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Lp ESTIMATES FOR ROUGH
SINGULAR INTEGRALS ASSOCIATED

TO SOME HYPERSURFACES

EUNHEE KOH

ABSTRACT. We consider a class of rough singular integral
operators that are associated to a Calderón-Zygmund type
kernel K and a hypersurface given by the graph {(y, φ(ψ(y))) :
y ∈ Rn}. Here φ(t) is an increasing convex C2 function on
[0,∞), and ψ is a smooth convex function on Rn, which is
homogeneous of degree 1 and of finite type. Also, K|Sn−1

satisfies a cancelation condition and some other hypotheses
but may fail to be smooth. We obtain Lp estimates for these
operators assuming that the maximal function related to the
function φ(t) is bounded on Lp.

1. Introduction. Let Sn−1 be the unit sphere in Rn, n ≥ 2, with
the induced Lebesgue measure dσ. Throughout this paper, we shall
assume that Ω is a homogeneous function of degree zero on Rn, which
satisfies the condition Ω ∈ L1(Sn−1) and the cancelation condition∫

Sn−1
Ω(y) dσ(y) = 0.

Let K(y) = Ω(y)/|y|n for y ∈ Rn\{0}. For d ≥ n and a suitable
mapping Φ : Rn → Rd, define the singular integral operator TK,Φ by

TK,Φf(x) = p.v.

∫
Rn

f(x− Φ(y))K(y) dy

for x ∈ Rd.

When n = d, Ω ∈ C∞(Sn−1) and Φ(y) ≡ y for y ∈ Rn, TK,Φ reduces
to a classical Calderón-Zygmund singular integral operator TK , given
by

TKf(x) ≡ TK,Φf(x) = p.v.

∫
Rn

f(x− y)K(y) dy

for x ∈ Rn, and hence it is bounded on Lp(Rn) for all 1 < p <∞.
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In [3], Calderón and Zygmund used the method of rotations to
establish the Lp-boundedness of TK for 1 < p < ∞ under the weaker
hypothesis Ω ∈ L log+ L(Sn−1), that is,∫

Sn−1
|Ω(y)| log+ |Ω(y)| dσ(y) <∞.

They also showed that the condition Ω ∈ L log+ L(Sn−1) is sharp in
the sense that if Ω ∈ L(log+ L)1−ε(Sn−1) for some ε > 0, TK cannot
be bounded on Lp(Rn) for any p.

When Ω ∈ Lq(Sn−1) for some q > 1, Duoandikoetxea and Rubio de
Francia obtained the Lp estimates for TK by using a method involving
some Fourier transform estimates instead of the method of rotations.
See [3] and [10].

Ricci and Weiss [20], and independently Connett [9], obtained the
improved result that if Ω ∈ H1(Sn−1), then TK is bounded on Lp(Rn)
for 1 < p < ∞. Now let us recall that, for 1 < q ≤ ∞, the inclusion
relations

C∞(Sn−1) ⊂ L∞(Sn−1) ⊂ Lq(Sn−1) ⊂ L log+ L(Sn−1)
⊂ H1(Sn−1) ⊂ L1(Sn−1)

hold and that all the inclusions are proper. (For a definition of the
Hardy space H1(Sn−1), see Section 2.)

From now on we will restrict our attention to the case of hypersur-
faces. That is, we take d = n + 1. First let us consider the surface of
revolution Φ(y) = (y, φ(|y|)) for y ∈ Rn. For a given Ω, let

(1.1) TK,φf(x, t) ≡ TK,Φf(x, t) = p.v.

∫
Rn

f(x− y, t− φ(|y|))K(y) dy

for (x, t) ∈ Rn × R. This operator TK,φ is called the singular integral
operator along the surface of revolution {(y, φ(|y|)) : y ∈ Rn}. Just
like in the case of TK , Lp estimates for TK,φ have been obtained for
Ω belonging to spaces ranging from C∞(Sn−1) to H1(Sn−1). For
Ω ∈ C∞(Sn−1), Kim, Wainger, Wright and Ziesler in [14] proved the Lp

boundedness of singular integrals along certain surfaces of revolution.
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Theorem A [14]. Suppose that Ω ∈ C∞(Sn−1) and φ : [0,∞) → R
is C2, convex and increasing. Then TK,φ in (1.1) extends to a bounded
operator on Lp(Rn+1) for 1 < p <∞.

Chen and Fan improved the above result to the situation ΩinLq(Sn−1)
or some q > 1, assuming that φ satisfies weaker hypotheses than those
of Theorem A. In fact, they proved the Lp estimate of TK,φ when Ω
belongs to the Block space Bβr (Sn−1), β > 0 and r > 1, introduced in
[17], which contains Lq(Sn−1) for q > 1. However, we would like to
point out that by a result of Keitoku and Sato in [13], it follows that
the statement that TK,φ is bounded on Lp for every 1 < p < ∞ for
Ω ∈ Lq(Sn−1) for some q > 1 is equivalent to the statement that TK,φ
is bounded on Lp for every 1 < p <∞ for Ω ∈ Bβr (Sn−1), see [15].

Let φ : [0,∞) → R be continuously differentiable on (0,∞), which
satisfies

(1.2) |φ(t) − φ(0)| ≤ ctα,

for some α > 0 and sufficiently small t, where c is independent of t.

Theorem B [6]. Suppose Ω ∈ Lq(Sn−1) for some q > 1 and φ
satisfies the condition (1.2). If the maximal operator Vφ given by

(1.3) Vφg(t) = sup
k∈Z

∣∣∣∣∣
∫ 2k+1

2k

g(t− φ(r))
dr

r

∣∣∣∣∣
is bounded on Lp(R) for all 1 < p <∞, then TK,φ in (1.1) is bounded
in Lp(Rn+1) for all 1 < p <∞.

In [1], Al-Salman and Pan extended this result to the case Ω ∈
L log+ L(Sn−1) also by the Fourier transform estimate method in [10],
using Theorem B.

Theorem C [1]. Suppose Ω ∈ L log+ L(Sn−1) and φ satisfies the
condition (1.2). Let TK,φ be given by (1.1). Let m ∈ N and V

(m)
φ be

the maximal function on R given by

(1.4) V
(m)
φ g(t) = sup

k∈Z

∣∣∣∣∣
∫ 2m(k+1)

2mk

g(t− φ(r))
dr

r

∣∣∣∣∣
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for t ∈ R. If there exists a constant Cp independent of m such that

(1.5) ‖V (m)
φ g‖Lp(R) ≤ Cpm‖g‖Lp(R)

for all 1 < p < ∞, then TK,φ is bounded on Lp(Rn+1) for all
1 < p <∞.

Lu, Pan and Yang [16] also obtained the following extension to the
case Ω ∈ H1(Sn−1) with a stronger assumption on φ, again using
Theorem B. See [8] and [7] for the definition of the Hardy space
H1(Sn−1) on the sphere.

Theorem D [16]. Suppose that Ω ∈ H1(Sn−1) and φ satis-
fies condition (1.2). Let us define Mφ the maximal operator along
{(r, φ(r)) : r ∈ R+} by

(1.6) Mφg(x, t) = sup
k∈Z

∣∣∣∣∣
∫ 2k+1

2k

g(x− r, t− φ(r))
dr

r

∣∣∣∣∣
for x ∈ R and t ∈ R. Then TK,φ given by (1.1) is bounded on Lp(Rn+1)
for 1 < p < ∞, provided that Mφ is a bounded operator in Lp(R2) for
all 1 < p <∞.

We note that the Lp boundedness of Vφ in (1.3) is equivalent to the
estimate (1.5) for V (m)

φ in (1.4) and that if the maximal operator Mφ

in (1.6) is bounded in Lp(R2) for all 1 < p <∞, then the operator Vφ
is bounded in Lp(R) for all 1 < p < ∞. Chen and Fan showed that
if φ : [0,∞) → R is C2, convex and increasing, then Vφ is a bounded
operator in Lp(R) for all 1 < p < ∞. For more details on TK,φ, we
refer the readers to [18], where Pan gave a survey of some recent results
concerning this topic and also stated some open problems.

So far we have briefly recalled some well-known results for the clas-
sical Calderón-Zygmund singular integral operator TK and the related
operator TK,φ associated to the surface of revolution. Now it is natu-
ral to ask the following question whether the results on TK,φ may be
extended to more general surfaces than just the surfaces of revolution:
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Question. Let φ satisfy (1.2), and let ψ be a smooth convex function
on Rn, which is homogeneous of degree 1 and of finite type with
ψ(0) = ∇ψ(0) = 0. Let Φ(y) = (y, φ(ψ(y))) for y ∈ Rn. For a
suitable Ω ∈ L1(Sn−1), define

TK,φ,ψf(x, t) ≡ TK,Φf(x, t) = p.v.

∫
Rn

f(x− y, t− φ(ψ(y)))K(y) dy.

Then, does TK,φ,ψ extend to a bounded operator on Lp(Rn+1) for
1 < p < ∞, if Ω satisfies the hypotheses in Theorems A, B, C and
D, respectively?

The first step in answering this question was taken by Wainger,
Wright and Ziesler [24]. Namely, they obtained the Lp estimates for
TK,φ,ψ, when Ω ∈ C∞(Sn−1). They also determined precisely for which
convex functions ψ of finite type, TK,φ,ψ is bounded on L2 for all C1

functions φ with φ(0) = 0. In this context they introduced the linear
subspaces El = {v ∈ Rn:ψ(v) = O(sl+1) for small s > 0}. Clearly,
El+1 ⊂ El ⊂ · · · ⊂ E1 = Rn. Let l0 be the smallest l such that
El �= Rn. They showed that the L2-boundedness holds for all such φ
if and only if codimEl0 ≥ 2. Specifically for the question stated above,
they showed the following result when El0 = {0}, which is satisfied
by a homogeneous function ψ. Let us denote φl0(r) = φ(rl0) for any
r ∈ R+.

Theorem E [24]. Suppose that Ω ∈ C∞(Sn−1), El0 = {0} and that
φl0 is C1 and convex. Let ψ be a smooth convex function of finite type
with ψ(0) = ∇ψ(0) = 0. Then

‖TK,φ,ψf‖Lp(Rn+1) ≤ Cp‖f‖Lp(Rn+1), 1 < p <∞.

However, this leaves the question open for rough Ω, that is, Ω /∈
C∞(Sn−1). In this paper, we answer this question in the affirmative
when ψ is a certain homogeneous function. Our approach is mainly
the one which originated in the work of Duoandikoetxea and Rubio de
Francia [10] and was further developed by Fan and Pan [12]. But in our
case some difficulty arises, because the rotation-invariance of a surface
of revolution is not available. We will try to adapt the approach of [12]
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by making the level surface H = {x ∈ Rn : ψ(x) = 1} play the role of
the sphere and using a sort of polar coordinates adapted to H. Here
the difficulty is that the cancelation hypothesis

∫
Sn−1 Ω(y) dσ(y) = 0 is

made for the sphere and not on H. This difficulty may be resolved as
follows.

In order to obtain a similar cancelation condition on H, we replace
the Lebesgue measure by the weighted measure which is related to the
polar coordinates with respect to ψ and use an idea in [24]. Also,
when Ω ∈ H1(Sn−1), we cannot apply the oscillatory integral estimate
of Fan and Pan [12], which was used to obtain Theorem D. So we
replace their oscillatory integral estimate by an estimate better adapted
to our hypersurface and use these estimates to prove an extension of
Theorem D.

Following [16], we define a more general singular integral operator T ,
which is associated to the hypersurfaces of the form {(y, φ(ψ(y))) : y ∈
Rn}, as follows:

(1.7) Tf(x, t) = p.v.

∫
Rn

f(x− y, t− φ(ψ(y))) b(ψ(y))K(y) dy

for a bounded function b on [0,∞) and answer the question about T .

Our main results may be stated as follows. Suppose that φ satisfies
the condition (1.2) and that ψ is a homogeneous function of degree one
in Rn. Let H be the hypersurface defined by {y ∈ Rn : ψ(y) = 1} with
the induced Lebesgue measure dσH . For a fixed point ω ∈ H, let uω
be the outward unit normal to the surface H at ω, and let Tω be the
affine tangent plane to H at ω. Also, following [2] we define the “ball”
B̃(ω, s) by B̃(ω, s) = {y ∈ H : dist (y, Tω) < s} for s > 0.

We will now introduce a definition concerning the function ψ, which
we will use instead of the usual condition that ψ is a smooth convex
function of finite type. The advantage of this definition is that it allows
some non-smooth and non-finite type examples.

Definition 1.1. Let ψ be a C2 convex function on Rn with ψ(0) = 0
such that the associated surface H = {x : ψ(x) = 1} is compact. We
will say that ψ is a-convex type if there is a constant a > 0 such that,
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for some small δ > 0,

(1.8) sup
ω∈H

∫ δ

0

σH(B̃(ω, s))
ds

s1+a
<∞.

We remark that if ψ is a smooth convex function of finite type, then
ψ is a-convex type for some a > 0. For Ω ∈ Lq(Sn−1), we obtain
the following extension of Theorem B by using the method of Fourier
transform estimate in [6] and an observation of Duoandikoetxea and
Rubio de Francia in [10]. In Section 4, we shall establish the following

Theorem 1. Let Ω ∈ Lq(Sn−1) for some q > 1. Suppose that φ
satisfies (1.2) and that ψ is a-convex type for some a > 0, which is
a homogeneous function of degree 1. Then T is a bounded operator in
Lp(Rn+1) for all 1 < p < ∞, provided that the maximal operator Vφ,
in (1.3) is bounded on Lp(R) for all 1 < p <∞.

By using Theorem 1 and some methods in [1], we obtain the following
extension of Theorem C. This is established in Section 4.

Theorem 2. Let Ω ∈ L log+ L(Sn−1). Suppose that φ satisfies (1.2)
and that ψ is a homogeneous function of degree 1, which is a-convex
type for some a > 0. Then T is a bounded operator on Lp(Rn+1) for all
1 < p < ∞, provided that the maximal operator V (m)

φ in (1.4) satisfies
(1.5).

Finally, we obtain the following extension of Theorem D, with the
condition Ω ∈ H(Sn−1), by using Theorem 1 and some modified
oscillatory integral estimates for a polynomial phase of degree 1. In
Section 3, we shall establish the following

Theorem 3. Suppose Ω ∈ H1(Sn−1). Let φ satisfy (1.2) and ψ be
a smooth convex function of finite type with ψ(0) = ∇ψ(0) = 0, which
is a homogeneous function of degree 1. If the maximal operator Mφ

defined by (1.6) is bounded on Lp(R2) for all 1 < p < ∞, then T is
bounded on Lp(Rn+1) for all 1 < p <∞.
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This paper is organized as follows. In Section 2, we shall state some
important known lemmas which are useful for obtaining our results.
Since the proofs of Theorems 1 and 2 have some similarity to that
of Theorem 3, we shall first prove Theorem 3 in Section 3 in some
detail and only sketch the proof of Theorems 1 and 2 in Section 4.
Some oscillatory integral estimates that are important for our proofs
are shown in Section 5.

Throughout the paper, A � B means that there exists a positive
constant C such that A ≤ CB. We say that A � B if A � B and
B � A.

2. Some lemmas. We begin by recalling the definition of the
Hardy space H1(Sn−1) on Sn−1. Let Pr,y be the Poisson kernel on
Sn−1 defined by

Pr,y(x) =
1 − r2

|x− ry|2
where r ∈ [0, 1) and x, y ∈ Sn−1. For f ∈ L1(Sn−1), we define

P+f(x) = sup
0≤r<1

∣∣∣∣∫
Sn−1

Pr,y(y)f(y) dσ(y)
∣∣∣∣

where x ∈ Sn−1. The Hardy space H1(Sn−1) is given by

H1(Sn−1) = {f ∈ L1(Sn−1) : ‖P+f‖L1(Sn−1) <∞}

and ‖f‖H1(Sn−1) = ‖P+f‖L1(Sn−1). See [12, 8] and [7] for the details.

There are two types of H1 atoms on the unit sphere.

Definition 2.1. A function a(·) on Sn−1 is a regular atom if there
exist ζ ∈ Sn−1 and ρ ∈ (0, 2] such that

(i) supp (a) ⊂ Sn−1∩B(ζ, ρ) where B(ζ, ρ) = {y ∈ Rn : |y−ζ| < ρ}
(ii) ‖a‖L∞(Sn−1) ≤ ρ−n+1

(iii)
∫
Sn−1 a(y) dσ(y) = 0.

Definition 2.2. A function a(·) on Sn−1 is an exceptional atom if
a(·) ∈ L∞(Sn−1) and ‖a‖L∞(Sn−1) ≤ 1.
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And we shall use the following characterization of H1(Sn−1) in [7] or
[8].

Lemma 2.3. For any f ∈ H1(Sn−1), there are complex numbers cj
and atoms (regular and exceptional) aj such that

f =
∑
j

cj aj

converges in H1(Sn−1) norm and ‖f‖H1(Sn−1) �
∑
j |cj |.

The following lemmas are the main tools for proving Theorem 3.

Lemma 2.4. Let l, n ∈ N and {σj,k : j = 1, . . . , l and k ∈ Z}
be a family of measures on Rn with σ0,k = 0 for every k ∈ Z. Let
αj,1, αj,2 > 0, η ∈ R\{1}, {nj : j = 1, . . . , l} ⊂ N and Lj : Rn → Rnj

be linear transformations for j = 1, . . . , l. Suppose

(i) ‖σjk‖ ≤ 1 for k ∈ Z and j = 1, . . . , l

(ii) |σ̂j,k(ξ)| ≤ C(ηk|Ljξ|)−αj,2 for ξ ∈ Rm, k ∈ Z and j = 1, . . . , l

(iii) |σ̂j,k(ξ) − σ̂j−1,k(ξ)| ≤ C(ηk|Ljξ|)αj,1 for ξ ∈ Rm, k ∈ Z and
j = 1, . . . , l

(iv) For some q > 1, there exists Aq > 0 such that

‖ sup
k∈Z

| |σj,k| ∗ f | ‖Lq(Rn) ≤ Aq‖f‖Lq(Rn)

for all f ∈ Lq(Rn) and j = 1, . . . , l.

Then for every p ∈ ((2q/q + 1), (2q/q − 1)), there exists a constant Cp
such that ∥∥∥∥∑

k∈Z
σl,k ∗ f

∥∥∥∥
Lp(Rn)

≤ Cp‖f‖Lp(Rn)

and ∥∥∥∥(∑
k∈Z

|σl,k ∗ f |2
)1/2∥∥∥∥

Lp(Rn)

≤ Cp‖f‖Lp(Rn)
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hold for every f ∈ Lp(Rn). The constant Cp is independent of the
linear transformations {Lj}lj=1.

Lemma 2.5 [11]. Let n,m ∈ N, η ∈ R+\{1}, δ1, δ2 > 0 and
L : Rn → Rm be a linear transformation. Suppose that {σk}k∈Z is a
sequence of measures on Rm satisfying

(i) ‖σk‖ ≤ 1 for k ∈ Z

(ii) |σ̂k(ξ)| ≤ C[min{(ηk|Lξ|)δ1 , (ηk|Lξ|)−δ2}] for ξ ∈ Rn and k ∈ Z

(iii) For some q > 1, there exists Aq > 0 such that for all f ∈ Lq(Rm)

‖σ∗f‖Lq(Rm) = ‖ sup
k∈Z

| |σk| ∗ f | ‖Lq(Rm) ≤ Aq‖f‖Lq(Rm)

Then for every p ∈ ((2q/q + 1), (2q/q − 1)) there exists a constant
Cp = C(p, n,m, η, δ1, δ2) such that∥∥∥∥∑

k∈Z
σk ∗ f

∥∥∥∥
Lp(Rm)

≤ Cp‖f‖Lp(Rm)

and ∥∥∥∥(∑
k∈Z

|σk ∗ f |2
)1/2∥∥∥∥

Lp(Rm)

≤ Cp‖f‖Lp(Rm)

hold for any f ∈ Lp(Rm). The constant Cp is independent of the linear
transformation L.

In order to handle the truncation in the phase space, we need the
following useful lemma in [12].

Lemma 2.6. For s ≤ d, let P : Rs → Rs and Q : Rd → Rd be two
nonsingular linear transformations and φ ∈ S(Rs). Let x ∈ Rd and
r > 0. Define J and Xr=Xr(φ,Q, P ) by

(Jf)(x) = f(Qt(P t ⊗ idRd−s)(x))

and

Xrf(x) = J−1((|Φr| ⊗ δRd−s) ∗ Jf)(x)
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where/ Qt is the transpose of Q, δRd−s is the Dirac delta on Rd−s and
Φ ∈ S(Rs) satisfies Φ̂ = φ. Let X = X (φ,Q, P ) be given by

Xf(x) = sup
r>0

|Xrf(x)|;

then for 1 < p ≤ ∞, there exists a constant Cp = C(p, φ, s, d) such that

‖Xf‖p ≤ Cp‖f‖p

for f ∈ Lp(Rd). The constant Cp is independent of the linear trans-
formations Q and P .

By introducing polar coordinates with respect to ψ, we get that for
some continuous function h,

Tf(x, t) =
∑
k

∫
Ik

∫
H

f(x− rω, t− φ(r))K(rω)rn−1h(ω) dσH(ω)b(r) dr

=
∑
k

∫
Ik

∫
H

f(x− rω, t− φ(r))K(ω)h(ω) dσH(ω)b(r)
dr

r

≡
∑
k

σk ∗ f(x, t)

where x ∈ Rn, t ∈ Rn, Ik = [2k, 2k+1] and dσH is the measure on H
induced by Lebesgue measure on Rn. And

σ̂k(ξ, τ) =
∫
Ik

∫
H

exp{−i [rξ · ω + τφ(r)]}K(ω)h(ω) dσH(ω) b(r)
dr

r
.

To prove our result, we need the mean value zero property on H of K
with the weighted measure hdσH , which is similar to the mean value
zero property on Sn−1 of Ω with dσ.

Lemma 2.7 [24]. Suppose that ψ is a C2 convex function and∫
Sn−1 Ω(y) dσ(y) = 0. Then, for some continuous function h,∫

H

K(ω)h(ω) dσH(ω) = 0.
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We shall denote dμ = hdσH , Lp(H) = Lp(H, dμ). Then we note that
‖K‖Lp(H) � ‖Ω‖Lp(Sn−1). By using the preceding lemmas, we shall
prove Theorem 3.

3. Proof of Theorem 3. Since Ω ∈ H1(Sn−1) and
∫

Ω dσ = 0,
Lemma 2.3 and Lemma 2.7 imply that there are regular atoms as(.) on
Sn−1 and {cs} ⊂ C such that

K(y) =
Ω(y)
|y|n =

∑
s

csas(y)
|y|n ≡

∑
s

csKs(y) for y ∈ Rn

where as is homogeneous of degree 0,
∫
H
Ks(ω) dμ(ω) = 0, supp as ∩

H ⊂ {y ∈ H ; |y − ηs| ≤ ρs} for some ηs ∈ H and ρs > 0 and
‖as‖L∞(H) ≤ ρ−n+1

s . And

Tf(x, t) ≡
∑
s

csTsf(x, t) ≡
∑
s

∑
k

csσ
s
k ∗ f(x, t)

where

Tsf(x, t) = p.v.

∫
Rn

f(x− y, t− φ(ψ(y))) b(ψ(y))Ks(y) dy,

and

σ̂sk(ξ, τ) =
∫
Ik

∫
H

exp{−i [rξ · ω + τφ(r)]}Ks(ω) dμ(ω) b(r)
dr

r
.

If there is a constant Cp that is independent of s such that ‖Tsf‖p ≤
Cp‖f‖p for any p > 1, then ‖Tf‖p ≤

∑
s |cs| ‖Tsf‖p ≤ Cp

∑
s |cs| ‖f‖p

� Cp‖Ω‖H1(Sn−1)‖f‖p for all p > 1. So, it is enough to show that
‖Tsf‖p ≤ Cp‖f‖p for any p > 1 where Cp is independent of s. For
1/4 ≤ ρs, ‖Tsf‖p ≤ Cp‖f‖p for all p > 1 is induced from Ks is in L∞

and Theorem 1 which shall be proven in Section 4. So we assume that
0 < ρs < 1/4 for all s.

Since H is of finite type, we may parametrize H in the neighborhood
of ηs, B(ηs, ρs) as

ηs + (z̃, gs(z̃)) for z̃ ∈ B(0, ρs) ≡ {ω̃ ∈ Rn−1; |ω̃| < ρs}
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where gs(0) = ∇gs(0) = 0 and for some integer a ≥ 2,∑
|α|=a

|∂αgs/∂z̃α| �= 0.

Let a1 be the smallest integer such that
∑

|α|=a1
|∂αgs/∂z̃α| �= 0. By

induction, we can obtain that 2 ≤ a1 < a2 < · · · < aj < cdots < al−1 ≤
4a1(n− 1) < al such that

∑
|α|=ak

|∂αgs/∂z̃α| �= 0 for all k = 2, . . . , l.
And we have that, for j ≤ l and z̃ ∈ B(0, ρs),∣∣∣∣∣∣ gs(z̃) −

aj∑
|α|=a1

1
α!

∂αgs(0)
∂z̃α

z̃α

∣∣∣∣∣∣ ≤ Cj ρs
aj+1

where Cj is independent of s. For a simple notation, let us denote
K̃s(z̃) = Ks(ηs + (z̃, gs(z̃))) and dμ̃(z̃) = dμ(ηs + (z̃, gs(z̃))) for
z̃ ∈ B(0, ρs).

From now on, we will fix s, z ∈ Z and make a family of measures
{σKs,j,k}j=0,1,... ,l on Rn+1 to prove Theorem 3 by following Lemma 2.4.
For ξ = (ξ1, . . . ξn) = (ξ̃, ξn) ∈ Rn−1 ×R and τ ∈ R, define a family of
measures {σ̂Ks,j,k}j=0,1,... ,l on Rn+1 by

σ̂Ks,l,k(ξ, τ) = σ̂sk(ξ, τ)

=
∫
Ik

∫
H

exp{−i [rξ · y + τφ(r)]}Ks(y) dμ(y) b(r)
dr

r

=
∫
Ik

∫
|z̃|<ρs

exp{−i [rξ · ηs + rξ̃ · z̃ + rξngs(z̃) + τφ(r)]}

× K̃s(z̃)dμ̃(z̃) b(r)
dr

r
.

For j = 2, . . . , l − 1,

σ̂Ks,j,k(ξ, τ) =
∫
Ik

∫
|z̃|<ρs

exp
{
− i

[
rξ · ηs + rξ̃ · z̃

+ rξn

aj∑
|α|=a1

1
α!

∂αgs(0)
∂z̃α

z̃α + τφ(r)
]}
K̃s(z̃)dμ̃(z̃) b(r)

dr

r
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σ̂Ks,1,k(ξ, τ) =
∫
Ik

∫
|z̃|<ρs

exp{−i [rξ · ηs + rξ̃ · z̃ + τφ(r)]}

× K̃s(z̃)dμ̃(z̃) b(r)
dr

r

σ̂Ks,0,k(ξ, τ) =
∫
Ik

∫
|z̃|<ρs

exp{−i [rξ · ηs + τφ(r)]}K̃s(z̃)dμ̃(z̃) b(r)
dr

r
.

To apply Lemma 2.4, we will check the condition (i) (iv) for {σKs,j,k;
j = 0, 1, . . . , l and k ∈ Z}.

Condition (i). By Lemma 2.7, we have that for all s, k ∈ Z and
j = 1, . . . , l, σ̂Ks,0,k = 0 and ‖σKs,j,k‖ ≤ 1.

Condition (ii). Since H is of finite type, we have that

|σ̂Ks,l,k(ξ, τ)| ≤ C(2kρs4a1(n−1)|ξn|)−1/4.

For j = 1, . . . , l, we get that

|σ̂Ks,j,k(ξ, τ)| ≤ C

⎛⎝2k|ξn|ρsaj

∑
|α|=aj

1
α!

∣∣∣∣∂αgs(0)
∂z̃α

∣∣∣∣
⎞⎠−1/4j

,

j = 2, . . . , l − 1,

and
|σ̂Ks,1,k(ξ, τ)| ≤ C(2kρs|(ξ1, . . . , ξn)|)−1/4

by using the estimates on the oscillatory integral related to the hyper-
surface H, which is proven in Section 5.

Proposition 3.1. Let Fm(z̃) =
∑

|α|≤m bαz̃
α for z̃ ∈ Rn−1. Suppose

‖K̃s‖L∞(H) ≤ ρ−α+1 and supp K̃s ⊂ B(0, ρ) = {ỹ ∈ Rn−1; |ỹ| < ρ}.
Then there exists a constant C such that∫ 2k+1

2k

∣∣∣∣∣
∫
|z̃|<ρ

exp{−i rFm(z̃)}K̃s(z̃) dμ̃(z̃)

∣∣∣∣∣ drr
≤ C

(
2kρm

∑
|α|=m

|bα|
)−1/4m

.
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The constant C may depend on m and the dimension n, but it is
independent of k, ρ and {bα}|α|≤m.

Now let us denote

G1(ξ, τ) = ρsξ̃ = ρs(ξ1, . . . , ξn−1), π1 =
1
4

Gj(ξ, τ) = ρaj
s ξn

∑
|α|=aj

1
α!

∣∣∣∣∂αgs(0)
∂z̃α

∣∣∣∣ , πj =
1
4j
, 2 ≤ j ≤ l − 1

Gl(ξ, τ) = ρs
4a1(n−1)ξn, πl =

1
4
.

Then we have that, for 1 ≤ j ≤ N , k ∈ Z, ξ ∈ Rn and τ ∈ R,

(3.9) |σ̂Ks,j,k(ξ, τ)| ≤ C [2k|Gj(ξ, τ)|]−πj

where the constant C is independent of j and s.

Condition (iii). If j = l, Lemma 2.7 implies that

|σ̂Ks,l,k − ̂σKs,l−1,k(ξ, τ)|

≤
∫
Ik

∣∣∣∣ ∫|z̃|<ρs

1 − exp
{
− i rξn

[
gs(z̃) −

al−1∑
|α|=a1

(
1
α!

∂αgs(0)
∂z̃α

z̃α
)]}

× K̃s(z̃) dμ̃(z̃)| b(r) dr
r

≤ C 2k |ξn|ρsal ≤ C 2k |ξn|ρs4a1(n−1) = C |2kGl(ξ, τ)|.
For j = 2, . . . , l − 1,

|σ̂Ks,j,k − ̂σKs,j−1,k(ξ, τ)|
≤
∫
Ik

∫
|z̃|<ρs

∣∣∣∣1 − exp
{
− i rξn

∑
|α|=aj

(
1
α!

∂αgs(0)
∂z̃α

z̃α
)}∣∣∣∣

× |K̃s(z̃)| dμ̃(z̃) b(r)
dr

r

≤ C 2k|ξn|ρsaj

∑
|α|=aj

1
α!

∣∣∣∣∂αgs(0)
∂z̃α

∣∣∣∣ = C |2kGj(ξ, τ)|.
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And

|σ̂Ks,1,k − σ̂Ks,0,k(ξ, τ)|
≤

∫
Ik

∫
|z̃|<ρs

|1 − exp{−i rξ̃ · z̃}| |K̃s(z̃)| dμ̃(z̃) b(r)
dr

r

≤ C 2k|ξ̃|ρs = C |2kG1(ξ, τ)|.
So we have that, for j = 1, . . . , l,

(3.10) |σ̂Ks,j,k − ̂σKs,j−1,k(ξ, τ)| ≤ C |2kGj(ξ, τ)|

Condition (iv). To verify the estimate (iv) in Lemma 2.4, it suffices
to establish the Lp boundedness of the operators σ∗

|Ks|,j defined by

σ∗
|Ks|,jf(x, t) = sup

k∈Z
|(σ|Ks|,j,k ∗ f)(x, t)| for j = 0, . . . , l.

When j = 0, the assumption of Mφl
and the change of variable derive

that

‖σ∗
|Ks|,0f‖pp =

∫
Rn

∫
R

∣∣∣∣sup
k

∫
Ik

f(x− rηs, t− φ(r))
dr

r

∣∣∣∣p dt dx
≤ Cp‖(i dn−1 ⊗Mφ)f‖pp ≤ Cp‖f‖pp.

First, we consider the case j = 1,

σ∗
|Ks|,1f(x, t) = sup

k∈Z
|(σ|Ks|,1,k ∗ f)(x, t)|.

Choose ζ ∈ C∞
0 such that ζ(t) ≡ 1 for |t| ≤ 1/2 and ζ(t) ≡ 0 for

|t| ≥ 1. For k ∈ Z, we denote another measure νk by

ν̂k (ξ, τ) = ζ(2kG1(ξ, τ)) ̂σ|Ks|,0,k (ξ, τ)

for ξ ∈ Rn and τ ∈ R. Let τk = σ|Ks|,1,k − νk.

Then by (3.10), (3.9) and | ̂σ|Ks|,0,k| ≤ c, we have

|τ̂k (ξ, τ)| ≤ | ̂σ|Ks|,1,k (ξ, τ)− ̂σ|Ks|,0,k (ξ, τ)|
+ |1 − ζ(2kG1(ξ, τ))| | ̂σ|Ks|,0,k (ξ, τ)|

� |2kG1(ξ, τ)|,
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and

|τ̂k(ξ, τ)| � | ̂σ|Ks|,1,k (ξ, τ)|+ |ζ(2kρs(ξ1, . . . , ξn−1))| � |2kG1(ξ, τ)|−π1

So, we have that

(3.11) |τ̂k (ξ, τ)| � min
{|2kG1(ξ, τ)|, |2kG1(ξ, τ)|−π1

}
.

Define that

τ∗(f)(x, t) = sup
k

|(|τk| ∗ f)(x, t)|
ν∗(f)(x, t) = sup

k
|(|νk| ∗ f)(x, t)| and

gτ (f)(x, t) =
{∑

k

[(|τk| ∗ f)(x, t)]2
}1/2

.

Then

(3.12) σ∗
|Ks|,1(f)(x, t) � gτ (f)(x, t) + ν∗(f)(x, t)

(3.13)
τ∗(f)(x, t) � σ∗

|Ks|,1f(x, t) + ν∗(f)(x, t)

� gτ (f)(x, t) + 2ν∗(f)(x, t)

By the Lp(R2) boundedness of Mφ, Lemma 2.6 and its remark, we have

‖ν∗(f)‖Lp(Rn+1) � ‖σ∗
|Ks|,0f ‖Lp(Rn+1)

� ‖(i dn−1 ⊗Mφ)f ‖Lp(Rn+1)

� ‖f‖Lp(Rn+1)

Also from (3.11),

‖gτ (f)‖L2(Rn+1) � ‖f‖L2(Rn+1).

Thus (3.13) implies that

‖τ∗(f)‖L2(Rn+1) � ‖f‖L2(Rn+1).
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By invoking Lemma 2.5, we obtain

‖gτ (f)‖Lp(Rn+1) � ‖f‖Lp(Rn+1) for 4/3 < p < 4.

Thus by (3.13) again, we obtain

(3.14) ‖τ∗(f)‖Lp(Rn+1) � ‖f‖Lp(Rn+1) for 4/3 < p < 4.

By using (3.13), (3.14), and a bootstrap argument, we obtain

‖gτ (f)‖Lp(Rn+1) � ‖f‖Lp(Rn+1) for any 1 < p <∞.

Now from (3.12),

‖σ∗
|Ks|,1(f)‖Lp(Rn+1) � ‖f‖Lp(Rn+1) for any 1 < p <∞.

By the same process as in the case j = 1, we get that

(3.15) ‖σ∗
|Ks|,j(f)‖Lp(Rn+1) ≤ Cp‖f‖Lp(Rn+1)

for 1 ≤ j ≤ N , where Cp is independent of s. Now by (3.9), (3.10),
(3.15) and Lemma 2.4, we have

‖Tsf‖Lp(Rn+1) =
∥∥∥∥∑
k∈Z

σKs,l,k ∗ f
∥∥∥∥
Lp(Rn+1)

≤ Cp‖f‖Lp(Rn+1)

for 1 < p <∞

where the constant C is independent of s. This completes the proof of
Theorem 3.

4. Proof of Theorems 1 and 2.

Proof of Theorem 1. The case Ω ∈ Lq(Sn−1). Given a finite
measure μ in Rn+1, define another measure μ0 in Rn as follows:
μ0(E) = μ(E × R) for every Borel subset E of Rn in terms of Fourier
transforms; this means μ̂0(ξ) = μ̂(ξ, 0) for all ξ ∈ Rn. To obtain
Theorem 1, we need the following lemmas in [10].



ROUGH SINGULAR INTEGRALS 527

Lemma 4.1 [10]. Suppose that the probability measures {νk}∞k=−∞
in Rn+1 satisfy that

(i) |ν̂k(ξ, s) − ν̂k(0, s)| ≤ C|2kξ|α, |ν̂k(ξ, s)| ≤ C|2kξ|−α for some
α > 0 and

(ii) M0g(t) = supk |ν0
k ∗ g(t)| is a bounded operator in Lp(R) for all

p > 1.

Then Mf(x, t) = supk |νk ∗ f(x, t)| is also bounded in Lp(Rn+1) for
any p > 1.

Lemma 4.2 [10]. Suppose that the measures {σk}∞k=−∞ satisfy that

(i) ‖σk‖ ≤ 1, σ̂k(0, s) = 0 for all s ∈ R,

(ii) |σ̂k(ξ, s)| ≤ Cmin{|2kξ|, |2kξ|−1}α for some α > 0 and

(iii) σ∗
0g = supk ||σ0

k| ∗ g| is bounded in Lq(R) and

(iv) σ∗f = supk ‖σk| ∗ f | is bounded in Lq(Rn+1), for some 1 <
q <∞.

Then the operators

Tf(x, t) =
∞∑

k=−∞
σk ∗ f(x, t) and T ∗∗f(x, t) = sup

k

∣∣∣∣∑
j≥k

σj ∗ f(x, t)
∣∣∣∣

are bounded in Lp(Rn+1) for any p ∈ ((2q/q + 1), (2q/q − 1)).

Suppose that Ω ∈ Lq(Sn−1) for some q > 1 and Vφ is a bounded
operator in Lp(R) for any 1 < p < ∞. Let φ satisfy (1.2) and ψ be
a a-convex type for some a > 0, which is a homogeneous function of
degree 1. We have that

Tf(x, t) =
∑
k

σk ∗ f(x, t)

=
∑
k

∫
Ik

∫
H

f(x− rω, t− φ(r))K(ω) dμ(ω) gb(r)
dr

r
.

Now let us begin to prove Theorem 1 by applying Lemma 4.2 to
{σk}k∈Z . By the cancelation property of K in H (Lemma 2.7), we
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get that σ̂k(0, s) = 0 and

|σ̂k(ξ, s)| ≤
∫
Ik

∫
H

|e−irξ·ω − 1| |K(ω)| dμ(ω)
dr

r

� |2kξ| ‖K‖L1(H) � |2kξ|.
It follows from the method in [10, p. 553] that

|σ̂k(ξ, s)| ≤
∫
Ik

∣∣∣∣∫
H

e−irξ·ωK(ω)dμ(ω)
∣∣∣∣ drr

�
[ ∫

Ik

∣∣∣∣∫
H

e−irξ·ωK(ω)dμ(ω)
∣∣∣∣2 dr

r

]1/2

=

⎡⎣ ∫∫
H×H

∫
Ik

e−irξ·(ω−θ)
dr

r
K(ω)K(θ) dμ(ω)dμ(θ)

⎤⎦1/2

.

Let I(ξ, ω− θ) =
∫
Ik e

−irξ·(ω−θ) dr/r. By Van der Corput’s lemma, we
know that

|I(ξ, ω − θ)| ≤ Cmin{1, |2kξ · (ω − θ)|−1}.
For any 0 < α < 1,

|I(ξ, ω − θ)| � |2kξ|−α|ξ′ · (ω − θ)|−α,
where ξ′ = ξ/|ξ|. Then we get by Hölder inequality

|σ̂k(ξ, s)|

≤ (2k|ξ|)−α/2
⎡⎣ ∫∫
H×H

|ξ′ · (ω − θ)|−αK(ω)K(θ) dμ(ω) dμ(θ)

⎤⎦1/2

≤ (2k|ξ|)−α/2
⎡⎣∫∫
H×H

|ξ′ · (ω − θ)|−αq′ dμ(ω) dμ(θ)

⎤⎦1/2q′

‖K‖Lq(H).

Let us consider the following integral∫∫
H×H

|(θ − ω) · u|−a dσH(θ) dσH(ω)
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for some a > 0 and for all unit vectors u, where dσH is the Lebesque
measure on H. Recall the definitions. For a fixed ω ∈ H, let uω be
the outward unit normal to the surface H at ω, and let Tω be the affine
tangent plane to H at ω. Define B̃(ω, s) = {y ∈ H : dist (y, Tω) < s}
for any s > 0. We investigate the following integral∫

H

|(θ − ω) · u|−a dσH(θ) =
∫ ∞

0

σH{θ ∈ H : |(θ − ω) · u|−a > t} dt

�
∫ ∞

0

σH{θ ∈ H : |(θ − ω) · u| < s} ds

s1+a
.

Here it suffices that we consider the last integral near 0. Since ψ is
convex, we have the following inequality, for a sufficiently small δ,∫ δ

0

σH{θ ∈ H : |(θ − ω) · u| < s} ds

s1+a

≤
∫ δ

0

σH{θ ∈ H : |(θ − ω) · uω| < s} ds

s1+a

�
∫ δ

0

σH(B̃(ω, s))
ds

s1+a

≤ sup
ω∈H

∫ δ

0

σH(B̃(ω, s))
ds

s1+a
� 1

since ψ satisfies the condition (1.8). So we have proven the uniform
estimate for any unit vector u∫∫

H×H
|(θ − ω) · u|−a dσH(θ) dσH(ω) � 1.

Since h is continuous and H is compact, we have∫∫
H×H

|(θ − ω) · ξ′|−αq′ dμ(ω) dμ(θ)

=
∫∫
H×H

|(θ − ω) · ξ′|−αq′h(θ) dσH(θ)h(ω) dσH(ω)

≤ ‖h‖2
∞

∫∫
H×H

|(θ − ω) · ξ′|−αq′ dσH(θ) dσH(ω) ≤ C for αq′ = a.
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So

(4.16) |σ̂k(ξ, s)| ≤ C |2kξ|−α/2

for Ω ∈ Lq(Sn−1) where q > 1 and αq′ = a. This proves the
condition (ii) in Lemma 4.2. Then we can obtain the conditions (i) (ii)
of {|σk|}k∈Z in Lemma 4.1 and the conditions (iii) (iv) of {σk}k∈Z
in Lemma 4.2 by similar methods with those of Section 3. Thus
Lemma 4.2 completes the proof of Theorem 1.

Proof of Theorem 2. The case Ω ∈ L log+ L(Sn−1). For Ω ∈
L log+ L(Sn−1), we begin with an appropriate decomposition of Ω
which is described in [1]. Let Am = {y ∈ Rn : 2m < |Ω(y)| ≤ 2m+1}
for m ∈ N and A(Ω) = {m ∈ N : σ(Am) > 2−4m} where σ is the
normalized Lebesque measure on Sn−1. For each m ∈ A(Ω), let

am = ‖Ω‖−1
L1(Am∩Sn−1)

[
ΩχAm

−
∫
Am

Ω dσ
]
.

Then the following hold for all m in A(Ω):

(i)
∫
Sn−1 am dσ = 0;

(ii) ‖am‖L1(Sn−1) ≤ 2;

(iii) ‖am‖L2(Sn−1) ≤ 22m+2.

In addition, we have the following decomposition

Ω = Ω0 +
∑

m∈A(Ω)

‖Ω‖L1(Am∩Sn−1)am

where Ω0 ∈ L2(Sn−1) and satisfies∫
Sn−1

Ω0 dσ = 0.

Clearly, Ω0 and am are homogeneous of degree 0 for all m ∈ A(Ω).
This induces the following decomposition of T ,

T = T0 +
∑

m∈A(Ω)

‖Ω‖L1(Am∩Sn−1)Tm
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where

T0f(x, t) = p.v.

∫
Rn

f(x− y, t− φ(ψ(y)))
Ω0(y)
|y|n dy,

and

Tmf(x, t) = p.v.

∫
Rn

f(x− y, t− φ(ψ(y)))
am(y)
|y|n dy,

for any m ∈ A(Ω) and (x, t) ∈ Rn × R. See [1] for the details. Since
Ω0 ∈ L2(Sn−1), we know that ‖T0f‖p ≤ Cp ‖f‖p for all 1 < p < ∞
by Theorem 1. If we can show that ‖Tmf‖p ≤ Cpm ‖f‖p for each
m ∈ A(Ω) and all 1 < p <∞, then

‖Tf‖p ≤ Cp

[
1 +

∑
m∈A(Ω)

m ‖Ω‖L1(Am∩Sn−1)

]
‖f‖p

≤ Cp [1 + ‖Ω‖L log+ L(Sn−1)] ‖f‖p.

To prove Theorem 2, it suffices to show that ‖Tmf‖p ≤ Cpm ‖f‖p for
each m ∈ A(Ω) and all 1 < p < ∞. Let us fix m ∈ A(Ω). We shall
then proceed to further decompose Tm as Tm =

∑
k∈Z Tm,k, that is,

Tmf(x, t) =
∑
k∈Z

∫ 2m(k+1)

2mk

∫
H

f(x− rω, t− φ(rl))
am(y)
|y|n dμ(ω)

dr

r

≡
∑
k∈Z

σmk ∗ f(x, t) ≡
∑
k∈Z

Tm,kf(x, t).

By invoking Lemma 2.7, we know that am satisfies the cancelation
property on H with dμ, i.e.,

(4.17)
∫
H

am(y)
|y|n dμ(y) = 0.

From now on, we shall follow the proof of Theorem 1. And so we need
the following lemma in [1] modified from Lemma 2.5.

Lemma 4.3. Let s, d ∈ N, η > 2, δ1, δ2 > 0, B > 0 and
L : Rs → Rd be a linear transformation. Suppose that {σk}k∈Z is
a sequence of measures on Rd satisfying
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(i) ‖σk‖ � B for k ∈ Z

(ii) |σ̂k(ξ)| � B[min{(ηk|Lξ|)δ1 , (ηk|Lξ|)−δ2}] for ξ ∈ Rs and k ∈ Z

(iii) For some q > 1, there exists Aq > 0 such that

‖σ∗f‖Lq(Rd) = ‖ sup
k∈Z

| |σk| ∗ f |‖Lq(Rd) � B‖f‖Lq(Rm)

Then, for every p ∈ ((2q/q + 1), (2q/q − 1)), there exists a constant
Cp = C(p, s, d, η, δ1, δ2) such that∥∥∥∥∑

k∈Z
σk ∗ f

∥∥∥∥
Lp(Rd)

≤ CpB‖f‖Lp(Rd)∥∥∥∥(∑
k∈Z

|σk ∗ f |2
)1/2

∥∥∥∥
Lp(Rd)

≤ CpB‖f‖Lp(Rd)

hold for any f ∈ Lp(Rd). The constant Cp is independent of B and
the linear transformation L.

So we apply Lemma 4.3 to σmk for a fixed m ∈ A(Ω). Firstly, we
shall estimate {|σ̂mk (ξ, s)| : k ∈ Z} for (ξ, s) ∈ Rn × R. By the
equations (4.17), we get that

|σ̂mk (ξ, s)| ≤
∫ 2m(k+1)

2mk

∫
H

|e−i(rξ·y) − 1| |am(y)|
|y|n dμ(y)

dr

r

� m(2mk|ξ|)‖am‖L1(Sn−1)

By the same argument as the equation (4.16), we have that |σ̂mk (ξ, s)| �
(2mk|ξ|)−α1‖am‖L2(Sn−1) for some α1 > 0. Interpolating with |σ̂mk (ξ, s)| �
m ‖am‖L1(Sn−1), we obtain that

|σ̂mk (ξ, s)| � m (2mk|ξ|)−α/m for some α > 0.

So we prove this estimate

(4.18) |σ̂mk (ξ, s)| � min
[
m (2mk|ξ|)α/m,m (2mk|ξ|)−α/m]
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In order to apply Lemma 4.3, we must show Lp-boundedness of (σm)∗

given by

(σm)∗(f)(x, t) = sup
k∈Z

| |σmk | ∗ f(x, t)| for (x, t) ∈ Rn × R.

Since the proof is similar with those of σ∗
|K|,1 in Theorem 3, we shall

give a quick proof. Fix m ∈ A(Ω) and choose ζ ∈ C∞
0 such that

ζ(t) ≡ 1 for |t| ≤ 1/2 and ζ(t) ≡ 0 for |t| ≥ 1. For k ∈ Z, we denote
other measures νmk and τmk by

νmk = |(σmk )0| ∗ (ζ̂2mk ⊗ δR) and τmk = |σmk | − νmk

where ̂(σmk )0(ξ, s) = σ̂mk (0, s) for any ξ ∈ Rn and s ∈ R. Here we note
that

| ̂|(σmk )0|| � m and |̂|σmk |(ξ, s)| � m (2mk|ξ|)−α/m.
In addition, by (4.18), we have

|τ̂mk (ξ, s)| ≤ | |̂σmk |(ξ, s)| + | ̂|(σmk )0|(ξ, s)| |ζ̂(2mkξ)|
� m(2mk|ξ|)−α/m

|τ̂mk (ξ, s)| ≤ |(|̂σmk | − ̂|(σmk )0|)(ξ, s)| + | ̂|(σmk )0|(ξ, s)| |1 − ζ̂(2mkξ)|
� m(2mk|ξ|).

So, we have that

(4.19) |τ̂mk (ξ, s)| � min{m(2mk|ξ|)−α/m,m(2mk|ξ|)α/m}.
Define that

τ∗m(f) = sup
k

|(|τmk | ∗ f)|,
ν∗m(f) = sup

k
|(|νmk | ∗ f)|,

gτ (f) =
{∑

k

[(|τmk | ∗ f)]2
}1/2

.

Then

(4.20) (σm)∗(f) � gτ (f) + ν∗m(f), τ∗m(f) � gτ (f) + 2ν∗m(f)
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By the assumption of V mφ , Lemma 2.6 and its remark for 1 < p < ∞,
we have

‖τ∗m(f)‖p �
∥∥∥ sup

k
|(|(σmk )0| ∗ f)|

∥∥∥
p

� ‖(idRn ⊗ V mφ )f‖p ≤ Cpm‖f‖p

for any 1 < p ≤ ∞ where Cp is independent of m. Also from (4.19) and
(4.20) ‖gτ (f)‖2 � ‖f‖2 and ‖τ∗m(f)‖2 � ‖f‖2. And Lemma 4.3 implies

‖gτ (f)‖p � ‖f‖p and ‖(σm)∗‖p � ‖f‖p for any 1 < p <∞
by using (4.20) and the bootstrap argument. Additionally, by the equa-
tions (4.18) and Lemma 4.3, we have that ‖Tmf‖p = ‖∑k σ

m
k f‖p ≤

Cpm ‖f‖p for all 1 < p <∞ where Cp is independent of m. Therefore,
‖Tf‖p ≤ Cp‖f‖p for all 1 < p <∞.

5. Estimate of oscillatory integral on H. Let us introduce the
following lemma.

Lemma 5.1 [19]. If P (y) =
∑

|α|≤m aαy
α is a polynomial of degree

m in Rn and ε < 1/m, then∫
|y|≤1

|P (y)|−ε dy ≤ Aε

( ∑
|α|≤m

|aα|
)−ε

.

The constant Aε may depend on ε, m and the dimension n, but it is
independent of the coefficients {aα}.

Define the operator Sm = Sk,m by

Smf(r) = φ(r/2k)
∫
Rn−1

exp{−i rFm(z̃)}φ(|z̃/ρ|)f(z̃ ) dμ̃(z̃)

where φ ∈ C∞
0 (R), φ(r) = 1 for |r| ≤ 1/2 and φ(r) = 0 for |r| ≥ 1.

Then
S∗
mSmf(ỹ) =

∫
R

Lm(ỹ, z̃)f(z̃) dμ̃(z̃)

where

Lm(ỹ, z̃) = 2kφ(|z̃/ρ|)φ (|ỹ/ρ|)
×
∫
R

exp
{− i r2k(Fm(ỹ) − Fm(z̃))

}
[φ(r)]2 dr.
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By using Van der Corput’s lemma, we get

|Lm(ỹ, z̃)| � 2k
∣∣φ(|z̃/ρ|)φ (|ỹ/ρ|)∣∣ [2k(Fm(ỹ) − Fm(z̃))

]−1
.

Since |Lm(ỹ, z̃)| � 2k
∣∣φ(|z̃/ρ|)φ (|ỹ/ρ|)∣∣, we get

|Lm(ỹ, z̃)| � 2k
∣∣φ(|z̃/ρ|)φ (|ỹ/ρ|)∣∣ [2k(Fm(ỹ) − Fm(z̃))

]−1/2m
.

It follows from Lemma 5.1 that

sup
z̃∈Rn−1

∫
Rn−1

|Lm(ỹ, z̃)| dμ̃(ỹ)

� ‖h‖∞ sup
z̃∈Rn−1

∫
Rn−1

|ρn−1Lm(ρỹ, ρz̃)| dỹ

� sup
z̃∈Rn−1

∫
|z̃|<1

2kρn−1
[
2k(Fm(ρỹ) − Fm(ρz̃))

]−1/2m
dỹ

� 2kρn−1

[
2kρm

∑
|α|=m

|bα|
]−1/2m

and similarly

sup
ỹ∈Rn−1

∫
Rn−1

|Lm(ỹ, z̃)| dμ̃(z̃) � 2kρn−1

[
2kρm

∑
|α|=m

|bα|
]−1/2m

.

Hence

‖Sm‖2,2 ≤ ‖S∗
mSm‖1/2

2,2 � 2k/2ρ(n−1)/2

[
2kρm

∑
|α|=m

|bα|
]−1/4m

.

By interpolation with ‖Sm‖1,∞ ≤ C, we get

‖Sm‖p,p′ � 2k/p
′
ρ(n−1)/p′

[
2kρm

∑
|α|=m

|bα|
]−1/(2mp′)

for 1 ≤ p ≤ 2.
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Now we can estimate the given oscillatory integral by the Hölder
inequality and the result above.∫

Ik

∣∣∣∣ ∫|z̃|<ρ e−i rFm(z̃)K̃s(z̃) dμ̃(z̃)
∣∣∣∣ drr

≤
(∫

Ik

∣∣∣∣ ∫|z̃|<ρ e−i rFm(z̃)K̃s(z̃) dμ̃(z̃)
∣∣∣∣p′ drr

)1/p′

� 2−k/p
′‖Sm‖p,p′‖K‖Lp(H)

� 2−k/p
′
2k/p

′
ρ(n−1)/p′

(
2kρm

∑
|α|=m

|bα|
)−1/(2mp′)

ρ−(n−1)/p′

�
(

2kρm
∑

|α|=m
|bα|

)−1/(2mp′)

So, choosing p′ = 2 completes the proof of Proposition 3.1.
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