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MONOTONICITY PROPERTIES AND INEQUALITIES
OF FUNCTIONS RELATED TO MEANS

CHAO-PING CHEN AND FENG QI

ABSTRACT. In this paper, monotonicity properties of
functions related to means are discussed and some inequal-
ities are established.

1. Introduction. The generalized logarithmic mean (Stolarsky
mean) Lr(a, b) of two positive numbers a, b is defined in [1, 2] for a = b
by Lr(a, b) = a and for a �= b by

Lr(a, b) �
(
br+1 − ar+1

(r + 1)(b− a)

)1/r

, r �= −1, 0;

L−1(a, b) =
b− a

ln b− ln a
� L(a, b);

L0(a, b) =
1
e

(
bb

aa

)1/(b−a)

� I(a, b),

when a �= b, Lr(a, b) is a strictly increasing function of r. Clearly,
L1(a, b) � A(a, b), L−2(a, b) � G(a, b),

where A and G are the arithmetic and geometric means, respectively.

The logarithmic mean L(a, b) is generalized to the one-parameter
mean in [3]:

Jr(a, b) � r(br+1 − ar+1)
(r + 1)(br − ar)

, a �= b, r �= 0,−1;

J0(a, b) � L(a, b);

J−1(a, b) � [G(a, b)]2

L(a, b)
;

Jr(a, a) � a,
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when a �= b, Jr(a, b) is a strictly increasing function of r. Clearly,

J−2(a, b) � H(a, b), J−1/2(a, b) � G(a, b), J1(a, b) � A(a, b),

where H is the harmonic mean.

For a �= b, the following well-known inequality holds clearly:

H(a, b) < G(a, b) < L(a, b) < I(a, b) < A(a, b).

2. Lemmas.

Lemma 1. Let a > 0, b > 0. Then we have

(1) J2
−1/2(a, b)

(
1

J−1(a, b)
− 2
J0(a, b)

+
1

J1(a, b)

)

= J−2(a, b) − 2J−1(a, b) + J0(a, b)

and

(2) J2
−1/2(a, b)

(
1

J−2(a, b)
− 2
J−1(a, b)

+
1

J0(a, b)

)

= J−1(a, b) − 2J0(a, b) + J1(a, b).

Proof. Noticing that J−2(a, b) = H(a, b), J−1(a, b) = G2(a, b)/L(a, b),
J−1/2(a, b) = G(a, b), J0(a, b) = L(a, b) and J1(a, b) = A(a, b), we ob-
tain

J2
−1/2(a, b)

(
1

J−1(a, b)
− 2
J0(a, b)

+
1

J1(a, b)

)

= G2(a, b)
(
L(a, b)
G2(a, b)

− 2
L(a, b)

+
1

A(a, b)

)

= L(a, b) − 2G2(a, b)
L(a, b)

+
G2(a, b)
A(a, b)

= L(a, b) − 2G2(a, b)
L(a, b)

+H(a, b)

= J0(a, b) − 2J−1(a, b) + J−2(a, b)



MONOTONICITY PROPERTIES AND INEQUALITIES 859

and

J2
−1/2(a, b)

(
1

J−2(a, b)
− 2
J−1(a, b)

+
1

J0(a, b)

)

= G2(a, b)
(

1
H(a, b)

− 2L(a, b)
G2(a, b)

+
1

L(a, b)

)

=
G2(a, b)
H(a, b)

− 2L(a, b) +
G2(a, b)
L(a, b)

= A(a, b) − 2L(a, b) +
G2(a, b)
L(a, b)

= J1(a, b) − 2J0(a, b) + J−1(a, b).

The proof is complete.

Corollary 1. Let a > 0, b > 0. Then we have

(3)

[J−2(a, b) − 2J−1(a, b) + J0(a, b)]
(

1
J−2(a, b)

− 2
J−1(a, b)

+
1

J0(a, b)

)

= [J−1(a, b) − 2J0(a, b) + J1(a, b)]
(

1
J−1(a, b)

− 2
J0(a, b)

+
1

J1(a, b)

)
.

Proof. By (1) and (2), we have

J−2(a, b) − 2J−1(a, b) + J0(a, b)
J−1
−1 (a, b) − 2J−1

0 (a, b) + J−1
1 (a, b)

=
J−1(a, b) − 2J0(a, b) + J1(a, b)

J−1
−2 (a, b) − 2J−1

−1 (a, b) + J−1
0 (a, b)

= J2
−1/2(a, b).

Hence, (3) holds.

Lemma 2. Let a > 0, b > 0 and a �= b. Then we have for r = −1, 0,

(4)
1

Jr−1(a, b)
+

1
Jr+1(a, b)

>
2

Jr(a, b)
.
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Proof. Since a and b are symmetric, without loss of generality, assume
b > a > 0. For r = −1, (4) becomes

1
H(a, b)

+
1

L(a, b)
>

2L(a, b)
G2(a, b)

,

which is equivalent to

2ab(ln b− ln a)2 + (b2 − a2)(ln b− ln a) − 4(b− a)2

2ab(b− a)(ln b− ln a)
> 0.

Clearly, 2ab(b− a)(ln b− ln a) > 0; thus, it is sufficient to prove that

φ(x) � 2ax(lnx− ln a)2 + (x2 − a2)(lnx− ln a) − 4(x− a)2 > 0

for x > a > 0. Easy computations reveal that

φ′(x) = 2a(lnx− ln a)2 + (2x+ 4a)(lnx− ln a) − 7x− a2

x
+ 8a,

xφ′′(x) = (2x+ 4a)(lnx− ln a) − 5x+
a2

x
+ 4a � ψ(x),

ψ′(x) =
4a
x

+ 2(lnx− ln a) − a2

x2
− 3,

ψ′′(x) =
2(x− a)2

x3
> 0.

Hence, we have for x > a,

ψ′(x) > ψ′(a) = 0 =⇒ ψ(x) > ψ(a) = 0 =⇒ φ′′(x) > 0
=⇒ φ′(x) > φ′(a) = 0 =⇒ φ(x) > φ(a) = 0.

Thus, (4) holds for r = −1.

For r = 0, (4) becomes

L(a, b)
G2(a, b)

+
1

A(a, b)
>

2
L(a, b)

,

which is equivalent to

−2ab(b + a)(ln b − ln a)2 + 2ab(b − a)(ln b − ln a) + (b − a)2(b + a)

ab(b + a)((b − a))(ln b − ln a)
> 0.
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Clearly, ab(b + a)(b − a)(ln b − ln a) > 0; thus it is sufficient to prove
that

u(x) � −2ax(x+ a)(lnx− ln a)2 + 2ax(x− a)(lnx− ln a)
+ (x− a)2(x+ a) > 0

for x > a > 0. Easy computations reveal that

u′(x) = −(4ax+ 2a2)(lnx− ln a)2 − 6a2(lnx− ln a) + 3(x2 − a2),
xu′′(x) = −4ax(lnx− ln a)2 − 4a(2x+ a)(lnx− ln a)

+ 6(x2 − a2) � v(x),

v′(x) = −4a(lnx− ln a)2 − 16a(lnx− ln a) − 8a− 4a2

x
+ 12x,

xv′′(x) = −8a(lnx− ln a) − 16a+
4a2

x
+ 12x � w(x),

w′(x) =
4(3x+ a)(x− a)

x2
> 0.

Hence, we have for x > a,

w(x) > w(a) = 0 =⇒ v′′(x) > 0 =⇒ v′(x) > v′(a) = 0
=⇒ v(x) > v(a) = 0
=⇒ u′′(x) > 0 =⇒ u′(x) > u′(a) = 0
=⇒ u(x) > u(a) = 0.

Thus, (4) holds for r = 0. The proof is complete.

By Lemma 1 and Lemma 2, the following corollary is obvious.

Corollary 2. Let a > 0, b > 0 and a �= b. Then

J−1(a, b) + J1(a, b) > 2J0(a, b),(5)
J−2(a, b) + J0(a, b) > 2J−1(a, b).(6)

Lemma 3. Let a > 0, r ∈ (−∞,+∞). Define, for x > 0,

(7) Rr(x) =
{

(L2
r(a, x))/(Lr−1(a, x)Lr+1(a, x)) x �= a,

1 x = a.
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Then we have, for x �= a,

(8)
1

Rr(x)
dRr(x)
dx

=
a

x− a

(
− 2
Jr(a, x)

+
1

Jr−1(a, x)
+

1
Jr+1(a, x)

)
.

Proof. Taking logarithm and differentiation yields

x− a

Rr(x)
dRr(x)
dx

=
2(rxr+1 − (r + 1)axr + ar+1)

r(xr+1 − ar+1)
− (r − 1)xr − raxr−1 + ar

(r − 1)(xr − ar)

− (r + 1)xr+2 − (r + 2)axr+1 + ar+2

(r + 1)(xr+2 − ar+2)

= 2
(
rxr+1 − (r + 1)axr + ar+1

r(xr+1 − ar+1)
− 1

)

−
(

(r − 1)xr − raxr−1 + ar

(r − 1)(xr − ar)
− 1

)

−
(

(r + 1)xr+2 − (r + 2)axr+1 + ar+2

(r + 1)(xr+2 − ar+2)
− 1

)

= −2a(r + 1)(xr − ar)
r(xr+1 − ar+1)

+
ar(xr−1 − ar−1)
(r − 1)(xr − ar)

+
a(r + 2)(xr+1 − ar+1)
(r + 1)(xr+2 − ar+2)

= − 2a
Jr(a, x)

+
a

Jr−1(a, x)
+

a

Jr+1(a, x)
.

The proof is complete.

3. Main results.

Theorem 1. Let a > 0, define for x > 0,

f(x) =
{

(G2(a, x))/(H(a, x)L(a, x)) x �= a,
1 x = a.

Then f is strictly decreasing on (0, a) and strictly increasing on
(a,+∞).
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Proof. Taking logarithm and differentiation yields

f ′(x)
f(x)

=
1

x+ a
− x(lnx− ln a) − (x− a)

x(x− a)(lnx− ln a)

=
2a

[
(x2 − a2)/(2ax) − (lnx− ln a)

]
(x+ a)(x− a)(lnx− ln a)

=
2a

(x+ a)(x− a)
x− a

lnx− ln a

(
x+ a

2ax
− lnx− ln a

x− a

)

=
2aL(a, x)

(x+ a)(x− a)

(
1

H(a, x)
− 1
L(a, x)

)

=
2a[L(a, x) −H(a, x)]
(x+ a)(x− a)H(a, x)

.

Since L(a, x) > H(a, x), it is clear that f ′(x) < 0 for 0 < x < a and
f ′(x) > 0 for x > a. The proof is complete.

Corollary 3. Let c > b > a > 0. Then

(10)
(
G(a, b)
G(a, c)

)2

<
H(a, b)L(a, b)
H(a, c)L(a, c)

.

The inequality in (10) is reversed for 0 < b < c < a.

Since f is continuous on (0,+∞) and takes its unique minimum
f(a) = 1 at x = a, we get

Corollary 4. Let a > 0, b > 0 and a �= b. Then

(11) G2(a, b) > H(a, b)L(a, b).

Theorem 2. Let a > 0. Define, for x > 0,

g(x) =
{

(L2(a, x)/G(a, x)I(a, x)) x �= a,

1 x = a.
(12)

h(x) =
{

(I2(a, x)/L(a, x)A(a, x)) x �= a,

1 x = a.
(13)
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Then both g and h are strictly decreasing on (0, a) and strictly increas-
ing on (a,+∞).

Proof. By Lemma 3 (taking r = −1, 0, respectively), we have for
x �= a,

g′(x)
g(x)

=
a

x− a

(
− 2
J−1(a, x)

+
1

J−2(a, x)
+

1
J0(a, x)

)
,

h′(x)
h(x)

=
a

x− a

(
− 2
J0(a, x)

+
1

J−1(a, x)
+

1
J1(a, x)

)
.

By Lemma 2, we have for x �= a,

− 2
J−1(a, x)

+
1

J−2(a, x)
+

1
J0(a, x)

> 0,

− 2
J0(a, x)

+
1

J−1(a, x)
+

1
J1(a, x)

> 0.

Hence, it is clear that g′(x) < 0 and h′(x) < 0 for 0 < x < a, and
g′(x) > 0 and h′(x) > 0 for x > a. The proof is complete.

Corollary 5. Let c > b > a > 0. Then

(
L(a, b)
L(a, c)

)2

<
G(a, b)I(a, b)
G(a, c)I(a, c)

,(14)

(
I(a, b)
I(a, c)

)2

<
L(a, b)A(a, b)
L(a, c)A(a, c)

.(15)

The inequalities in (14) and (15) are reversed for 0 < b < c < a.

Since both g and h are continuous on (0,+∞) and take their unique
minimum g(a) = h(a) = 1 at x = a, we get

Corollary 6. Let a > 0, b > 0 and a �= b. Then

L2(a, b) > G(a, b)I(a, b),(16)
I2(a, b) > L(a, b)A(a, b).(17)
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