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Φ-INEQUALITIES OF
NONCOMMUTATIVE MARTINGALES

TURDEBEK N. BEKJAN

ABSTRACT. In the recent article [10, 11], Pisier and
Xu showed that, among other things, the noncommutative
analogue of the classical Burkholder-Gandy inequalities in
martingale theory. We prove the noncommutative analogue
of the classical Φ-inequalities for commutative martingale.

1. Preliminaries. Let E be a rearrangement invariant space on
[0,∞), cf. [5] for the definition. We denote by N a semi-finite von
Neumann algebra with a semi-finite normal faithful trace σ. The set
of all σ−measurable operators will be denoted by Ñ . For x ∈ Ñ , let
μ.(x) be the generalized singular value function of x, cf. [4]. We define

LE(N , σ) =
{
x ∈ Ñ : μ.(x) ∈ E

}
‖x‖LE(N ,σ) = ‖μ.(x)‖E for x ∈ LE(N , σ).

Then (LE(N , σ), ‖.‖LE(N ,σ)) is a Banach space, [2, 12]. For E =
Lp(0,∞), we recover the noncommutative Lp−space Lp(N , σ) associ-
ated with (N , σ). We will denote LE(N , σ) simply by LE(N ). Let
a = (an)n≥0 be a finite sequence in LE(N ), define

‖a‖LE(N ,l2
C

) =
∥∥∥∥( ∑

n≥0

|an|2
)1/2

∥∥∥∥
LE(N )

,

‖a‖LE(N ,l2
R

) =
∥∥∥∥( ∑

n≥0

|a∗n|2
)1/2

∥∥∥∥
LE(N )

.

This gives two noms on the family of all finite sequences in LE(N ). To
see this, denoting by B(l2) the algebra of all bounded operators on l2

with its usual trace tr, let us consider the von Neumann algebra tensor
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product N ⊗ B(l2) with the product trace σ ⊗ tr. σ ⊗ tr is a semi-
finite normal faithful trace, the associated noncommutative LE space
is denoted by LE(N ⊗ B(l2)). Now, any finite sequence a = (an)n≥0

in LE(N ) can be regarded as an element in LE(N ⊗ B(l2)) via the
following map

a �−→ T (a) =

⎛
⎝ a0 0 . . .
a1 0 . . .
...

...
. . .

⎞
⎠ ,

that is, the matrix of T (a) has all vanishing entries except those in
the first column which are the an’s. Such a matrix is called a column
matrix, and the closure in LE(N ⊗ B(l2)) of all column matrices is
called the column subspace of LE(N ⊗ B(l2)). Then

‖a‖LE(N ,l2
C

) = ‖|T (a)|‖LE(N⊗B(l2)) = ‖T (a)‖LE(N⊗B(l2)).

Therefore ‖.‖LE(N ,l2
C

) defines a norm on the family of all finite se-
quences of LE(N ). The corresponding completion is a Banach space,
denoted by LE(N , l2C). It is clear that a sequence a = (an)n≥0 in
LE(N ) belongs to LE(N , l2C) if and only if

sup
n≥0

∥∥∥∥( n∑
k=0

|ak|2
)1/2

∥∥∥∥
E

<∞.

If this is the case, (
∑∞

k=0 |ak|2)1/2 can be appropriately defined as
an element of LE(N ). Similarly, we may show that ‖.‖LE(N ,l2

R
) is a

norm on the family of all finite sequences in LE(N ). As above, it
defines a Banach space LE(N , l2R), which now is isometric to the row
subspace of LE(N⊗B(l2)) consisting of matrices whose nonzero entries
lie only in the first row. Observe that the column and row subspaces
of LE(N ⊗ B(l2)) are 1-complemented subspaces (by the definition of
E and Theorem 3.4 in [3]). If E is q−concave, q < ∞, cf. [5], then
LE∗(N ⊗B(l2)) = L∗

E(N ⊗B(l2)), [8, p. 362]. Then we deduce that, if
E is q-concave,

(1) (LE(N , l2C))∗ = LE∗(N , l2C) and (LE(N , l2R))∗ = LE∗(N , l2R).

We now turn to the description of noncommutative martingales and
their square functions. Let M be a finite von Neumann algebra with
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a normalized normal faithful trace τ . Let (Mn)n≥0 be an increasing
sequence of von Neumann subalgebras of M such that ∪n≥0Mn gener-
ates M, in the w∗−topology. (Mn)n≥0 is called a filtration of M. The
restriction of τ to Mn is still denoted by τ . Let En = E(.|Mn) be the
conditional expectation of M with respect to Mn, En a norm 1 pro-
jection of LE(M) onto LE(Mn), by the definition of E and Theorem
3.4 in [3], and En(x) ≥ 0 whenever x ≥ 0.

A non-commutative LE−martingale with respect to (Mn)n≥0 is a
sequence x = (xn)n≥0 such that xn ∈ LE(Mn) and

Em(xn) = xm, ∀m = 0, 1, 2, . . . , n.

Let ‖x‖LE(M) = supn≥0 ‖xn‖LE(Mn
). If ‖x‖LE(M) < ∞, x is said to

be bounded.

Remark. (i) Let x∞ ∈ LE(M). Set xn = En(x∞) for all n ≥ 0. Then
x = (xn) is a bounded LE−martingale and ‖x‖LE(M) = ‖x∞‖LE(M).

(ii) Suppose E is p-convex and q-concave for some 1 < p, q < ∞
with the relevant constants equal to 1. But then LE(M) is uniformly
convex and so reflexive. Then, by standard argument, any bounded
noncommutative martingale x = (xn) in LE(M) converges to some
x∞ in LE(M) and xn = En(x∞) for all n ≥ 0.

Let x be a martingale; its difference sequence, denoted by dx =
(dxn)n≥0, is defined as

dx0 = x0, dxn = xn − xn−1, n ≥ 1.

Set

SC,n(x) =
( n∑

k=0

|dxk|2
)1/2

and SR,n(x) =
( n∑

k=0

|dx∗k|2
)1/2

.

By the preceding discussion dx belongs to LE(M, l2C), respectively
LE(M, l2R)), if and only if (SC,n(x))n≥0, respectively (SR,n(x))n≥0, is
a bounded sequence in LE(M); in this case,

SC(x) =
( ∞∑

k=0

|dxk|2
)1/2

and SR(x) =
( ∞∑

k=0

|dx∗k|2
)1/2
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are elements in LE(M). These are noncommutative analogues of the
usual square functions in the commutative martingale theory. It should
be pointed out that the two sequences SC,n(x) and SR,n(x) may not
be bounded in LE(M) at the same time. Define HE

C (M), respectively
HE

R (M), to be the space of all LE-martingales with respect to (Mn)n≥0

such that dx ∈ LE(M, l2C), respectively dx ∈ LE(M, l2R), and set

‖x‖HE
C

(M) = ‖dx‖LE(M,l2
C

), resp. ‖x‖HE
R

(M) = ‖dx‖LE(M,l2
R

).

Equipped respectively with the previous norms HE
C (M) and HE

R (M)
are Banach spaces. Note that, if x ∈ HE

C (M),

‖x‖HE
C

(M) = sup
n≥0

‖SC,n(x)‖LE(M) = ‖SC(x)‖LE(M)

and similar equalities hold for HE
R (M). Then we define the Hardy

space of noncommutative martingales as follows: If E is 2-cotype,

HE(M) = HE
C (M) +HE

R (M),

equipped with the norm

‖x‖ = inf
{‖y‖HE

C
(M) + ‖z‖HE

R
(M) : x = y + z,

y ∈ HE
C (M), z ∈ HE

R (M)
}
.

If E is 2-type,
HE(M) = HE

C (M) ∩HE
R (M),

equipped with the norm

‖x‖ = max
{‖x‖HE

C
(M), ‖x‖HE

R
(M)

}
.

The reason that we have defined HE(M) differently according to
whether E has 2-cotype or 2-type will become clear in the next section.
This was used in [10, 11] and also in [9].

For every 0 < s <∞, we define a linear operatorDs : for a measurable
function f on [0,∞)

(Dsf)(t) = f

(
t

s

)
, 0 < s <∞, ∀ t ∈ [0,∞).
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The Boyd indices pE, qE of E are defined by

pE = lim
s→∞

log s
log ‖Ds‖ = sup

s>1

log s
log ‖Ds‖ ,

qE = lim
s→0+

log s
log ‖Ds‖ = inf

0<s<1

log s
log ‖Ds‖ .

Then 1 ≤ pE ≤ qE ≤ ∞. The 2-convexification E(2) of E is defined as
‖a‖E(2) = ‖|a|2‖1/2

E , [5, p. 54].

Let Φ be a convex nondecreasing function defined on [0,∞) with
Φ(0) = 0, limt→∞ Φ(t) = ∞ and such that Φ′(t) = φ(t) is left-
continuous and φ(0) = φ(0+). Φ is said to be moderate. If there is
a constant C > 0 such that Φ(2t) ≤ CΦ(t), for all t > 0, Φ is called
a Young function if limt→∞ t−1Φ(t) = ∞. A Young function is called
strictly convex if inft>0 tφ(t)/Φ(t) > 1. Consider the left-inverse ψ of
φ which is defined by ψ(s) = inf{t, φ(t) ≥ s}. It is easily verified that
if Φ is a Young function, then φ(t) ↑ ∞, t → ∞. In this case ψ is well
defined on [0.∞). Put Φ∗(t) =

∫ t

0
ψ(s) ds. Then Φ∗ is also a convex

nondecreasing function. The function Φ∗, defined in this way, is called
the Young complementary function of Φ. It is clear that Φ is the Young
complementary function of Φ∗, i.e., Φ∗∗ = Φ. We let

pΦ = sup
t>0

tφ(t)/Φ(t), qΦ = inf
t>0

tφ(t)/Φ(t);

then pΦ∗ = q′Φ where 1/q′Φ + 1/qΦ = 1, see [1, 6]. Given a Young
function Φ, we consider the function space on [0,∞) which is defined
by

LΦ =
{
f, ‖f‖Φ <∞}

,

where
‖f‖Φ = inf

{
λ > 0, EΦ(|f |/λ) < 1

}
.

If Φ is a moderate function, then LΦ is a rearrangement invariant space.
Note that LΦ(M) = LLΦ(M).

2. The main results. In this section (M, τ ) always denotes a
finite von Neumann algebra equipped with a normalized normal faithful
trace, and (Mn)n≥0 an increasing filtration of subalgebras of M which
generate M. We keep all notations introduced in the previous section.



406 T.N. BEKJAN

Theorem 2.1. Let E be a rearrangement invariant space with
1 < pE ≤ qE <∞. Then there is a positive constant βE such that, for
all finite martingales x in LE(M), we have

(2)
∥∥∥ ∑

εndxn

∥∥∥
LE(M)

≤ βE

∥∥∥ ∑
dxn

∥∥∥
LE(M)

, ∀ εn = ±1.

Proof. Theorem 2.b.11 in [5] gives that E is an interpolation space
for the couple (Lp, Lq) where 1 < p < pE ≤ qE < q < ∞. Then, by
Theorem 3.4 in [3], we have that LE(M) is an interpolation space for
the couple (Lp(M), Lq(M)). We define

T : Lp(M) + Lq(M) −→ Lp(M) + Lq(M)

by

Tx =
∑

εn dxn for x ∈ Lp(M) + Lq(M) and xn = En(x).

Then Theorem 2.1 in [11] gives

‖T‖p ≤ βp, ‖T‖q ≤ βq,

where βp, βq are positive constants. Using the fact that LE(M) is
an interpolation space for the couple (Lp(M), Lq(M)), we obtain that
there is a constant βE such that

‖Tx‖ ≤ βE‖x‖.
Hence (2) holds.

Corollary. Let Φ be a strictly convex and moderate Young function,
i.e., 1 < qΦ ≤ pΦ < ∞. Then there is a positive constant βΦ such that
for all finite martingales x in LΦ(M), we have∥∥∥ ∑

εn dxn‖LΦ(M) ≤ βΦ

∥∥∥ ∑
dxn‖LΦ(M), ∀ εn = ±1.

Lemma 2.1. Let E be a q-concave rearrangement invariant space
with q < ∞ and (N , σ) a semi-finite von Neumann algebra with a
normal semi-finite faithful trace.
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(i) If 1 ≤ q < 2, then for any finite sequence a = (an)n≥0 in LE(N ),
we have

(3)
∫

G

∥∥∥ ∑
εnan

∥∥∥
LE(N )

dε ≈ ‖a‖LE(N ,l2
C

)+LE(N ,l2
R

).

(ii) If E is a p-convex with p > 2, then, for any finite sequence
a = (an)n≥0 in LE(N ), we have

(4)
∫

G

‖
∑

εnan‖LE(N )dε ≈ ‖a‖LE(N ,l2
C

)∩LE(N ,l2
R

).

Proof. (i) Let E∗ = F . Then F is q′-convex with q′ the conjugate
index of q, so F is 2-convex and there is a rearrangement invariant space
F1 such that F (2)

1 = F . It is clear that F1 is q′/2-convex. Hence we
use Theorem IV.4 in [9] and Theorem V.5 in [8] to obtain the desired
result, see [9, p. 254].

(ii) E∗ satisfies the condition of (i). Then, for any finite sequence
a = (an)n≥0 in LE∗(N ), we have∫

G

∥∥∥∑
εnan

∥∥∥
LE∗ (N )

dε ≈ ‖a‖LE∗ (N ,l2
C

)+LE∗ (N ,l2
R

).

By Kahane’s inequality, [5, Theorem 1.e.13], it follows that

(5)
( ∫

G

‖
∑

εnan‖2
LE∗ (N ) dε

)1/2

≈ ‖a‖LE∗ (N ,l2
C

)+LE∗ (N ,l2
R

).

Since E is q-concave, by (1)

(LE(N , l2C))∗ = LE∗(N , l2C) and (LE(N , l2R))∗ = LE∗(N , l2R).

On the other hand, we have

(L2(LE(N )))∗ = L2(LE∗(N )),

see [8, p. 362]. The condition of (ii) implies that LE∗(N ) is K-convex.
Then there exists a constant C such that, for all f ∈ L2(LE∗(N )),∥∥∥ ∑

εnbn

∥∥∥
L2(LE∗ (N ))

≤ C‖f‖L2(LE∗ (N )),
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where bn =
∫

G
εnfdε, n ≥ 0. Hence,

( ∫
G

∥∥∥ ∑
n≥0

εnan

∥∥∥2

LE(N )
dε

)1/2

= sup
{∣∣∣ ∫

G

<
∑
n≥0

εnan, f >dε
∣∣∣ : f ∈L2(LE∗(N )), ‖f‖L2(LE∗ (N ))≤1

}

= sup
{∣∣∣ ∫

G

<
∑
n≥0

εnan,
∑
n≥0

εnbn>dε
∣∣∣ :

bn =
∫

G

εnfdε, ‖f‖L2(LE∗ (N ))≤1
}

≤ sup
{∣∣∣ ∫

G

<
∑
n≥0

εnan,
∑
n≥0

εnbn > dε
∣∣∣ :

∥∥∥ ∑
n≥0

εnbn

∥∥∥
L2(LE∗ (N ))

≤ C

}

≤ sup
{∣∣∣ ∑

n≥0

〈an, bn〉
∣∣∣ : ‖(bn)n≥0‖LE∗ (N ,l2

C
)+LE∗ (N ,l2

R
) ≤ C1

}

≤ βE‖(an)n≥0‖LE(N ,l2
C

)∩LE(N ,l2
R

).

Since E is 2-convex, we use (I.7) in [9, p. 247] to obtain that

‖(an)n≥0‖LE(N ,l2
C

)∩LE(N ,l2
R

) ≤
( ∫

G

∥∥∥ ∑
εnan

∥∥∥2

LE(N )
dε

)1/2

.

So we get (4).

Corollary. Let Φ be a convex function and (N , σ) a semi-finite von
Neumann algebra with a normal semi-finite faithful trace.

(i) If 1 < qΦ ≤ pΦ < 2, then for any finite sequence a = (an)n≥0 in
LΦ(N ), we have

(6)
∫

G

∥∥∥ ∑
εnan

∥∥∥
LΦ(N )

dε ≈ ‖a‖LΦ(N ,l2
C

)+LΦ(N ,l2).

(ii) If 2 < qΦ ≤ pΦ < ∞, then for any finite sequence a = (an)n≥0

in LΦ(N ), we have

(7)
∫

G

∥∥∥ ∑
εnan

∥∥∥
LΦ(N )

dε ≈ ‖a‖LΦ(N ,l2
C

)∩LΦ(N ,l2).
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Proof. We prove only (i). Let E = LΦ, F = LΦ∗ . Then E = F ∗

and Φ∗ is a convex function with 2 < qΦ∗ ≤ pΦ∗ < ∞. Then F is
qΦ∗ -convex. By (3), we obtain (6).

Lemma 2.2. Let E be a rearrangement invariant space with 1 <
pE ≤ qE < ∞. Define the map Q on the family of all finite sequences
a = (an)n≥0 in LE(M) by

Q(a) = (En(an))n≥0.

Then there exists rE such that

‖Q(a)‖LE(M,l2
C

) ≤ rE‖a‖LE(M,l2
C

),

‖Q(a)‖LE(M,l2
R

) ≤ rE‖a‖LE(M,l2
R

).

Thus Q extends to a bounded projection on LE(M, l2C) and LE(M, l2R);
consequently, HE(M) is complemented in LE(M, l2C) + LE(M, l2R) or
LE(M, l2C) ∩ LE(M, l2R) according to whether E is 2-cotype or E is
2-type.

Proof. Let us consider the von Neumann algebra tensor product
M ⊗ B(l2) with the product trace τ ⊗ tr; then τ ⊗ tr is a semi-
finite normal faithful trace. Let LE(M ⊗ B(l2)) be the associated
noncommutative LE space. Then LE(M ⊗ B(l2)) is an interpolation
space for the couple (Lp(M ⊗ B(l2)), Lq(M ⊗ B(l2))) where 1 < p <
pE ≤ qE < q <∞. We define

T : Lp(M⊗B(l2))+Lq(M⊗B(l2)) −→ Lp(M⊗B(l2))+Lq(M⊗B(l2)),

by

T

⎛
⎜⎜⎜⎜⎜⎝

a11 . . . a1n . . .
a21 . . . a2n . . .
...

...
...

...
an1 . . . ann . . .
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

E1(a11) 0 0 . . .
E2(a21) 0 0 . . .

...
...

...
...

En(an1) 0 0 . . .
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Theorem 2.3 in [11] gives that T is a bounded operator on Lp(M ⊗
B(l2)) into Lp(M⊗B(l2)) and on Lq(M⊗B(l2)) into Lq(M⊗B(l2)).
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Then T is a bounded operator on LE(M⊗B(l2)) into LE(M⊗B(l2)).
This gives Q is a bounded operator on LE(M, l2C) into LE(M, l2C).
Similarly, we may show that Q is a bounded operator on LE(M, l2R)
into LE(M, l2R) too.

Theorem 2.2. Let E be a q-concave rearrangement invariant space
with q < ∞ and x = (xn)n≥0 an LE−martingale with respect to
(Mn)n≥0 as above.

(i) If 1 < q < 2 and 1 < pE, then x is bounded in LE(M) if and
only if x belongs to HE(M); moreover, if this is the case, we have

(8) αE‖x‖HE(M) ≤ ‖x‖LE(M) ≤ βE‖x‖HE(M)

where αE , βE are positive constants.

(ii) If E is a p-convex with p > 2, then x is bounded in LE(M) if
and only if x belongs to HE(M); moreover, if this is the case, we have

αE‖x‖HE(M) ≤ ‖x‖LE(M) ≤ βE‖x‖HE(M),

where αE , βE are positive constants.

Proof. (i) The Boyd indices of E satisfy 1 < pE ≤ qE < ∞. So
Theorem 1 holds for E. Let x be any finite martingale in LE(M);
then we have (2). Applying (2) to the martingale difference sequence
(εndxn) instead of (dxn), we obtain the converse inequality

‖x‖LE(M) ≤ βE

∥∥∥ ∑
εn dxn

∥∥∥
LE(M)

, ∀ εn = ±1.

Therefore, integrating in ε over G, we have

‖x‖LE(M) ≈
∫

G

∥∥∥ ∑
εn dxn

∥∥∥
LE(M)

dε.

It follows from (i) of Lemma 2.1 that

‖x‖LE(M) ≈ ‖dx‖LE(M,l2
C

)+LE(M,l2).

Then using Lemma 2.2, we get (8).
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(ii) The proof is similar to (i). Using (ii) of Lemma 2.1, Lemma 2.2
and Theorem 2.1, we obtain the desired result.

Corollary 1. Let E satisfy the condition of Theorem 2.2. Then

HE(M) = LE(M)

with equivalent norms.

Corollary 2. Let Φ be a convex function such that 1 < qΦ ≤ pΦ < 2
or 2 < qΦ ≤ pΦ <∞. Then

HΦ(M) = LΦ(M)

with equivalent norms.
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10. G. Pisier and Q. Xu, Inégalités de martingales non-commutatives, C.R. Acad.
Sci. Paris 323 (1996), 817 822.



412 T.N. BEKJAN

11. , Non-commutative martingale inequalities, Comm. Math. Phys. 189
(1997), 667 698.

12. Q. Xu, Analytic functions with values in lattices and symmetric spaces of
measurable operators, Math. Proc. Cambridge Philos. Soc. 109 (1991), 541 563.

College of Mathematics and System Sciences, Xinjiang University,
Urumqi 830046, China
E-mail address: bek@xju.edu.cn


