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CHARACTERIZATIONS OF GENERALIZED
NEVAI’S CLASS AT THE BOUNDARY POINTS

OF CONTRACTED ZEROS

D.W. LEE

ABSTRACT. For generalized Nevai’s class, the ratio asymp-
totics of orthogonal polynomials are obtained by many au-
thors outside the contracted zero interval. We prove that the
asymptotic properties can be extended to the point which is
essentially a boundary point of the contracted zeros by the
coefficients of three term recurrence relation and then several
characterizations are found. Lastly we give several applica-
tions for such characterizations.

1. Introduction. Let μ be a positive measure with infinitely
many points of increase and all moments are finite. The corresponding
orthonormal polynomials {Pn(x)}∞n=0 such that∫ ∞

−∞
Pm(x)Pn(x) dμ(x) = δmn, m, n ≥ 0,

where δmn is the Kronecker delta, satisfy a three term recurrence
relation

xPn(x) = an+1Pn+1(x) + bnPn(x) + anPn−1(x),
P0(x) = 1, P−1 = 0,

n = 0, 1, 2, . . . ,

where the coefficients are uniquely determined by

an =
∫ ∞

−∞
xPn(x)Pn−1(x) dμ(x) > 0, n = 1, 2, . . . ,

2000 AMS Mathematics Subject Classification. Primary 42C05.
Key words and phrases. Orthogonal polynomials, asymptotics of orthogonal

polynomials.
This work was supported by the Post-doctoral Fellowship Program of Korea

Science and Engineering Foundation (KOSEF).
Received by the editors on December 3, 2002.

Copyright c©2006 Rocky Mountain Mathematics Consortium

981



982 D.W. LEE

and

bn =
∫ ∞

−∞
xP 2

n(x) dμ(x), n = 0, 1, 2, . . . .

For any regularly varying function ϕ, that is, ϕ(x) > 0 and

lim
t→∞

ϕ(x + t)
ϕ(t)

= 1

for every real x, if there exist a ≥ 0 and b ∈ R such that

lim
n→∞

an

ϕ(n)
=

a

2
and lim

n→∞
bn

ϕ(n)
= b,

then μ is called a generalized Nevai class (relative to ϕ) and denoted
by μ ∈ Mϕ(a, b). It is well known that all the zeros of Pn(x) are
real and simple. We denote them by xjn, j = 1, 2, . . . , n, with
xnn < xn−1,n < · · · < x1n. The Christoffel function is a meromorphic
function defined by

λ−1
n (z) =

n−1∑
k=0

P 2
k (z)

and the Christoffel numbers by λjn = λn(xjn). We also define the
contracted zero interval Δϕ(dμ) of {Pn(x)}∞n=0 by

Δϕ(dμ) =
[

lim inf
n→∞

xnn

ϕ(n)
, lim sup

n→∞
x1n

ϕ(n)

]
.

Going back to Blumental’s work [1], there are many results on the
asymptotic properties of orthogonal polynomials and the Christoffel
functions by the coefficients of the three term recurrence relation for
generalized Nevai’s class. We refer to [3, 6, 9, 10, 13] and therein.
More precisely, the following were proved by many authors.

Theorem A. Let a > 0, b ∈ R and ϕ be a regularly varying function.
Then the following are all equivalent.

(a) μ ∈ Mϕ(a, b).
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(b) If f is bounded on Δϕ(dμ) and Riemann integrable on [b−a, b+a],
then
(1.1)

lim
n→∞

n∑
j=1

λjnf

(
xjn

ϕ(n)

)
P 2

n−1(xjn) =
2

πa2

∫ b+a

b−a

f(x)
√

a2 − (x−b)2 dx.

(c) For every z ∈ C \ Δϕ(dμ),

lim
n→∞

Pn−1(ϕ(n)z)
Pn(ϕ(n)z)

=
a

z − b +
√

(z − b)2 − a2
,

where
√

(z − b)2 − a2 > 0 for |z − b| > a.

If μ ∈ Mϕ(a, b), a > 0, b ∈ R, then by Theorem A (b) with
f = χ[b−a,b+a]\Δϕ(dμ) in (1.1), we obtain

0 =
2

πa2

∫ b+a

b−a

f(x)
√

a2 − (x − b)2 dx

=
2

πa2

∫
[b−a,b+a]\Δϕ(dμ)

√
a2 − (x − b)2 dx

so that [b − a, b + a] \ Δϕ(dμ) = ∅, that is, [b − a, b + a] ⊂ Δϕ(dμ).
More precisely, it is known [6, 13] that if ϕ(x) is nondecreasing, then

[b − a, b + a] ⊂ Δϕ(dμ) ⊂ [min{b − a, 0} , max{0, b + a}]

and there are no limit points of Δϕ(dμ) outside [b−a, b+a]. Hence, the
points b − a and b + a are essentially the boundary points of Δϕ(dμ).

In this paper, we prove that Theorem A can be extended to the points
b − a and b + a, which is already proved in [11] for the case of ϕ = 1.
Throughout the paper, we will use the notations by ϕn = ϕ(n) for
regularly varying function ϕ, Un(x) for the Tchebychev polynomials of
second kind with

Ua,b
n (x) := Un((x − b)/a),
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and

Ia,b
k (dν; f) := −sgn (k)

∫ b+a

b−a

f(x)Ua,b
|k|−1(x) dν(x),

U−1 = 0, k ∈ Z

for the measure dν.

2. Main results. We start with a lemma whose proof is simple.

Lemma 2.1. Let {en}∞n=1 be a sequence of positive numbers. If

(2.1) lim
n→∞

(
1

en+1
+ dnen

)
= a,

where a > 0 and limn→∞ dn = a2/4, then limn→∞ en = 2/a.

Proof. Without loss of generality we may assume that a = 1 and
dn > 0 for all n. Let α = lim infn→∞ en and β = lim supn→∞ en. From
equation (2.1), we have that β ≤ 4 and clearly α ≥ 0. It’s enough to
show that α = β = 2. Let {enk

}∞k=1 be a subsequence of {en}∞n=1 such
that limk→∞ enk

= α. Then

lim
k→∞

(
1

enk

+ dnk−1enk−1

)
= 1,

from which α > 0. Moreover,

lim
k→∞

enk−1 = 4
(

1 − 1
α

)
=

4α − 4
α

.

By the definition of lim inf, we have α ≤ (4α − 4)/α so that α = 2. By
a similar process, we have

β ≥ lim
k→∞

enk+1 =
4

4 − β

which also implies β = 2.
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Theorem 2.2. Let μ ∈ Mϕ(a, b) for some a > 0 and b ∈ R. If
Pn−1((b + a)ϕn)Pn+1((b + a)ϕn) > 0 for large n, then

(2.2) lim
n→∞

Pn−1((b + a)ϕn)
Pn((b + a)ϕn)

= lim
n→∞

an

ϕn

n∑
j=1

λjnP 2
n−1(xjn)

b + a − (xjn/ϕn)
= 1

and if Pn−1((b − a)ϕn)Pn+1((b − a)ϕn) > 0 for large n, then

(2.3) lim
n→∞

Pn−1((b − a)ϕn)
Pn((b − a)ϕn)

= lim
n→∞

an

ϕn

n∑
j=1

λjnP 2
n−1(xjn)

b − a − (xjn/ϕn)
= −1.

In this case,

(2.4)

lim
n→∞

n∑
j=1

λjnP 2
n−1(xjn)

a2 − ((xjn/ϕn) − b)2
=

2
a2

=
2

πa2

∫ b+a

b−a

dx√
a2 − (x−b)2

.

Proof. From the three term recurrence relation, we have Pn((b +
a)ϕn) �= 0 and

ϕn

ϕn+1

(
b + a − bn

ϕn

)
=

an+1Pn+1((b + a)ϕn)
ϕn+1Pn((b + a)ϕn)

+
a2

n

ϕn+1ϕn

ϕnPn−1((b + a)ϕn)
anPn((b + a)ϕn)

.

Note that the coefficients an of the three term recurrence relation
are positive for n ≥ 1. Hence, if Pn+1((b + a)ϕn) > 0 and so
Pn−1((b + a)ϕn) > 0, then

ϕn

ϕn+1

(
b + a − bn

ϕn

)
Pn((b + a)ϕn) > 0.

Since limn→∞ bn/ϕn = b, we have Pn((b + a)ϕn) > 0 for sufficiently
large n. If Pn+1((b + a)ϕn) < 0 and so Pn−1((b + a)ϕn) < 0, then by
the same process Pn((b + a)ϕn) < 0 for sufficiently large n. Hence,
(Pn−1((b + a)ϕn))/(Pn((b + a)ϕn)) > 0 and so we have by Lemma 2.1,

(2.5) lim
n→∞

ϕn

an

Pn−1((b + a)ϕn)
Pn((b + a)ϕn)

=
2
a
.
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The first equality of (2.2) immediately follows from the identity (cf.
[13, p. 9])

(2.6)
P̂n−1(x)

P̂n(x)
=

n∑
j=1

λjnP 2
n−1(xjn)

x − xjn

where P̂n(x) = anan−1 · · · a1Pn(x) is the monic polynomial. The
equation (2.3) can be proved by the same way. The left equality in
(2.4) is an immediate consequence of the following identity

lim
n→∞

n∑
j=1

λjnP 2
n−1(xjn)

a2 − ((xjn)/(ϕn) − b)2

=
1
2a

(
ϕn

an

Pn−1((b + a)ϕn)
Pn((b + a)ϕn)

− ϕn

an

Pn−1((b − a)ϕn)
Pn((b − a)ϕn)

)
,

and the right equality can be shown by a simple calculation.

By three term recurrence relations of {Pn(x)}∞n=0 and {Un(x)}∞n=0,
we can easily see that condition (b) in Theorem A can be generalized
as following.

Theorem 2.3. Let the conditions be the same as in Theorem A.
Then any one of (a)∼(c) in Theorem A is also equivalent to

(b′) If f is bounded on Δϕ(dμ) and Riemann integrable on [b−a, b+
a], then for any integer k,

lim
n→∞

n∑
j=1

λjnf

(
xjn

ϕn

)
Pn−1(xjn)Pn+k(xjn)

= Ia,b
k

(
2

πa2

√
a2 − (x − b2) dx; f

)
.

Proof. It suffices to prove that (b) implies (b′) where the converse is
trivial. Induction will be used. If k = 0, then it is trivial. Let k = 1.
Since Pn+1(xjn) = −(an/an+1)Pn−1(xjn) by the three term recurrence
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relation, we have

lim
n→∞

n∑
j=1

λjnf

(
xjn

ϕn

)
Pn−1(xjn)Pn+1(xjn)

= − lim
n→∞

an

an+1

n∑
j=1

λjnf

(
xjn

ϕn

)
P 2

n−1(xjn)

= − 2
πa2

∫ b+a

b−a

f(t)
√

a2 − (t − b)2 dt

= Ia,b
1

(
2

πa2

√
a2 − (x − b)2 dx; f

)
.

Now assume that the theorem is true for 0, 1, 2, . . . , k − 1, k ≥ 2. By
the three term recurrence relation again, we have

Pn+k(xjn) =
ϕn

an+k

(
xj,n

ϕn
−bn+k−1

ϕn

)
Pn+k−1(xjn)−an+k−1

an+k
Pn+k−2(xjn)

and so

n∑
j=1

λjnf

(
xjn

ϕn

)
Pn−1(xjn)Pn+k(xjn)

=
ϕn

an+k

n∑
j=1

λjn
xjn

ϕn
f

(
xjn

ϕn

)
Pn−1(xjn)Pn+k−1(xjn)

− bn+k−1

an+k

n∑
j=1

λj,nf

(
xj,n

ϕn

)
Pn−1(xjn)Pn+k−1(xjn)

− an+k−1

an+k

n∑
j=1

λjnf

(
xjn

ϕn

)
Pn−1(xjn)Pn+k−2(xjn).

By induction hypothesis, the regularity of ϕ, and the three term
recurrence relation

x − b

a
Ua,b

n (x) =
1
2

Ua,b
n+1(x) +

1
2

Ua,b
n−1(x), n ≥ 0,
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taking a limit, we have for k ≥ 2,

lim
n→∞

n∑
j=1

λjnf

(
xjn

ϕn

)
Pn−1(xjn)Pn+k(xjn)

= − 2
a

∫ b+a

b−a

tf(t) Ua,b
k−2(t)

2
πa2

√
a2 − (t−b)2 dt

+
2b

a

∫ b+a

b−a

f(t) Ua,b
k−2(t)

2
πa2

√
a2 − (t−b)2 dt

+
∫ b+a

b−a

f(t) Ua,b
k−3(t)

2
πa2

√
a2 − (t−b)2 dt

= − 2
πa2

∫ b+a

b−a

f(t) Ua,b
k−1(t)

√
a2 − (t−b)2 dt

= Ia,b
k

(
2

πa2

√
a2 − (x−b)2 dx; f

)
.

Hence, the theorem is true for the case of k ≥ −1. For k ≤ −2, it can
be proved by the same method as above.

Theorem 2.4. Let a > 0, b ∈ R, and let ϕ be a regularly varying
function. If Pn+1((b + a)ϕn)Pn−1((b + a)ϕn) > 0 and Pn+1((b − a)×
ϕn)Pn−1((b − a)ϕn) > 0 for all n ≥ 1, then the following are all
equivalent.

(a) μ ∈ Mϕ(a, b).

(b) If f is bounded on Δϕ(dμ) and Riemann integrable on [b−a, b+a],
then for any integer k,

lim
n→∞

n∑
j=1

λjnf

(
xjn

ϕn

)
Pn−1(xjn)Pn+k(xjn)
(b + a) − (xjn/ϕn)

= Ia,b
k

(
2

πa2

√
a + (x − b)
a − (x − b)

dx; f
)

.

(c) If f is bounded on Δϕ(dμ) and Riemann integrable on [b−a, b+a],
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then for any integer k,

lim
n→∞

n∑
j=1

λjnf

(
xjn

ϕn

)
Pn−1(xjn)Pn+k(xjn)
(b − a) − (xjn/ϕn)

= −Ia,b
k

(
2

πa2

√
a − (x − b)
a + (x − b)

dx; f
)

.

(d) If f is bounded on Δϕ(dμ) and Riemann integrable on [b−a, b+a],
then for any integer k,

(2.7) lim
n→∞

n∑
j=1

λjnf

(
xjn

ϕn

)
Pn−1(xjn)Pn+k(xjn)
a2 − (b − (xjn/ϕn))2

= Ia,b
k

(
2

πa2

dx

π
√

a2 − (x − b)2
; f

)
.

(e) For every z ∈ {b ± a} ∪ C \ Δϕ(dμ),

lim
n→∞

Pn−1(ϕnz)
Pn(ϕnz)

=

⎧⎨⎩
1 if z = b + a

−1 if z = b − a

a/(z−b +
√

(z−b)2 − a2) otherwise,

where
√

(z − b)2 − a2 > 0 for |z − b| > a.

Proof. Without loss of generality, we may assume that a = 1 and
b = 0. The equivalence (a) and (e) was proved by Theorem A and
Theorem 2.2. Note that (b) and (c) can be easily proved from (d) by
taking (1 − x)f(x) and (1 + x)f(x), respectively. It is also easy to see
that (b), respectively (c), implies (a) by Theorem A with (1 − x)f(x),
respectively (1+x)f(x). Hence, it suffices to show that (a) implies (d).
Let 0 < ε < 1 and g(x) = 1/(1 − x2)χ[−1+ε,1−ε](x). By Theorem A
with k = −1, we have

lim
n→∞

∑
|xjn/ϕn|≤1−ε

λjnP 2
n−1(xjn)

1 − (xjn/ϕn)2
= lim

n→∞

n∑
j=1

λjn g

(
xjn

ϕn

)
P 2

n−1(xjn)

=
2
π

∫ 1−ε

−1+ε

dx√
1 − x2
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so that by Theorem 2.2,

lim
n→∞

∑
|xjn/ϕn|>1−ε

λjnP 2
n−1(xjn)

1 − (xjn/ϕn)2

= lim
n→∞

( n∑
j=1

λjnP 2
n−1(xjn)

1 − (xjn/ϕn)2
−

∑
|xjn/ϕn|≤1−ε

λjnP 2
n−1(xjn)

1 − (xjn/ϕn)2

)

=
2
π

∫ 1

−1

dx√
1 − x2

− 2
π

∫ 1−ε

−1+ε

dx√
1 − x2

=
4
π

∫ 1

1−ε

dx√
1 − x2

.

Hence, we have

(2.8)
∣∣∣∣ n∑

j=1

λjnf

(
xjn

ϕn

)
P 2

n−1(xjn)
1 − (xjn/ϕn)2

− 2
π

∫ 1

−1

f(x)√
1 − x2

dx

∣∣∣∣
=

∣∣∣∣[ ∑
|xjn/ϕn|≤1−ε

λjnf

(
xjn

ϕn

)
P 2

n−1(xjn)
1−(xjn/ϕn)2

− 2
π

∫ 1−ε

−1+ε

f(x)√
1−x2

dx

]

+
∑

|xjn/ϕn|>1−ε

λjnf

(
xjn

ϕn

)
P 2

n−1(xjn)
1 − (xjn/ϕn)2

− 2
π

[ ∫ −1+ε

−1

+
∫ 1

1−ε

]
f(x)√
1 − x2

dx

∣∣∣∣
≤

∣∣∣∣ ∑
|xjn/ϕn|≤1−ε

λjnf

(
xjn

ϕn

)
P 2

n−1(xjn)
1−(xjn/ϕn)2

− 2
π

∫ 1−ε

−1+ε

f(x)√
1−x2

dx

∣∣∣∣
+ sup

−1≤x≤1
|f(x)|

[ ∑
|xjn/ϕn|>1−ε

λjnP 2
n−1(xjn)

1−(xjn/ϕn)2
+

4
π

∫ 1

1−ε

dx√
1−x2

]
.

Since the first term of the right-hand side of (2.8) tends to 0 as n → ∞
by Theorem A with the function f(x) = 1/(1 − x2)χ[−1+ε,1−ε], taking
limsup on both sides, we have

lim sup
n→∞

∣∣∣∣ n∑
j=1

λjnf

(
xjn

ϕn

)
P 2

n−1(xjn)
1 − (xjn/ϕn)2

− 2
π

∫ 1

−1

f(x)√
1 − x2

dx

∣∣∣∣
≤ sup

−1≤x≤1
|f(x)| 8

π

∫ 1

1−ε

dx√
1 − x2

.
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Letting ε → 0, the relation (2.7) holds for k = −1. For k = 0,
it is trivial. The proof for every integer k is just the same as that
of Theorem 2.3 by induction and three term recurrence relations of
{Pn(x)}∞n=0 and {Ua,b

n (x)}∞n=0.

Example 2.1. Consider Laguerre polynomials {L(α)
n (x)}∞n=0, α >

−1, satisfying (cf. [2, 12])

xL(α)
n (x) =

√
(n+1)(n+α+1)L

(α)
n+1(x)

+ (2n+α+1)L(α)
n (x) +

√
n(n+α)L

(α)
n−1(x), n ≥ 0,

which are orthogonal with respect to dμ(x) = xαe−xH(x) dx, where
H(x) is the Heaviside function. Clearly, μ ∈ Mϕ(2, 2), where ϕn =
n+εn with limn→∞(εn/n) = 0. Moreover it is well known (cf. [5]) that
limn→∞(x1n/n) = 4 and limn→∞(xnn/n) = 0 so that Δϕ(dμ) = [0, 4].
Let εn be a sequence such that 4ϕn > x1,n+1. Then by Theorem 2.4,

lim
n→∞

n∑
j=1

λjnf

(
xjn

ϕn

)
L

(α)
n−1(xjn)L(α)

n+k(xjn)
4−(xjn/ϕn)

= I2,2
k

(
1
2π

√
x

4−x
dx; f

)
and

lim
n→∞

n∑
j=1

λjnf

(
xjn

ϕn

)
L

(α)
n−1(xjn)L(α)

n+k(xjn)
xjn/ϕn

= −I2,2
k

(
1
2π

√
4−x

x
dx; f

)
.

In particular,

lim
n→∞

L
(α)
n−1(4ϕn)

L
(α)
n (4ϕn)

= − lim
n→∞

L
(α)
n−1(0)

L
(α)
n (0)

= 1.

Example 2.2. Consider the Meixner-Pollaczek polynomials

{P (λ,φ)
n (x)}∞n=0

satisfying (see [4, p. 32])

xP (λ,φ)
n (x) =

√
(n+1)(n+2λ)

2 sin φ
P

(λ,φ)
n+1 (x) − (n+λ) cosφ

sin φ
P (λ,φ)

n (x)

+

√
n(n+2λ − 1)

2 sin φ
P

(λ,φ)
n−1 (x), n ≥ 0,
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which are orthogonal with respect to dμ(x) = Wλ,φ(x) dx, where

Wλ,φ(x) = e(2φ−π)x
∣∣Γ(λ + ix)

∣∣2,
0 < φ < π, λ > 0, −∞ < x < ∞.

Here Γ(x) is the Gamma function on the complex plane. Clearly, μ ∈
Mϕ((1/sin φ),−(cosφ/sin φ)), where ϕn = n+εn with limn→∞ εn/n =
0. It is well known (see [5, 13]) that

Δϕ(dμ) =
[ − (1 + cosφ/sin φ), (1 − cos φ/sin φ)

]
.

If εn is taken by (1 − cos φ/sin φ)ϕn > x1,n+1, then by Theorem 2.4,

lim
n→∞

n∑
j=1

λjnf

(
xjn

ϕn

)
P

(λ,φ)
n−1 (xjn)P (λ,φ)

n+k (xjn)
(1 − cos φ/sin φ) − (xjn/ϕn)

= Ia,b
k (wdx; f)

and if εn is taken by −(1 + cosφ/sin φ)ϕn < xn+1,n+1, then by Theo-
rem 2.4,

lim
n→∞

n∑
j=1

λjnf

(
xjn

ϕn

)
P

(λ,φ)
n−1 (xjn)P (λ,φ)

n+k (xjn)
(1 + cosφ/sin φ) + (xjn/ϕn)

= Ia,b
k (w̃dx; f),

where

a = 1/(sin φ),
b = −(cos φ/sin φ),

w(x) = (2 sin2 φ/π)
√

(1 − cos φ + sin φx)/(1 + cosφ − sin φx),

and

w̃(x) = (2 sin2 φ/π)
√

(1 + cosφ − sin φx)/(1 − cos φ + sin φx).

Moreover,

lim
n→∞

P
(λ,φ)
n−1 (((1 − cos φ)ϕn)/(sin φ))

P
(λ,φ)
n (((1 − cos φ)ϕn)/(sin φ))

= − lim
n→∞

P
(λ,φ)
n−1 (−((1 + cos φ)ϕn)/(sinφ))

P
(λ,φ)
n (−((1 + cos φ)ϕn)/(sinφ))

= 1.
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Example 2.3. Let {Pn(x)}∞n=0 be Freud polynomials which are
orthogonal with respect to dμ(x) = e−|x|α dx, α > −1. Since the
measure dμ is symmetric, bn = 0 for all n ≥ 1. It was proved by
Lubinsky et al. [7, 8] that

lim
n→∞ n−1/αan =

γα

2
:=

[
Γ(α/2)Γ((α/2) + 1)

Γ(α + 1)

]1/α

and

lim
n→∞n−1/αx1n = − lim

n→∞n−1/αxnn = γα.

It is also well known (see [5, 13]) that μ ∈ Mϕ(γα, 0) and Δϕ(dμ) =
[−γα, γα], where ϕn = n1/α + εn with limn→∞ εnn−1/α = 0. Let εn be
a sequence such that γαϕn > x1,n+1. Then by Theorem 2.4,

(2.9) lim
n→∞

n∑
j=1

λjnf

(
xjn

ϕn

)
Pn−1(xjn)Pn+k(xjn)

γα − (xjn/ϕn)

= Iγα,0
k

(
2

πγ2
α

√
γα + x

γα − x
dx; f

)
and by the symmetry of {Pn(x)}∞n=0,

(2.10) lim
n→∞

n∑
j=1

λjnf

(
xjn

ϕn

)
Pn−1(xjn)Pn+k(xjn)

γα + (xjn/ϕn)

= Iγα,0
k

(
2

πγ2
α

√
γα + x

γα − x
dx; f

)
.

In particular,

lim
n→∞

Pn−1(γαϕn)
Pn(γαϕn)

= − lim
n→∞

Pn−1(−γαϕn)
Pn(−γαϕn)

= 1.

Let dν be a measure defined by

dν(x) = |x|ρ dμ(x) = |x|ρe−|x|α dx, ρ > −1

and the corresponding orthonormal polynomials by {Qn(x)}∞n=0 with
zeros by yjn, j = 1, 2, . . . , n. Since the largest and smallest zeros of
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Pn(x) and Qn(x) have the same asymptotic behaviors, we obtain the
same equation (2.9) and (2.10) for dν(x), i.e., the limit does not change
even if we replace Pn(x) and xjn by Qn(x) and yjn, respectively.
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