =
(

x−1(−1)n−1
N∏

k=0

(1 + ak)
) n∏

k=N+1

(1 + ak).

The proof of statement (ii) now follows from Theorem (A).

Statement (iii). The proof of statement (iii) is similar to statement
(ii).

Statement (iv). The proof of statement (iv) is similar to statement
(i).

The proofs of the following theorems are similar to Theorem 5.5 and
will be omitted.

Theorem 5.6. Assume that (19) holds and that R = 1/4. Let
{xn}∞n=−1 be a solution of equation (1) such that (b−c)/2d ∈ (−1, 1).
Then limn→∞ xn = 0.

Theorem 5.7. Assume that (19) holds and that R = 1/4. Let
{xn}∞n=−1 be a solution of equation (1) such that (b−c)/2d = 1. Then
the following statements are true.

(i) Suppose x0/x1 = (b − c)/2d. Then xn = x−1 for all n ≥ −1.

(ii) Suppose x0/x1 �= (b − c)/2d and b−d < 0. Then limn→∞ xn = 0.
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(iii) Suppose (x0/x1) �= (b − c)/2 and b−d > 0. Then limn→∞ |xn| =
+∞.

(iv) Suppose x0/x1 �= (b − c)/2d and b − d = 0. Then xn = x−1 for
all n ≥ 1.

Theorem 5.8. Assume that (19) holds and R = 1/4. Let
{xn}∞n=−1 be a solution of equation (1) such that (b− c)/2d > 1. Then
limn→∞ |xn| = +∞.

5.3 The case R > 1/4. In this section we describe the behavior of
solutions of equation (1) when (x−1, x0) ∈ G and R > 1/4.

Theorem 5.9. Assume that R > 1/4. Let {xn}∞n=−1 be a solution
of equation (1) and let {zn}∞n=0 be the solution of the associated Riccati
equation. Assume {zn}∞n=0 is periodic with period P . Then the
following statements are true.

(i) If
∏P−1

k=0 zk < −1, then limn→∞ |xn| = +∞.

(ii) If
∏P−1

k=0 zk = −1, then {xn}∞n=−1 is periodic with period 2P .

(iii) If
∏P−1

k=0 zk ∈ (−1, 1), then limn→∞ xn = 0.

(iv) If
∏P−1

k=0 zk = 1, then {xn}∞n=−1 is periodic with period P .

(v) If
∏P−1

k=0 zk > 1, then limn→∞ |xn| = +∞.

Proof.

xn = xn−1zn for n = 0, 1, . . . ,

and so

xn = x−1

n∏
k=0

(zk).
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