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FOURTH-ORDER SCHEMES OF EXPONENTIAL
TYPE FOR SINGULARLY PERTURBED PARABOLIC

PARTIAL DIFFERENTIAL EQUATIONS

A.A. SALAMA AND H.Z. ZIDAN

ABSTRACT. We present a class of difference schemes of
exponential type for solving singularly perturbed parabolic
partial differential equations. This class includes a scheme of
fourth order of accuracy when the perturbation parameter,
ε, is fixed. For small ε, the orders of accuracy are verified
experimentally. Stability analysis for these schemes are also
presented. Numerical results and comparisons with other
schemes are considered.

1. Introduction. We consider the following parabolic partial
differential equation

(1.1a)
Lu(x, t) ≡ ∂u

∂t
− ε

∂2u

∂x2
− b(x, t)

∂u

∂x
+ d(x, t)u = f(x, t),

(x, t) ∈ Ω ≡ (0, 1) × (0, T ],

(1.1b) u(x, 0) = g(x), x ∈ [0, 1],

(1.1c) u(0, t) = g0(t), u(1, t) = g1(t), ∀ t ≥ 0,

where ε is a parameter in (0, 1]. The functions g0 and g1 are continuous
and bounded as t → ∞ and b, d and f are sufficiently smooth functions
of x and t. Also, we assume that b(x, t) ≥ β > 0 and d(x, t) ≥ 0 on Ω.
For ε → 0+ the exact solution of equation (1.1) exhibits a boundary
layer at x = 0. In the case of b(x, t) ≤ −β < 0 the problem can be
transformed to the problem (1.1) by making the change of variable
x → 1 − x. Problems of this type arise, for example, in the modeling
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of steady and unsteady viscous flow problems with large Reynolds
number, convective heat transport problems with large Peclet numbers
and electromagnetic field problems in moving media.

The accuracy of the numerical solution and the computational effi-
ciency are highly dependent on the numerical methods used to solve
these kind of partial differential equations. Standard three-point fi-
nite difference methods of approximating spatial derivatives may work
well for smooth solutions, but they fail when ε → 0+. Most computa-
tional techniques for solving equation (1.1) involve first- or second-order
methods, which have been proposed by [2, 5, 16, 17, 21, 24, 29].

There are three principal approaches to solve numerically the sin-
gularly perturbed boundary-value problems, namely, the finite differ-
ence methods, the finite element methods and the spline approximation
methods. For more details of using these methods, we may refer to [11,
14, 22, 28]. Also, for solving equation (1.1), we may refer to [1, 4, 8,
10, 12, 20, 25 27].

In this paper we derive the exponential tridiagonal schemes for solving
equation (1.1) by computing the local truncation error. The resulting
coefficients are polynomials in z = h/ε, where h is the mesh width.
Finally, we write the coefficients in the exponential form.

The outline of this paper is as follows. In Section 2 we explain tridi-
agonal finite-difference schemes for solving problem (1.1). Stability
analysis and local truncation error are discussed in Section 3. In Sec-
tion 4 we introduce the exponential scheme for solving problem (1.1).
The final section presents some numerical results and comparisons with
the other schemes.

2. Derivation of fourth-order schemes. We will consider the
following tridiagonal finite-difference schemes for (1.1) in the form

(2.1)
1

Δt
S(U j+1

i − U j
i ) − ε

h2
R(U j+1/2

i ) = Q(f j+1/2
i ),

i = 1, 2, . . . , (N − 1), j = 1, 2, . . . ,

where R and Q are operators in the form

(2.2)
R(U j+1/2

i ) = Rj+1(U j+1
i ) + Rj(U j

i ),

Q(U j+1/2
i ) = Qj+1(U j+1

i ) + Qj(U j
i ).
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In this case the operator Rj is a tridiagonal displacement operator,
namely,

(2.3) Rj(U j
i ) = r−j U j

i−1 + r0
j U j

i + r+
j U j

i+1.

In the same manner, we define the operators Rj+1, Qj , Qj+1 and S.
Here and throughout the paper, N is a positive integer and xi = ih,
i = 0, 1, . . . , N , with the mesh width h = 1/N . The j index indicates
the t dependence (tj+1 = tj + Δt, tj+1/2 = tj + (Δt/2)), U j

i denotes
the approximate value for u(xi, tj) and f j

i = f(xi, tj). The choice of
the coefficients r−,0,+

j (meaning r−j , r0
j and r+

j ), r−,0,+
j+1 , q−,0,+

j , q−,0,+
j+1

and s−,0,+
j determines the particular scheme. Special cases from (2.1)

are in [6] and [7].

We derive the present schemes by computing the local truncation
error as follows:

(2.4)
τ

j+1/2
i ≡ 1

Δt
S(u(xi, tj+1) − u(xi, tj)) − ε

h2
R(u(xi, tj+1/2))

− Q(Lu(xi, tj+1/2)).

For a sufficiently smooth function u(x, t), the standard Taylor develop-
ment of τ

j+1/2
i is given by

(2.5)

τ
j+1/2
i = T 0,0u(xi, tj+1/2) + T 1,0u(1)(xi, tj+1/2)

+ T 2,0u(2)(xi, tj+1/2) + · · · + T 6,0u(6)(xi, tj+1/2)

+ T 0,1ut(xi, tj+1/2) + T 1,1u
(1)
t (xi, tj+1/2)

+ T 2,1u
(2)
t (xi, tj+1/2) + · · · + T 6,1u

(6)
t (xi, tj+1/2)

+ T 0,2utt(xi, tj+1/2) + T 1,2u
(1)
tt (xi, tj+1/2)

+ T 2,2u
(2)
tt (xi, tj+1/2) + · · · + T 6,2u

(6)
tt (xi, tj+1/2)

+ O((Δt)3 + h5).
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We compute the coefficients T 0,0, T 1,0, . . . , T 6,0 in the form

(2.6a)

T 0,0 = − ε

h2
[r+

j+1 + r0
j+1 + r−j+1 + r+

j + r0
j + r−j

+ hz(q+
j+1d

j+1
i+1 + q0

j+1d
j+1
i + q−j+1d

j+1
i−1

+ q+
j dj

i+1 + q0
j dj

i + q−j dj
i−1)],

T 1,0 = − ε

h
[r+

j+1 − r−j+1 + r+
j − r−j − z(q+

j+1b
j+1
i+1 + q0

j+1b
j+1
i

+ q−j+1b
j+1
i−1 + q+

j bj
i+1 + q0

j bj
i + q−j bj

i−1)

+ hz(q+
j+1d

j+1
i+1 − q−j+1d

j+1
i−1 + q+

j dj
i+1 − q−j dj

i−1)],

T 2,0 = −ε

2
[r+

j+1 + r−j+1 + r+
j + r−j

− 2(q+
j+1 + q0

j+1 + q−j+1 + q+
j + q0

j + q−j )

− 2z(q+
j+1b

j+1
i+1 − q−j+1b

j+1
i−1 + q+

j+1b
j
i+1 − q−j+1b

j
i−1)

+ hz(q+
j+1d

j+1
i+1 + q−j+1d

j+1
i−1 + q+

j dj
i+1 + q−j dj

i−1)];

(2.6b)

T ν,0 = −εhν−2

ν!
{
r+
j+1 + (−1)νr−j+1 + r+

j + (−1)νr−j − ν(ν − 1)

× [q+
j+1 + (−1)νq−j+1 + q+

j + (−1)νq−j ]

− νz[q+
j+1b

j+1
i+1 + (−1)ν−1q−j+1b

j+1
i−1 + q+

j bj
i+1 + (−1)ν−1q−j bj

i−1]

+ hz[q+
j+1d

j+1
i+1 + (−1)νq−j+1d

j+1
i+1 + q+

j dj
i+1 + (−1)νq−j dj

i−1]
}
,

ν = 3, 4, 5, 6.

Also, we compute the remaining coefficients in the form

(2.7a)

T 0,μ = −
(

Δt

2

)μ
ε

μh2

{
r+
j+1 + r0

j+1 + r−j+1 + (−1)μ(r+
j + r0

j + r−j )

+ hz[q+
j+1d

j+1
i+1 + q0

j+1d
j+1
i + q−j+1d

j+1
i−1

+ (−1)μ(q+
j dj

i+1 + q0
j dj

i + q−j dj
i−1)]

− κ[(2 − μ)(s+
j + s0

j + s−j )

− μ(q+
j+1 + q0

j+1 + q−j+1 + (−1)μ−1(q+
j + q0

j + q−j ))]
}
,
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T 1,μ = −
(

Δt

2

)μ
ε

μh

{
r+
j+1 − r−j+1 + (−1)μ(r+

j − r−j )

− z[q+
j+1b

j+1
i+1 + q0

j+1b
j+1
i + q−j+1b

j+1
i−1

+ (−1)μ(q+
j bj

i+1 + q0
j bj

i + q−j bj
i−1)]

+ hz[q+
j+1d

j+1
i+1 − q−j+1d

j+1
i−1 + (−1)μ(q+

j dj
i+1 − q−j dj

i−1)]

− κ[(2 − μ)(s+ − s−) − μ(q+
j+1 − q−j+1 + (−1)μ−1(q+

j − q−j ))]
}

T 2,μ = −
(

Δt

2

)μ
ε

2μ

{
r+
j+1 + r−j+1 + (−1)μ(r+

j + r−j )

− 2[q+
j+1 + q0

j+1 + q−j+1 + (−1)μ(q+
j + q0

j + q−j )]

− z[q+
j+1b

j+1
i+1 − q−j+1b

j+1
i−1 + (−1)μ(q+

j+1b
j
i+1 − q−j+1b

j
i−1)]

+ hz[q+
j+1d

j+1
i+1 + q−j+1d

j+1
i−1 + (−1)μ(q+

j dj
i+1 + q−j dj

i−1)]

− κ[(2 − μ)(s+
j + s−j ) − μ(q+

j+1 + q−j+1 + (−1)μ−1(q+
j + q−j ))]

}
;

(2.7b)

T ν,μ = −
(

Δt

2

)μ
εhν−2

μν!
{
r+
j+1 + (−1)νr−j+1 + (−1)μ(r+

j + (−1)νr−j )

− ν(ν − 1)[q+
j+1 + (−1)νq−j+1 + (−1)μ(q+

j + (−1)νq−j )]

− νz[q+
j+1b

j+1
i+1 + (−1)ν−1q−j+1b

j+1
i−1 + (−1)μ(q+

j bj
i+1

+ (−1)ν−1q−j bj
i−1)]

+ hz[q+
j+1d

j+1
i+1 +(−1)νq−j+1d

j+1
i+1 +(−1)μ(q+

j dj
i+1+(−1)νq−j dj

i−1)]

− κ[(2 − μ)(s+
j + (−1)μs−j ) − μ(q+

j+1 + (−1)νq−j+1

+ (−1)μ−1(q+
j + (−1)νq−j ))]

}
,

ν = 3, 4, 5, 6, μ = 1, 2,

where κ = 2h2/(εΔt).

Now we describe the fourth-order schemes for solving equation (1.1).
The important feature of these schemes is the fact that we solve only
tridiagonal equations and that fictitious points are not needed at each
time step along the boundary. One can derive these schemes by using
the following possibility

(2.8) T ν,μ = 0, ν = 0, 1, . . . , 4, μ = 0, 1.
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The other possibility is to weaken the previous conditions as follows:

(2.9) T ν,μ = O((Δt)2 + h4), ν = 0, 1, . . . , 4, μ = 0, 1.

The conditions (2.8) or (2.9) represent ten equations in the coefficients
r−,0,+
j , . . . , s−,0,+

j . The above conditions lead to relatively complicated
equations of the above coefficients. For the present schemes to be
considered here, we separate (2.6) and (2.7) into two directions x and
t in the form

(2.10a)

T 0,k
x = − ε

h2
[r+

j+k+ r0
j+k+ r−j+k+ hz(q+

j+kdj+k
i+1 + q0

j+kdj+k
i + q−j+kdj+k

i−1 )],

T 1,k
x = − ε

h
[r+

j+k − r−j+k − z(q+
j+kbj+k

i+1 + q0
j+kbj+k

i + q−j+kbj+k
i−1 )

+ hz(q+
j+kdj+k

i+1 − q−j+kdj+k
i−1 )],

T 2,k
x = −ε

2
[r+

j+k+ r−j+k−2(q+
j+k+ q0

j+k+ q−j+k)−2z(q+
j+kbj+k

i+1 − q−j+kbj+k
i−1 )

+ hz(q+
j+kdj+k

i+1 + q−j+kdj+k
i−1 )];

(2.10b)

T ν,k
x = −εhν−2

ν!
{r+

j+k + (−1)νr−j+k − ν(ν − 1)[q+
j+k + (−1)νq−j+k]

− νz[q+
j+kbj+k

i+1 + (−1)ν−1q−j+kbj+k
i−1 ]

+ hz[q+
j+kdj+k

i+1 + (−1)νq−j+kdj+k
i−1 ]},

ν = 3, 4, 5, 6, k = 0, 1,

and

(2.11)

T 0
t = s+

j + s0
j + s−j − (q+

j+1 + q0
j+1 + q−j+1 + q+

j + q0
j + q−j ),

T 1
t = h[s+

j − s−j − (q+
j+1 − q−j+1 + q+

j − q−j )],

T 2
t =

h2

2
[s+

j + s−j − (q+
j+1 + q−j+1 + q+

j + q−j )].

We derive the present schemes by the following conditions

T ν,k
x = 0, ν = 0, 1, 2, k = 0, 1,(2.12a)

T ν,k
x = O(h4), ν = 3, 4, k = 0, 1,(2.12b)
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and

(2.12c) T ν
t = 0, ν = 0, 1, 2.

From the conditions (2.12a) r−,0,+
j are determined in terms of q−,0,+

j

as follows:
(2.13)

r0
j = −r+

j − r−j − hz(q+
j dj

i+1 + q0
j dj

i + q−j dj
i−1),

r−j = q+
j + q0

j + q−j +
z

2
(q+

j bj
i+1 − q0

j bj
i − 3q−j bj

i−1) − hzq−j dj
i−1,

r+
j = q+

j + q0
j + q−j +

z

2
(3q+

j bj
i+1 + q0

j bj
i − q−j bj

i−1) − hzq+
j dj

i+1.

Also, the coefficients r−,0,+
j+1 are of similar form at the time level j + 1.

In the same manner, from the conditions (2.12c), s−,0,+
j are determined

in the form

(2.14) s−j = q−j+1 + q−j , s0
j = q0

j+1 + q0
j , s+

j = q+
j+1 + q+

j .

Now, we determine the coefficients q−,0,+
j . It follows from (2.13) and

(2.12b) that T 3,0
x and T 4,0

x can be written in terms of q−,0,+
j as

(2.15)
T 3,0

x = −εh

3!
[ − 6q+

j + 6q−j − z(2q+
j bj

i+1 − q0
j bj

i + 2q−j bj
i−1)

]
,

T 4,0
x = −εh2

4!
[ − 10q+

j + 2q0
j − 10q−j − 2z(q+

j bj
i+1 − q−j bj

i−1)
]
.

Throughout this section, the j index notation on q−,0,+
j will be dropped

in order to simplify the notation. We define q−,0,+ as polynomials in z
at each mesh point xi in the form

(2.16) q−,0,+ =
2∑

ν=0

q−,0,+
ν zν ,

where the coefficients q−,0,+
ν , ν = 0, 1, 2, are independent of ε. To

examine the implications of (2.12b), substitute (2.16) into (2.15) and
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impose (2.12b). The result is the following asymptotic relations as
h → 0 (ε fixed):

T 3,0
x = −εh

3!
[t30 + t31z + t32z

2 + O(z3)] = O(h4),

T 4,0
x = −εh2

4!
[t40 + t41z + O(z2)] = O(h4),

where

t30 = −6q+
0 + 6q−0 = O(h3),

t40 = −10q+
0 + 2q0

0 − 10q−0 = O(h2),

t31 = −6q+
1 + 6q−1 − (2q+

0 bj
i+1 − q0

0b
j
i + 2q−0 bj

i−1) = O(h2),

t41 = −10q+
1 + 2q0

1 − 10q−1 − 2(q+
0 bj

i+1 − q−0 bj
i−1) = O(h),

t32 = −6q+
2 + 6q−2 − (2q+

1 bj
i+1 − q0

1b
j
i + 2q−1 bj

i−1) = O(h).

We use the approach in [3], the coefficients q−,0,+
j are given in the form

(2.17) q−j = 2 − zbj
i , q0

j = 20, q+
j = 2 + zbj

i .

Also, the coefficients q−,0,+
j+1 are of similar form at the time level j + 1.

3. Stability analysis and local truncation error. In this section
we study the stability of (2.1) by von Neumann analysis. We consider
equation (1.1) with constant coefficient b and d = f = 0 and perform
the standard Fourier stability analysis. In this case the operators R, Q
and S are independent of j, thus (2.1) can be written as

(3.1) (κ Q − R) U j+1 = (κ Q + R) U j ,

where U j is the vector of components U1, U2, . . . , UN−1 at the time level
j. Substitution of U j = χj(eiθ, e2iθ, . . . , e(N−1)iθ) into (3.1) yields

χ =
2κ + l(θ)
2κ − l(θ)

,

where

l(θ) =
(cos θ − 1)(48 + 4b2z2) − 24ibz sin θ

10 + 2 cos θ − ibz sin θ
,
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and i =
√−1. For stability it is sufficient that |χ| ≤ 1. Since κ > 0,

a necessary and sufficient condition for |χ| ≤ 1 is Re l(θ) ≤ 0. Direct
computation of Re l(θ) yields

(3.2)
Re l(θ) = (cos θ − 1)(48 + 4b2z2)(10 + 2 cos θ) + 24b2z2 sin2 θ

= 16(cos θ − 1)[30 + 6 cos θ + b2z2(1 − cos θ)].

From (3.2), it is clear that Re l(θ) ≤ 0, then (3.1) is unconditionally
stable.

Now, we compute the local truncation error for the scheme described
in Section 2. Substituting from (2.13), (2.14) and (2.17) into (2.6) we
have

T ν,0 = 0, ν = 0, 1, 2,

and

T ν,0 = O(h4), ν = 3, . . . , 6.(3.3)

Also, substituting from (2.13), (2.14) and (2.17) into (2.7) we have

T ν,1 = 0, ν = 0, 1, 2,

T ν,1 = O((Δt)2 + h4), ν = 3, . . . , 6

and

T ν,2 = O((Δt)2 + h4), ν = 0, . . . , 6.(3.4)

Substituting from (3.3) and (3.4) into (2.5), it follows that the order
of our scheme as described in the above section is O((Δt)2 + h4) for ε
fixed.

4. The exponential fourth-order scheme. In this section we
develop the above scheme as described in Section 2. The exponential
scheme given here is defined by choosing R, Q such that

T 0,k
x = 0, k = 0, 1,(4.1a)

T ν,k
x = O(h4), ν = 1, 2, . . . , 4, k = 0, 1.(4.1b)
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We define q−,0,+ and r−,+
j as polynomials in z at each mesh point xi

in the form

q−,0,+ =
2∑

ν=0

q−,0,+
ν zν ;(4.2a)

r−,+ =
2∑

ν=0

r−,+
ν zν ,(4.2b)

where the coefficients q−,0,+ and r−,+
ν are independent of ε. We

determine these coefficients by substituting from (4.2) into (2.10) and
imposing (4.1).

In the case of d(x, t) = 0, the polynomials (4.2) are determined in the
form

r−j = 1 − z

2
b−i,j +

z2

12
b−

2

i,j , r+
j = 1 +

z

2
b+
i,j +

z2

12
b+2

i,j , r0
j = −r−j − r+

j ;

(4.3a)

q−j =
1
12

− z

24
b−i,j , q+

j =
1
12

+
z

24
b+
i,j , q0

j =
2
3

+ q−j + q+
j ,

(4.3b)

where

(4.4) b−i,j =
1
6

(2bj
i−1 + 5bj

i − bj
i+1), b+

i,j =
1
6

(−bj
i−1 + 5bj

i + 2bj
i+1).

Also, the coefficients r−,0,+
j+1 and q−,0,+

j+1 are of similar form at the time
level j + 1. Using the following power series

x

1 − exp(−x)
= 1 +

x

2
+

x2

12
− x4

720
+ · · · ,

x exp(−x)
1 − exp(−x)

= 1 − x

2
+

x2

12
− x4

720
+ · · · ,

we can write the coefficients in (4.3) as follows:

r−j =
zb−i,j exp(−zb−i,j)

1 − exp(−zb−i,j)
, r+

j =
zb+

i,j

1 − exp(−zb+
i,j)

, r0 = −r−j − r+
j ;

(4.5a)

q−j =
1 − r−j
2zb−i,j

− 1
6
, q+

j =
r+
j − 1

2zb+
i,j

− 1
6
, q0

j =
2
3

+ q−j + q+
j ,

(4.5b)
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where b−i,j and b+
i,j are defined by (4.4). One can verify that the

coefficients (4.5) satisfy the conditions (4.1).

In the general form, the exponential scheme for the problem (1.1) is
defined by (2.1), (2.14) and

(4.6a) r−j =
(n−

j − n+
j ) exp(n−

j )

exp(n−
j − n+

j ) − 1
, r+

j =
(k−

j − k+
j ) exp(−k+

j )

exp(k−
j − k+

j ) − 1
;

(4.6b)

q−j =
1

2(1 − exp(n−
j − n+

j ))

×
[exp(n−

j ) − 1

n−
j

+
exp(−n−

j )(exp(−n+
j ) − 1)

n+
j

]
− 1

6
,

q+
j =

1
2(1 − exp(k−

j − k+
j ))

×
[1 − exp(−k+

j )

k+
j

− exp(−k+
j )(exp(k−

j ) − 1)

k−
j

]
− 1

6
,

q0
j =

2
3

+ q−j + q+
j ;

(4.6c) r0
j = −r−j − r+

j − hz(q+
j dj+1 + q0

j dj + q−j dj−1),

where

n∓
j =

z

2

(
−b−i,j ∓

√
b−2
i,j + 4εd−i,j

)
, k∓

j =
z

2

(
−b+

i,j ∓
√

b+2
i,j + 4εd+

i,j

)
,

b−i,j and b+
i,j are defined by (4.4) and d−i,j and d+

i,j have similar forms.
Also, the coefficients r−,0,+

j+1 and q−,0,+
j+1 are of similar form at the time

level j +1. This scheme gives the exact solution for solving (1.1) in the
case b(x, t) and d(x, t) are constants and f(x, t) = 0.

5. Numerical experiments. In this section we present some
numerical results for the proposed schemes in Sections 2 and 4. The
numerical examples are solved on Ω ≡ (0, 1) × (0, 1].
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Example 1. We consider the linear equation

∂u

∂t
= ε

∂2u

∂x2
− b

∂u

∂x
, on Ω,

with steady-state solution u(x, t) = (ebx/ε−1)/(eb/ε−1). The function
u(x, t) determines the initial and boundary conditions for this problem.
We compare the present fourth-order scheme (CS4) and the present
exponential fourth-order scheme (ES4) with Crank-Nicolson scheme
(CNS), see [9]; Gears scheme (GS), see [18]; extrapolated Crank-
Nicolson scheme (ECNS), see [23]; the method (AGE), see [15]; and
scheme (PQI), see [13]. The absolute error between the approximate
solution and steady state solution is shown in Table I at ε = 1, b = 1,
Δt = 0.01, h = 0.1 and t = 1, and errors that are less than 10−15 are
recorded as zero in the table.

Example 2. We consider the linear parabolic partial differential
equation

−ε
∂2u

∂x2
+

∂u

∂x
+ u +

∂u

∂t
= f(x, t), on Ω,

with analytical solution

u(x, t) = t exp(−(1 − x)/ε) + 1 − x2 + t2.

The function f(x, t) and the initial-boundary values on Ω are chosen to
fit this data. We solve this problem for each h = 1/N , N = 8, 16, 32, 64
and 128, with ε = 1/64, 1/256, 1/1024 and 1/4096. The maximum
error, EN , and the order of convergence, Rate, are defined, respectively,
in the form

EN = max
i,j

|U j
i − u(xi, tj)|,

Rate =
log(EN/E2N )

log 2
,

i = 1, 2, . . . , (N − 1), j = 1, 2, . . . .
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We compare the present fourth-order scheme (CS4) and the present
exponential fourth-order scheme (ES4) with the streamline diffusion
scheme (SD), see [19]. The results are shown in Table II, and errors
that are less than 10−15 are recorded as zero in the table.

Example 3. We consider the linear parabolic partial differential
equation with variable coefficients

∂u

∂t
= ε

∂2u

∂x2
+ b(x, t)

∂u

∂x
, on Ω,

where
b(x, t) = −u(x, t),

with the exact solution

u(x, t) =
0.1e−A + 0.5e−B + e−C

e−A + e−B + e−C
,

where

A =
0.05
ε

(x − 0.5 + 4.95t),

B =
0.25
ε

(x − 0.5 + 0.75t)

and

C =
0.5
ε

(x − 0.375).

The initial-boundary values on Ω are chosen to fit this data. We solve
this problem for each h = 1/N , N = 10, 20, 40, 80, with ε = 0.1
and 0.01 and t = 0.4 and 1.0. The maximum error and the order of
convergence are given. We compare the present fourth-order scheme
(CS4) with the present exponential fourth-order scheme (ES4). The
values of EN and Rate are given in Table III.
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TABLE III.

ε 0.1 0.01

The t N Δt EN (Rate) EN (Rate)

scheme

10 0.05 4.47E-05 2.27E-02

(4.01) (2.68)

20 0.0125 2.77E-06 3.53E-03

0.4 (4.00) (3.73)

40 0.003125 1.73E-07 2.66E-04

(4.00) (4.02)

80 0.00078125 1.08E-08 1.63E-05

CS4

10 0.05 8.36E-05 5.79E-02

(3.98) (2.27)

20 0.0125 5.29E-06 1.20E-02

1.0 (4.00) (3.34)

40 0.003125 3.30E-07 1.18E-03

(4.00) (3.96)

80 0.00078125 2.06E-08 7.56E-05

10 0.05 4.76E-05 3.87E-02

(4.00) (2.56)

20 0.0125 2.96E-06 6.56E-03

0.4 (4.00) (3.43)

40 0.003125 1.85E-07 6.02E-04

(4.00) (3.92)

80 0.00078125 1.15E-08 3.97E-05

ES4

10 0.05 9.34E-05 9.47E-02

(3.93) (2.27)

20 0.0125 5.87E-06 1.96E-02

1.0 (3.99) (3.40)

40 0.003125 3.67E-07 1.85E-03

(4.00) (3.88)

80 0.00078125 2.29E-08 1.25E-04
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Example 4. We consider the Burgers equation in the form

∂u

∂t
= ε

∂2u

∂x2
− u

∂u

∂x
, on Ω,

with the exact solution

u(x, t) =
0.1e−A + 0.5e−B + e−C

e−A + e−B + e−C
,

where

A =
0.05
ε

(x − 0.5 + 4.95t),

B =
0.25
ε

(x − 0.5 + 0.75t),

and

C =
0.5
ε

(x − 0.375).

The initial-boundary values on Ω are chosen to fit this data. We solve
this problem for each h = 1/N , N = 10, 20, 40, 80, with ε = 0.1 and
0.01 and t = 0.4 and 1.0. We compare the present fourth-order scheme
(CS4) with the present exponential fourth-order scheme (ES4). The
values of EN and Rate are given in Table IV.

Conclusions. We have described numerical schemes for solving
parabolic singular perturbation problems using tridiagonal schemes of
exponential type. The schemes have been analyzed for convergence.
Test examples have been solved to demonstrate the efficiency of the
proposed schemes.

Tables I III described the linear problems and gave a comparison of
the numerical solution of the various schemes for different values of h
and ε. The present schemes are the most accurate schemes of those
tested in these tables.
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TABLE IV.

ε 0.1 0.01

The t N Δt EN (Rate) EN (Rate)

scheme

10 0.05 4.94E-05 2.87E-02

(4.01) (2.67)

20 0.0125 3.06E-06 4.49E-03

0.4 (3.99) (3.71)

40 0.003125 1.92E-07 4.41E-04

(4.00) (4.03)

80 0.00078125 1.20E-08 2.08E-05

CS4

10 0.05 1.04E-04 8.52E-02

(3.96) (2.30)

20 0.0125 6.65E-06 1.73E-02

1.0 (4.00) (3.38)

40 0.003125 4.14E-07 1.66E-03

(4.00) (3.81)

80 0.00078125 2.58E-08 1.18E-04

10 0.05 5.26E-05 4.64E-02

(4.00) (2.40)

20 0.0125 3.27E-06 8.77E-03

0.4 (4.00) (3.34)

40 0.003125 2.04E-07 4.64E-04

(4.00) (3.90)

80 0.00078125 1.87E-08 5.76E-05

ES4

10 0.05 1.16E-04 1.50E-01

(3.98) (1.76)

20 0.0125 7.35E-06 4.42E-02

1.0 (4.00) (3.25)

40 0.003125 4.59E-07 4.63E-03

(3.99) (3.89)

80 0.00078125 2.87E-08 3.12E-04

Table IV gives the numerical solution for different values of h and ε
for solving the Burgers equation. The present schemes are second-order
accurate in Δt and fourth order accurate in h. They are unconditionally
stable.
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