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CHARACTERISTIC AND MINIMAL POLYNOMIALS
OF LINEAR CELLULAR AUTOMATA
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ABSTRACT. The 1984 article by Martin, Odlyzko and
Wolfram on Wolfram’s Rule 90 heightened interest in the
area of linear cellular automata defined on a vector space
over a finite field [8]. In this article we find the closed form
expression for the minimal polynomial of Rule 90, which is
then used to completely characterize the dynamics of the map.
In addition, we show that the standard basis vectors in Zn

2 lead
to the maximal cycle for any linear finite dimensional cellular
automata with periodic boundary conditions. Finally, we
address questions posed by Tadaki on the connection between
Rule 90 and Rule 150.

1. Introduction. A finite dimensional cellular automaton (CA) is a
discrete time dynamical system defined on a finite dimensional vector
space for which the next state is updated by a local deterministic rule.
Each component in the vector space is considered as a cell typically
taking on only two values, 0 and 1. If the vector space is defined over
a finite field, all forward orbits of a CA converge to a periodic cycle
in finite time. Therefore, for finite dimensional CA, the main problem
under consideration is determining the transient behavior and cycle
lengths of the map.

In the case of a CA defined over a finite dimensional string taking on
values from {0, 1}, it is useful to think of system as iterates of a map
acting on the vector space, Zn

2 . Such a setting adds algebraic structure
to the phase space since the linear map is being iterated on a vector
space over a finite field.

The concept of CA as a dynamical system on a vector space over
a finite field was employed by Martin, Odlyzko and Wolfram in their
1984 paper [8] on Wolfram’s Rule 90 given by:

(1) Wnx = (xn + x2, x1 + x3, . . . , xn−1 + x1)
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where x = (x1, x2, . . . , xn) ∈ Zn
2 and the addition is modulo 2.

Since 1984, many articles have appeared extending and generalizing
the results in [8] to other linear rules [5, 6, 12, 13]. The focus
of the research on Wn and its extensions involved characterizing and
predicting the cycle lengths of the linear CA by utilizing the finite field
structure.

The well-studied linear Ducci map,

Dnx = (x1 + x2, x2 + x3, . . . , xn + x1)

was examined using algebraic techniques in [1, 2]. In fact, the Ducci
map and Wolfram’s Rule 90 are related. The most obvious connection
is that

Wn = D2
nSR,n,

where SR,n is the right shift map. Connections between period lengths
and overall structure shared by both maps are investigated in [11].

The Ducci map was originally posed as a map over the ring module
Zn:

D̃n(x) = (|x1 − x2|, |x2 − x3|, . . . , |xn − x1|).

It was proved in [10] that all forward orbits of D̃ acting on Zn converge
in finite time to vectors of the form k(x1, x2, . . . , xn) where k is a
positive integer and xi ∈ Z2 for each i = 1, . . . , n. Therefore, in
order to study the dynamics of the Ducci map on Zn, it is enough
to understand how the map acts on the vector space Zn

2 . In addition
to being linear on Zn

2 , the vector space has much more structure than
the ring module and as a result the analysis is simplified.

Wolfram’s Rule 90 also can be derived from a map acting on Zn. The
reduction to Wolfram’s Rule 90 from a map on the ring module Zn to
a linear map on the vector space Zn

2 was done in [3].

Jen characterized limit cycle structure of Wolfram’s Rule 90 through
orders of minimal polynomials in the cylindrical case. Stevens proved
that all cycle length for any finite dimensional linear CA can be
obtained as orders of minimal annihilating polynomials [13]. Moreover,
the transient behavior can be obtained from the number of factors of
λ belonging to the minimal polynomial.
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In two articles [14, 16], Tadaki uses a recursion equation to find the
characteristic polynomial of Rule 150 and connect the cyclic behavior
to Rule 90. However, as stated earlier, period lengths are not obtained
through the characteristic polynomial but through the minimal polyno-
mial. To this end, this paper restates the proof that all period lengths
are equal to orders of factors of the minimal polynomial of the map.
In Section 3, we find a closed form expression for the minimal polyno-
mial of Rule 90 using a dimensional and symmetry argument. Several
observations on Rule 90 are direct results of the proof of this theorem.
Section 4 discusses Rule 150 and its connection to Rule 90. Data on all
periods up to n = 40 for Rules 90 and 150 are provided. Some general
problems for further work are suggested in Section 5.

2. Characterization of cycle lengths as orders of minimal an-
nihilating polynomials. This section provides an overview of how to
characterize cycle length and transient behavior of a linear map defined
on a vector space over a finite field through orders of minimal annihilat-
ing polynomials. The purpose of such a characterization is to provide
an alternative to iterating every possible vector in order to understand
the global dynamics of a map. In addition, because algorithms for com-
puting orders of polynomials are included in computer algebra software
such as Maple, it is possible to compute the state diagram of the map
in a reasonable amount of time.

The present discussion is posed over Zn
2 due to the applications

considered in this paper. However, all the statements in this section
hold over any finite field of characteristic p. The next few definitions
are standard and appear in [4].

Definition 2.1. The minimal annihilating polynomial of a vector
v ∈ Zn

2 is the monic polynomial μv(λ) of least degree such that
μv(A)v = 0.

The existence of a minimal annhilating polynomial is guaranteed
by the Cayley-Hamilton theorem which states that the characteristic
polynomial of A will annihilate the matrix itself. We now define the
order of a polynomial [4].
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Definition 2.2. Suppose that μv(0) �= 0. Then the order of μv(λ),
ord (μv(λ)), is defined to be the smallest natural number, c, such that
μv(λ)|λc − 1. If μv(0) = 0, then μv(λ) can be written as λkμ̃v(λ), for
some positive integer k, where the polynomial, μ̃v(λ), has the property,
μ̃v(0) �= 0. In this case, the order of μv(λ) is defined to be the order of
μ̃v(λ).

For any n×n matrix A acting on Zn
2 , the cycle length of a vector under

forward iteration of A is equal to the order of its minimal annihilating
polynomial. Furthermore, the number of forward iterates of the map
not in a cycle can be found by factoring the minimal annihilating
polynomial. The formal statement and proof of this result follows.

Theorem 2.1. Let v ∈ Zn
2 . Let μv(λ) be the minimal annihilating

polynomial of v. Assume that μv(λ) = λkμ̃v(λ) where k ≥ 0 and μ̃v(λ)
is a monic polynomial with μ̃v(0) �= 0. Then the kth iterate of v belongs
to a periodic cycle with period length c = ord (μv).

A variation of this characterization result first appeared in [6]. We
restate the proof of this theorem that can be found in [13].

Proof. Let Ajv be the first iterate that belongs to the periodic cycle.
Denote the minimal length of the cycle by c. Then Ac(Ajv) = Ajv, so
Aj(Ac−I)v = 0. Because the minimal annihilating polynomial divides
any other annihilating polynomial of v, we know that μv(λ)|λj(λc−1).

This result implies that λk|λj and μ̃v(λ)|λc−1. Therefore, ord (μ̃v(λ))
≤ c.

Now we will show that ord (μ̃v(λ)) = c. Assume on the contrary that
ord (μ̃v(λ)) = l < c. Then μ̃v(λ)|λl − 1, λk(λl − 1) = μv(λ)q(λ) for
some q. Therefore Ak(Al − I)v = μv(A)q(A)v = q(A)μv(A)(v) = 0,
which means that AlAkv = Akv. Therefore, Akv is in a periodic cycle
of length l < c. This contradicts the minimality of c.

Now we will show that k = j. Recall that Ajv is the first iterate
belonging to the cycle and μv(λ) = λkμ̃v(λ).

Because λk|λj it follows that k ≤ j. We will show that k �< j. Assume
on the contrary that k < j.
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Given that μ̃v(λ)|λc − 1, we have μv(λ)|λk(λc − 1). This im-
plies λk(λc − 1) = μv(λ)p(λ), for some polynomial p. Therefore,
Ak(Ac − 1)v = p(A)μv(A)v = 0. Hence, Ac(Akv) = Akv, which im-
plies that Akv is in the cycle. Recalling that Aj(v) is the first iterate
belonging to the cycle results in a contradiction.

It is a well-known result that minimal annihilating polynomials are
factors of the minimal polynomial [4]. Therefore, all possible period
lengths can be obtained from the minimal polynomial of A. More-
over, the maximal period length is equal to the order of the minimal
polynomial because there exists a vector whose minimal annihilating
polynomial is equal to the minimal polynomial [4].

It is important from a dynamical systems perspective to connect the
iterates of a vector v under A to the minimal annihilating polynomial
of v. If v ∈ Zn

2 is a vector contained in a cycle under A, then the
algebraic period of v under A is the minimal positive integer value a
such that Aav is a linear combination of v, Av, A2v, . . . Aa−1v. If a is
the algebraic period of v, then we may write

Aav = b1v + b2Av + · · · + ba−1A
a−1v.

Then the minimal annihilating polynomial of A is given by

λa − ba−1λ
a−1 − · · · − b2λ − b1.

Thus, a equals the degree of μv(λ). The concept of an algebraic period
was discussed in [5] although not named as such.

We now use the characterization result to analyze the CA of interest.

3. Wolfram’s Rule 90. Wolfram’s Rule 90, defined by the map (1)
was first studied in the finite field setting in [8]. The map originally
appeared in [9] as a model predicting stunted tree growth in a forest.
We now discuss Wn using the language of minimal polynomials.

The matrix representation of Wn in the standard basis is

(2) AW,n =

⎛
⎜⎜⎜⎜⎝

0 1 0 . . . 0 1
1 0 1 0 . . . 0

. . .
0 . . . 1 0 1
1 0 . . . 0 1 0

⎞
⎟⎟⎟⎟⎠ .
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An algorithm based on Theorem 2.1 was developed in [13] to generate
all cycle lengths of a linear CA. Based on this algorithm applied to
AW,n cycle lengths up to n = 40 were computed and appear in the
table.

3.1 The characteristic polynomial for Wolfram’s Rule 90.

3.1.1 The null boundary map. Wolfram’s Rule 90 can be thought of
as having periodic boundary conditions or as an infinite sequence on
a cylinder. Maps on cylinders have been extensively studied in the
literature as in [2, 5, 6, 8, 12, 13, 17]. In an effort to generalize
the minimal polynomial result to maps without periodic boundary
conditions, Stevens et al. [12, 13] examined the null boundary map,
defined by:

Nn(x) = (x2, x1 + x3, x2 + x4 + · · · , xn−2 + xn, xn−1)

where x = (x1, x2, . . . , xn) ∈ Zn
2 , with standard matrix representation,

AN,n =

⎛
⎜⎜⎜⎜⎝

0 1 0 · · · 0 0
1 0 1 0 · · · 0

. . .
0 · · · 1 0 1
0 0 · · · 0 1 0

⎞
⎟⎟⎟⎟⎠ .

The purpose of looking at Nn in this paper is to utilize relationships
between the characteristic polynomials of AN,n and AW,n to obtain a
closed form expression for the characteristic polynomial of AW,n. The
following theorem illustrates this connection.

Theorem 3.1. Let pW,n(λ) be the characteristic polynomial for the
n×n matrix AW,n and pN,n−1(λ) the characteristic polynomial for the
(n − 1) × (n − 1) matrix AN,n−1. Then pW,n(λ) = λpN,n−1(λ).

Proof. The calculations over the finite field Z2 imply that +1 = −1
and therefore the determinant |AW,n−λI| = |AW,n+λI|. Thus in order
to compute the characteristic polynomial of AW,n we need to calculate
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the determinant,

(3) |AW,n + λI| =

∣∣∣∣∣∣∣∣∣∣

λ 1 0 · · · 0 1
1 λ 1 0 · · · 0

. . .
0 · · · 1 λ 1
1 0 · · · 0 1 λ

∣∣∣∣∣∣∣∣∣∣
.

As before, we may ignore sign changes since +1 = −1. Therefore, the
determinant expands as

M = λ|M1,1| + |M1,2| + |M1,n|

where Mi,j is the n − 1 × n − 1 minor obtained by eliminating row i
and column j from the matrix AW,n + λI.

Direct inspection reveals |M1,1| = λpN,n−1(λ).

The transpose of M1,2 is the matrix

MT
1,2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

λ 1 0 · · · 0 1
1 0 · · · 0 1
1 λ 1 0 · · · 0

. . .
0 · · · 1 λ 1
0 0 · · · 0 1 λ

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Each row of MT
1,2 appears as a row of M1,n. Because the determinant of

a matrix equals the determinant of its transpose and interchanging rows
changes the sign of the determinant, |M1,2| = ±|M1,n|. Because the
computations are over Z2, |M1,2| equals |M1,n|. Thus, |M1,2|+|M1,n| =
0.

The characteristic polynomial for AN,n was obtained in [12] by
applying the method of generating functions to the recursion formula:

pN,n+1(λ) = λpN,n(λ) − pN,n−1(λ), n ≥ 2

with initial conditions, pN,1(λ) = λ and pN,2(λ) = λ2 − 1. The
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closed form expression for the characteristic polynomial is given by

(4) pN,n(λ) =
n∑

�n/2�

(
i

n − i

)
λ2i−n

where all the binomial coefficients are to be interpreted modulo 2.

Theorem 3.2. Let n = 2k. Then the characteristic polynomial for
AW,n is given by

(5)
pW,n(λ) =

(
λ

((
k

k − 1

)
+

(
k + 1
k − 2

)
λ +

(
k + 2
k − 3

)
λ2 + · · ·

+
(

2k − 1
0

)
λk−1

))2

.

If n = 2k + 1, then

(6) pW,n(λ) = λ

(
1 +

(
k + 1
k − 1

)
λ +

(
k + 2
k − 2

)
λ2 + · · · +

(
2k

0

)
λk

)2

.

Proof. The closed form for pW,n is found by obtaining the character-
istic polynomial through the relationship formulated in Theorem 3.1
and substituting n = 2k, 2k + 1 into (4).

The substitution and repeated applications of the modulo two expan-
sion (a + b)2 = a2 + b2 yields

pW,n(λ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ
(
1 +

(
k+1
k−1

)
λ +

(
k+2
k−2

)
λ2 + · · · + (

2k
0

)
λk

)2

if n = 2k+1(
λ

((
k

k−1

)
+

(
k+1
k−2

)
λ +

(
k+2
k−3

)
λ2 + · · ·

+
(
2k−1

0

)
λk−1

))2

if n is even.

Because the minimal polynomial is a factor of the characteristic
polynomial, we will use the characteristic polynomial to obtain the
closed form expression for the minimal polynomial.
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3.2 The minimal polynomial for Wolfram’s Rule 90. The
following theorem gives the minimal polynomial for AW,n.

Theorem 3.3. Let μW,n(λ) be the minimal polynomial for the n×n
matrix AW,n. Let pW,n be the characteristic polynomial for the n × n
matrix AW,n. Then

(7) μW,n(λ) =
{

pW,k(λ) if n = 2k;
λ(pN,k(λ) − pN,k−1(λ)) if n = 2k + 1.

Proof.

Case 1: n = 2k. Step 1. Obtain the relationship between n =
2k and n = k. As stated in Section 3 we know that pW,n(λ) =
λpN,n−1(λ). Furthermore, it was proved in [12] that pN,2k−1 =
λp2

N,k−1. Substituting yields

pW,2k(λ) = λ2p2
N,k−1(λ) = p2

W,k(λ).

Step 2. Verify the structure of the Smith normal form for AW,n.
Because AW,n −λI has an n− 2×n− 2 minor given by the submatrix,

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0
1 0 0 · · · 0
−λ 1 0 · · · 0
1 −λ 1 0 · · · 0

. . .
0 · · · 1 −λ 1

⎞
⎟⎟⎟⎟⎟⎟⎠

with determinant one, we know that the Smith normal form has the
structure

(8) Sn =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
0 1 0 0 · · · 0

. . .
· · · 1 0 0

0 · · · 0 rn(λ) 0
0 0 · · · 0 0 sn(λ)

⎞
⎟⎟⎟⎟⎟⎟⎠
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1

0

0

0

0

0

e1

0

1 1

0 0

0

AW,6(e1)

0

0 0

1 1

0

A2
W,6(e1)

0

1 1

0 0

0

A3
W,6(e1)

FIGURE 1. Iterates of e1 = (1, 0, 0, 0, 0, 0) under W6.

where rn(λ)sn(λ) = pW,n(λ), rn(λ)|sn(λ) and sn(λ) = μW,n(λ).

Step 3. Show that deg (rn(λ)) = deg (sn(λ)) ≤ k. We illustrate
the concept of our argument by discussing the problem on Z6

2 first.
Consider the basis vector e1 = (1, 0, 0, 0, 0, 0), which may be thought of
as assigned to vertices on a symmetric polygon. The iterates under AW6

are depicted in Figure 1. Because AW,n is symmetric, all iterates are
symmetric as seen in Figure 1. Thus, in general, the minimum number
of linearly independent iterates of e1 is k and hence the algebraic period
of e1 is less than or equal to k. Thus, the degree is less than or equal
to k.

We claim that μe1(λ) is the minimal polynomial of AW,n. To see this
first observe that μe1(λ) = μe2(λ) = · · · = μen

(λ). This is true because
AWn

commutes with the shift map:

μe1(AW,n)ei = μe1(AW,n)Si
Le1 = Si

Lμe1(AW,n)e1 = 0.

Moreover, if v ∈ Zn
2 , then v =

∑n
i=1 ciei where ci ∈ Zn

2 and
μe1(AW,n) =

∑n
i=1 ciμe1(AW,n)ei = 0. Therefore deg (μW,n) ≤ k. It

follows that deg (sn) ≤ k. The divisibility condition, rn|sn, implies the
degree of rn is also less than or equal to k.

Step 4. Show that rn(λ) = sn(λ), which proves that pW,n(λ) =
μ2

AW,n
(λ). Because rn(λ)sn(λ) = pW,n(λ), we know that deg (rn) +

deg (sn) = 2k. It follows from deg (rn) ≤ deg (sn) ≤ k, that deg (rn) =
deg (sn) = k. Since rn|sn, we have that rn(λ) = sn(λ). Hence,
pW,n(λ) = μ2

AW,n
(λ) = (pW,k(λ))2 and thus μW,n(λ) = pWk

(λ).
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e1 AW,5(e1) A2
W,5(e1) A3

W,5(e1)

1

0

0 0

0

0

1

0 0

1

0

0

1 1

0

0

1

1 1

1

FIGURE 2. Iterates of e1 = (1, 0, 0, 0, 0, 0) under W5.

Case 2: n=2k+1. As before, the proof uses a symmetry argument to
show that the deg (μe1(λ)) ≤ k + 1. If n = 2k + 1, then from a result
in [12],

pW,2k+1 = λpN,2k(λ) = λ(pN,k(λ) + pN,k−1(λ))2.

Let qn(λ) = pN,k(λ) + pN,k−1(λ).

Step 1: Show that μW,n(λ) has only one factor of λ. By the
closed form expression, (4), pN,2k(0) = 1 and pN,2k+1(0) = 0. Thus,
qn(0) = 1. Therefore, λ|pW,n(λ), but λ2 � pW,n(λ). It follows that
λ|sn(λ) but λ2 � sn(λ), where sn(λ) is the n − 1 × n − 1 entry in the
Smith normal form, (8). Write sn(λ) = λs̃n(λ).

Step 2: Show deg (μAW,n
(λ)) ≤ k + 1. The proof as before uses

symmetry arguments to show that deg (μe1(λ)) ≤ k +1. To see this we
need to think of e1 on a symmetric polygon as illustrated for the case
n = 5, Figure 2.

Due to the symmetry, there can be only at most k+1 linearly indepen-
dent iterates of e1. Thus the dimension of span {e1, AW,ne1, . . . } must
be less than or equal to k + 1. Therefore, the deg (μe1(λ)) ≤ k + 1.
As in Case 1, μe1 is the minimal polynomial of AW,n and therefore
deg (μAW,2k+1) ≤ k + 1.

Step 3: Show pW,n(λ) = λ(s̃n(λ))2. We know that deg (rn(λ)) ≤
deg (s̃n(λ)) ≤ k. We also know that deg (rn(λ)) + deg (sn(λ)) + 1 =
2k+1. This implies deg (rn(λ)) = deg (s̃n(λ)) = k. So we can conclude
that rn(λ) = s̃n(λ) and hence pW,n(λ) = λ(s2

n(λ)) where sn(λ) = qn(λ).
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A nice result of the above method of proof is that the standard basis
vectors in Zn

2 lead to the maximum cycle for any n. In fact, the basis
vectors in Zn

2 lead to the maximal cycle for any finite dimensional linear
CA with periodic boundary conditions. To see this consider the general
finite dimensional linear map with periodic boundary conditions:

(9)

Ln = (a1x1 + a2x2 + · · · + anxn, a1xn + a2x1 + · · · + anxn−1, . . . ,

a1x2 + · · · an−1xn + anx1)

where ai ∈ Z2 for i = 1, . . . , n. The matrix representation of Ln in the
standard basis vectors is the right circulant matrix,

AL,n =

⎛
⎜⎜⎝

a1 a2 a3 · · · an

an a1 a2 a3 · · · an−1

. . .
a2 a3 · · · an a1

⎞
⎟⎟⎠

Multiplying AL,n and ASL
where ASL

is the matrix representation of
the left shift map verifies that AL,n commutes with ASL

. Commutation
with the shift map was the only criterion required to show that ei,
i = 1, . . . , n, led to the maximal cycle under Wn. Thus, the same
argument can be used to prove the following theorem.

Theorem 3.4. Let Ln be the general linear CA defined in (9). Then
the standard basis vectors, ei, i = 1, . . . , n, lead to the maximal cycle
under Ln.

We now examine Rule 150 and its connection to Wn.

4. Wolfram’s Rule 150 and the banded map. Wolfram’s Rule
150,

(10) Tn(x) = (xn + x1 + x2, x1 + x2 + x3, . . . , xn−1 + xn + x1)

where x = (x1, x2, . . . xn) ∈ Zn
2 was studied by Tadaki in [14, 16].

In [14], Tadaki obtained a recursion formula for the characteristic
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polynomial of AT,n. In actuality, Tadaki was working with the null
boundary condition map

Bn(x)
= (x1 + x2, x1 + x2 + x3, . . . , xn−3 + xn−2 + xn−1, xn−1 + xn),

although not formally stated.

Tadaki’s goal was to predict cyclic behavior of Rule 150 by using
the closed form expression for the characteristic equation to find the
relationship between the cycle lengths of Rule 90 and Rule 150. As
proved in Theorem 2.1, cyclic behavior is characterized through the
minimal polynomial and thus a closed form for the minimal polynomial
of AT,n is desired. Because ATn

= AW,n + I, the characteristic and
minimal polynomials of Rule 150 can be obtained from pW,n(λ) and
μW,n(λ). In fact, we have that pT,n(λ) = |AW,n + I − λI| = |AW,n −
(λ−1)I| = pW,n(λ+1). This observation yields μT,n(λ) = μW,n(λ+1).
This relationship leads to the following result connecting the behavior
of both maps.

Theorem 4.1. If n = 2k, the order of μATn
(λ) is 2k−1. Further-

more, the order of any minimal annihilating polynomial is 2j where
j ≤ k − 1.

Proof. It is shown in [12] that

pN,2k−1(λ) = λ2k−1.

Therefore,
pW,2k = λ2k

.

By the closed form expression for the minimal polynomial of AW,n given
by (7)

μA
W,2k

= λ2k−1
.

Thus ord (μW,n(λ)) = 1. From this formulation we have that μT,n(λ) =
(λ + 1)2

k−1
. This proves that ord (μT,n(λ)) = 2k−1. From the closed

form expression, we also can see that (λ + 1)2
j

is a factor of μT,n(λ)
for j ≤ k − 1. This proves that all minimal annihilating polynomials
for n = 2k must have order 2j where j ≤ k − 1.
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TABLE 1. Period lengths under iterations of the Wolfram’s Rule 150 and 90.

Vector Length Cycle Lengths Cycle Lengths
Rule 150 Rule 90

n = 3 1 1
n = 4 1, 2 1
n = 5 1, 3 1, 3
n = 6 1, 4 1, 2
n = 7 1, 7 1, 7
n = 8 1, 2, 4 1
n = 9 1, 7 1, 7
n = 10 1, 3, 6 1, 3, 6
n = 11 1, 31 1, 31
n = 12 1, 2 1, 2, 4
n = 13 1, 21 1, 819
n = 14 1, 7, 14 1, 7, 14
n = 15 1, 3, 5, 15 1, 3, 15
n = 16 1, 2, 4, 8 1
n = 17 1, 15 1, 5, 15
n = 18 1, 7, 14 1, 2, 7, 14
n = 19 1, 511 1, 511
n = 20 1, 2, 3, 6, 12 1, 3, 6, 12
n = 21 1, 7, 63 1, 7, 63
n = 22 1, 31, 62 1, 31, 62
n = 23 1, 2047 1, 2047
n = 24 1, 2, 4 1, 2, 4, 8
n = 25 1, 3, 1023 1, 13, 1023
n = 26 1, 21, 42 1, 63, 126
n = 27 1, 7, 511 1, 7, 511
n = 28 1, 2, 7, 14, 28 1, 7, 14, 28
n = 29 1, 16383 1, 16383
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TABLE 1 (Continued).

Vector Length Cycle Lengths Cycle Lengths
Rule 150 Rule 90

n = 30 1, 3, 5, 6, 10, 15, 30 1, 2, 3, 6, 15, 30
n = 31 1, 31 1, 31
n = 32 1, 2, 4, 8, 16 1
n = 33 1, 31 1, 31
n = 34 1, 15, 30 1, 5, 10, 15, 30
n = 35 1, 3, 7, 21, 4095 1, 3, 7, 21, 4095
n = 36 1, 2, 7, 14, 28 1, 2, 4, 7, 14, 28
n = 37 1, 29127 1, 87381
n = 38 1, 511, 1022 1, 511, 1022
n = 39 1, 21, 4095 1, 63, 1365, 4095
n = 40 1, 2, 3, 4, 6, 12, 24 1, 3, 6, 12, 24

5. Conclusion. In this paper we have obtained closed form
expressions for the minimal polynomials of Rule 90 and Rule 150.
Because cycle lengths and the transient dynamics can be obtained from
the minimal polynomials, such an expressions are valuable. Through
the computation of the minimal polynomial of Rule 90, we find that
the standard basis vectors always lead to the maximal cycle for any
finite dimensional linear CA with periodic boundary conditions.

Using the relationship that μW,n(λ + 1) = μT,n(λ) we were able to
obtain connections between the period lengths for both maps in the
case where n is a power of two. It would be interesting to investigate
further the connection between the order of an arbitrary polynomial,
q(λ), and the order of q(λ + 1).
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