MONOTONICITY PROPERTIES AND INEQUALITIES OF FUNCTIONS RELATED TO MEANS

CHAO-PING CHEN AND FENG QI

Abstract

In this paper, monotonicity properties of functions related to means are discussed and some inequalities are established.

1. Introduction. The generalized logarithmic mean (Stolarsky mean) $L_{r}(a, b)$ of two positive numbers a, b is defined in $[\mathbf{1}, \mathbf{2}]$ for $a=b$ by $L_{r}(a, b)=a$ and for $a \neq b$ by

$$
\begin{aligned}
L_{r}(a, b) & \triangleq\left(\frac{b^{r+1}-a^{r+1}}{(r+1)(b-a)}\right)^{1 / r}, \quad r \neq-1,0 \\
L_{-1}(a, b) & =\frac{b-a}{\ln b-\ln a} \triangleq L(a, b) \\
L_{0}(a, b) & =\frac{1}{e}\left(\frac{b^{b}}{a^{a}}\right)^{1 /(b-a)} \triangleq I(a, b)
\end{aligned}
$$

when $a \neq b, L_{r}(a, b)$ is a strictly increasing function of r. Clearly,

$$
L_{1}(a, b) \triangleq A(a, b), \quad L_{-2}(a, b) \triangleq G(a, b)
$$

where A and G are the arithmetic and geometric means, respectively.
The logarithmic mean $L(a, b)$ is generalized to the one-parameter mean in [3]:

$$
\begin{aligned}
J_{r}(a, b) & \triangleq \frac{r\left(b^{r+1}-a^{r+1}\right)}{(r+1)\left(b^{r}-a^{r}\right)}, \quad a \neq b, \quad r \neq 0,-1 \\
J_{0}(a, b) & \triangleq L(a, b) \\
J_{-1}(a, b) & \triangleq \frac{[G(a, b)]^{2}}{L(a, b)} \\
J_{r}(a, a) & \triangleq a
\end{aligned}
$$

[^0]when $a \neq b, J_{r}(a, b)$ is a strictly increasing function of r. Clearly,
$$
J_{-2}(a, b) \triangleq H(a, b), \quad J_{-1 / 2}(a, b) \triangleq G(a, b), \quad J_{1}(a, b) \triangleq A(a, b)
$$
where H is the harmonic mean.
For $a \neq b$, the following well-known inequality holds clearly:
$$
H(a, b)<G(a, b)<L(a, b)<I(a, b)<A(a, b)
$$

2. Lemmas.

Lemma 1. Let $a>0, b>0$. Then we have
(1) $J_{-1 / 2}^{2}(a, b)\left(\frac{1}{J_{-1}(a, b)}-\frac{2}{J_{0}(a, b)}+\frac{1}{J_{1}(a, b)}\right)$

$$
=J_{-2}(a, b)-2 J_{-1}(a, b)+J_{0}(a, b)
$$

and
(2) $J_{-1 / 2}^{2}(a, b)\left(\frac{1}{J_{-2}(a, b)}-\frac{2}{J_{-1}(a, b)}+\frac{1}{J_{0}(a, b)}\right)$

$$
=J_{-1}(a, b)-2 J_{0}(a, b)+J_{1}(a, b)
$$

Proof. Noticing that $J_{-2}(a, b)=H(a, b), J_{-1}(a, b)=G^{2}(a, b) / L(a, b)$, $J_{-1 / 2}(a, b)=G(a, b), J_{0}(a, b)=L(a, b)$ and $J_{1}(a, b)=A(a, b)$, we obtain

$$
\begin{aligned}
J_{-1 / 2}^{2}(a, b)\left(\frac{1}{J_{-1}(a, b)}-\right. & \left.\frac{2}{J_{0}(a, b)}+\frac{1}{J_{1}(a, b)}\right) \\
& =G^{2}(a, b)\left(\frac{L(a, b)}{G^{2}(a, b)}-\frac{2}{L(a, b)}+\frac{1}{A(a, b)}\right) \\
& =L(a, b)-\frac{2 G^{2}(a, b)}{L(a, b)}+\frac{G^{2}(a, b)}{A(a, b)} \\
& =L(a, b)-\frac{2 G^{2}(a, b)}{L(a, b)}+H(a, b) \\
& =J_{0}(a, b)-2 J_{-1}(a, b)+J_{-2}(a, b)
\end{aligned}
$$

and

$$
\begin{aligned}
J_{-1 / 2}^{2}(a, b)\left(\frac{1}{J_{-2}(a, b)}\right. & \left.-\frac{2}{J_{-1}(a, b)}+\frac{1}{J_{0}(a, b)}\right) \\
& =G^{2}(a, b)\left(\frac{1}{H(a, b)}-\frac{2 L(a, b)}{G^{2}(a, b)}+\frac{1}{L(a, b)}\right) \\
& =\frac{G^{2}(a, b)}{H(a, b)}-2 L(a, b)+\frac{G^{2}(a, b)}{L(a, b)} \\
& =A(a, b)-2 L(a, b)+\frac{G^{2}(a, b)}{L(a, b)} \\
& =J_{1}(a, b)-2 J_{0}(a, b)+J_{-1}(a, b)
\end{aligned}
$$

The proof is complete.

Corollary 1. Let $a>0, b>0$. Then we have

$$
\begin{align*}
& {\left[J_{-2}(a, b)-2 J_{-1}(a, b)+J_{0}(a, b)\right]\left(\frac{1}{J_{-2}(a, b)}-\frac{2}{J_{-1}(a, b)}+\frac{1}{J_{0}(a, b)}\right)} \tag{3}\\
& \quad=\left[J_{-1}(a, b)-2 J_{0}(a, b)+J_{1}(a, b)\right]\left(\frac{1}{J_{-1}(a, b)}-\frac{2}{J_{0}(a, b)}+\frac{1}{J_{1}(a, b)}\right)
\end{align*}
$$

Proof. By (1) and (2), we have

$$
\begin{aligned}
& \frac{J_{-2}(a, b)-2 J_{-1}(a, b)+J_{0}(a, b)}{J_{-1}^{-1}(a, b)-2 J_{0}^{-1}(a, b)+J_{1}^{-1}(a, b)} \\
& =\frac{J_{-1}(a, b)-2 J_{0}(a, b)+J_{1}(a, b)}{J_{-2}^{-1}(a, b)-2 J_{-1}^{-1}(a, b)+J_{0}^{-1}(a, b)} \\
& =J_{-1 / 2}^{2}(a, b)
\end{aligned}
$$

Hence, (3) holds. \quad

Lemma 2. Let $a>0, b>0$ and $a \neq b$. Then we have for $r=-1,0$,

$$
\begin{equation*}
\frac{1}{J_{r-1}(a, b)}+\frac{1}{J_{r+1}(a, b)}>\frac{2}{J_{r}(a, b)} \tag{4}
\end{equation*}
$$

Proof. Since a and b are symmetric, without loss of generality, assume $b>a>0$. For $r=-1$, (4) becomes

$$
\frac{1}{H(a, b)}+\frac{1}{L(a, b)}>\frac{2 L(a, b)}{G^{2}(a, b)}
$$

which is equivalent to

$$
\frac{2 a b(\ln b-\ln a)^{2}+\left(b^{2}-a^{2}\right)(\ln b-\ln a)-4(b-a)^{2}}{2 a b(b-a)(\ln b-\ln a)}>0
$$

Clearly, $2 a b(b-a)(\ln b-\ln a)>0$; thus, it is sufficient to prove that

$$
\phi(x) \triangleq 2 a x(\ln x-\ln a)^{2}+\left(x^{2}-a^{2}\right)(\ln x-\ln a)-4(x-a)^{2}>0
$$

for $x>a>0$. Easy computations reveal that

$$
\begin{aligned}
\phi^{\prime}(x) & =2 a(\ln x-\ln a)^{2}+(2 x+4 a)(\ln x-\ln a)-7 x-\frac{a^{2}}{x}+8 a \\
x \phi^{\prime \prime}(x) & =(2 x+4 a)(\ln x-\ln a)-5 x+\frac{a^{2}}{x}+4 a \triangleq \psi(x) \\
\psi^{\prime}(x) & =\frac{4 a}{x}+2(\ln x-\ln a)-\frac{a^{2}}{x^{2}}-3 \\
\psi^{\prime \prime}(x) & =\frac{2(x-a)^{2}}{x^{3}}>0 .
\end{aligned}
$$

Hence, we have for $x>a$,

$$
\begin{aligned}
\psi^{\prime}(x)>\psi^{\prime}(a)=0 & \Longrightarrow \psi(x)>\psi(a)=0 \Longrightarrow \phi^{\prime \prime}(x)>0 \\
& \Longrightarrow \phi^{\prime}(x)>\phi^{\prime}(a)=0 \Longrightarrow \phi(x)>\phi(a)=0
\end{aligned}
$$

Thus, (4) holds for $r=-1$.
For $r=0$, (4) becomes

$$
\frac{L(a, b)}{G^{2}(a, b)}+\frac{1}{A(a, b)}>\frac{2}{L(a, b)}
$$

which is equivalent to

$$
\frac{-2 a b(b+a)(\ln b-\ln a)^{2}+2 a b(b-a)(\ln b-\ln a)+(b-a)^{2}(b+a)}{a b(b+a)((b-a))(\ln b-\ln a)}>0 .
$$

Clearly, $a b(b+a)(b-a)(\ln b-\ln a)>0$; thus it is sufficient to prove that

$$
\begin{aligned}
u(x) \triangleq & -2 a x(x+a)(\ln x-\ln a)^{2}+2 a x(x-a)(\ln x-\ln a) \\
& +(x-a)^{2}(x+a)>0
\end{aligned}
$$

for $x>a>0$. Easy computations reveal that

$$
\begin{aligned}
u^{\prime}(x)= & -\left(4 a x+2 a^{2}\right)(\ln x-\ln a)^{2}-6 a^{2}(\ln x-\ln a)+3\left(x^{2}-a^{2}\right), \\
x u^{\prime \prime}(x)= & -4 a x(\ln x-\ln a)^{2}-4 a(2 x+a)(\ln x-\ln a) \\
& +6\left(x^{2}-a^{2}\right) \triangleq v(x), \\
v^{\prime}(x)= & -4 a(\ln x-\ln a)^{2}-16 a(\ln x-\ln a)-8 a-\frac{4 a^{2}}{x}+12 x, \\
x v^{\prime \prime}(x)= & -8 a(\ln x-\ln a)-16 a+\frac{4 a^{2}}{x}+12 x \triangleq w(x), \\
w^{\prime}(x)= & \frac{4(3 x+a)(x-a)}{x^{2}}>0 .
\end{aligned}
$$

Hence, we have for $x>a$,

$$
\begin{aligned}
w(x)>w(a)=0 & \Longrightarrow v^{\prime \prime}(x)>0 \Longrightarrow v^{\prime}(x)>v^{\prime}(a)=0 \\
& \Longrightarrow v(x)>v(a)=0 \\
& \Longrightarrow u^{\prime \prime}(x)>0 \Longrightarrow u^{\prime}(x)>u^{\prime}(a)=0 \\
& \Longrightarrow u(x)>u(a)=0
\end{aligned}
$$

Thus, (4) holds for $r=0$. The proof is complete. \quad

By Lemma 1 and Lemma 2, the following corollary is obvious.

Corollary 2. Let $a>0, b>0$ and $a \neq b$. Then

$$
\begin{align*}
& J_{-1}(a, b)+J_{1}(a, b)>2 J_{0}(a, b), \tag{5}\\
& J_{-2}(a, b)+J_{0}(a, b)>2 J_{-1}(a, b) . \tag{6}
\end{align*}
$$

Lemma 3. Let $a>0, r \in(-\infty,+\infty)$. Define, for $x>0$,

$$
R_{r}(x)= \begin{cases}\left(L_{r}^{2}(a, x)\right) /\left(L_{r-1}(a, x) L_{r+1}(a, x)\right) & x \neq a \tag{7}\\ 1 & x=a\end{cases}
$$

Then we have, for $x \neq a$,
(8) $\frac{1}{R_{r}(x)} \frac{d R_{r}(x)}{d x}=\frac{a}{x-a}\left(-\frac{2}{J_{r}(a, x)}+\frac{1}{J_{r-1}(a, x)}+\frac{1}{J_{r+1}(a, x)}\right)$.

Proof. Taking logarithm and differentiation yields

$$
\begin{aligned}
& \frac{x-a}{R_{r}(x)} \frac{d R_{r}(x)}{d x} \\
&= \frac{2\left(r x^{r+1}-(r+1) a x^{r}+a^{r+1}\right)}{r\left(x^{r+1}-a^{r+1}\right)}-\frac{(r-1) x^{r}-r a x^{r-1}+a^{r}}{(r-1)\left(x^{r}-a^{r}\right)} \\
&-\frac{(r+1) x^{r+2}-(r+2) a x^{r+1}+a^{r+2}}{(r+1)\left(x^{r+2}-a^{r+2}\right)} \\
&= 2\left(\frac{r x^{r+1}-(r+1) a x^{r}+a^{r+1}}{r\left(x^{r+1}-a^{r+1}\right)}-1\right) \\
&-\left(\frac{(r-1) x^{r}-r a x^{r-1}+a^{r}}{(r-1)\left(x^{r}-a^{r}\right)}-1\right) \\
&-\left(\frac{(r+1) x^{r+2}-(r+2) a x^{r+1}+a^{r+2}}{(r+1)\left(x^{r+2}-a^{r+2}\right)}-1\right) \\
&=-\frac{2 a(r+1)\left(x^{r}-a^{r}\right)}{r\left(x^{r+1}-a^{r+1}\right)}+\frac{a r\left(x^{r-1}-a^{r-1}\right)}{(r-1)\left(x^{r}-a^{r}\right)}+\frac{a(r+2)\left(x^{r+1}-a^{r+1}\right)}{(r+1)\left(x^{r+2}-a^{r+2}\right)} \\
&=-\frac{2 a}{J_{r}(a, x)}+\frac{a}{J_{r-1}(a, x)}+\frac{a}{J_{r+1}(a, x)} .
\end{aligned}
$$

The proof is complete. $\quad \square$

3. Main results.

Theorem 1. Let $a>0$, define for $x>0$,

$$
f(x)= \begin{cases}\left(G^{2}(a, x)\right) /(H(a, x) L(a, x)) & x \neq a \\ 1 & x=a\end{cases}
$$

Then f is strictly decreasing on $(0, a)$ and strictly increasing on $(a,+\infty)$.

Proof. Taking logarithm and differentiation yields

$$
\begin{aligned}
\frac{f^{\prime}(x)}{f(x)} & =\frac{1}{x+a}-\frac{x(\ln x-\ln a)-(x-a)}{x(x-a)(\ln x-\ln a)} \\
& =\frac{2 a\left[\left(x^{2}-a^{2}\right) /(2 a x)-(\ln x-\ln a)\right]}{(x+a)(x-a)(\ln x-\ln a)} \\
& =\frac{2 a}{(x+a)(x-a)} \frac{x-a}{\ln x-\ln a}\left(\frac{x+a}{2 a x}-\frac{\ln x-\ln a}{x-a}\right) \\
& =\frac{2 a L(a, x)}{(x+a)(x-a)}\left(\frac{1}{H(a, x)}-\frac{1}{L(a, x)}\right) \\
& =\frac{2 a[L(a, x)-H(a, x)]}{(x+a)(x-a) H(a, x)} .
\end{aligned}
$$

Since $L(a, x)>H(a, x)$, it is clear that $f^{\prime}(x)<0$ for $0<x<a$ and $f^{\prime}(x)>0$ for $x>a$. The proof is complete.

Corollary 3. Let $c>b>a>0$. Then

$$
\begin{equation*}
\left(\frac{G(a, b)}{G(a, c)}\right)^{2}<\frac{H(a, b) L(a, b)}{H(a, c) L(a, c)} \tag{10}
\end{equation*}
$$

The inequality in (10) is reversed for $0<b<c<a$.

Since f is continuous on $(0,+\infty)$ and takes its unique minimum $f(a)=1$ at $x=a$, we get

Corollary 4. Let $a>0, b>0$ and $a \neq b$. Then

$$
\begin{equation*}
G^{2}(a, b)>H(a, b) L(a, b) \tag{11}
\end{equation*}
$$

Theorem 2. Let $a>0$. Define, for $x>0$,

$$
\begin{align*}
& g(x)= \begin{cases}\left(L^{2}(a, x) / G(a, x) I(a, x)\right) & x \neq a \\
1 & x=a\end{cases} \tag{12}\\
& h(x)= \begin{cases}\left(I^{2}(a, x) / L(a, x) A(a, x)\right) & x \neq a \\
1 & x=a\end{cases} \tag{13}
\end{align*}
$$

Then both g and h are strictly decreasing on $(0, a)$ and strictly increasing on $(a,+\infty)$.

Proof. By Lemma 3 (taking $r=-1,0$, respectively), we have for $x \neq a$,

$$
\begin{aligned}
\frac{g^{\prime}(x)}{g(x)} & =\frac{a}{x-a}\left(-\frac{2}{J_{-1}(a, x)}+\frac{1}{J_{-2}(a, x)}+\frac{1}{J_{0}(a, x)}\right) \\
\frac{h^{\prime}(x)}{h(x)} & =\frac{a}{x-a}\left(-\frac{2}{J_{0}(a, x)}+\frac{1}{J_{-1}(a, x)}+\frac{1}{J_{1}(a, x)}\right)
\end{aligned}
$$

By Lemma 2, we have for $x \neq a$,

$$
\begin{aligned}
&- \frac{2}{J_{-1}(a, x)}+\frac{1}{J_{-2}(a, x)}+\frac{1}{J_{0}(a, x)}>0 \\
&-\frac{2}{J_{0}(a, x)}+\frac{1}{J_{-1}(a, x)}+\frac{1}{J_{1}(a, x)}>0
\end{aligned}
$$

Hence, it is clear that $g^{\prime}(x)<0$ and $h^{\prime}(x)<0$ for $0<x<a$, and $g^{\prime}(x)>0$ and $h^{\prime}(x)>0$ for $x>a$. The proof is complete.

Corollary 5. Let $c>b>a>0$. Then

$$
\begin{align*}
& \left(\frac{L(a, b)}{L(a, c)}\right)^{2}<\frac{G(a, b) I(a, b)}{G(a, c) I(a, c)} \tag{14}\\
& \left(\frac{I(a, b)}{I(a, c)}\right)^{2}<\frac{L(a, b) A(a, b)}{L(a, c) A(a, c)} \tag{15}
\end{align*}
$$

The inequalities in (14) and (15) are reversed for $0<b<c<a$.

Since both g and h are continuous on $(0,+\infty)$ and take their unique minimum $g(a)=h(a)=1$ at $x=a$, we get

Corollary 6. Let $a>0, b>0$ and $a \neq b$. Then

$$
\begin{align*}
L^{2}(a, b) & >G(a, b) I(a, b) \tag{16}\\
I^{2}(a, b) & >L(a, b) A(a, b) \tag{17}
\end{align*}
$$

Acknowledgments. The authors would like to express their many thanks to the editor, Professor Roger W. Barnard, and the anonymous referee for their helpful comments and suggestions.

REFERENCES

1. K.B. Stolarsky, Generalizations of the logarithmic mean, Math. Mag. 48 (1975), 87-92.
2. -, The power and generalized logarithmic means, Amer. Math. Monthly 87 (1980), 545-548.
3. R.-Er Yang and D.-J. Cao, Generalizations of the logarithmic mean, J. Ningbo Univ. 2 (1989), 105-108 (in Chinese).

Department of Applied Mathematics and Informatics, Jiaozuo Institute of Technology, \#142, Mid-Jiefang Road, Jiaozuo City, Henan 454000, China
E-mail address: chenchaoping@hpu.edu.cn, chenchaoping@sohu.com
Department of Applied Mathematics and Informatics, Jiaozuo Institute of Technology, \#142, Mid-Jiefang Road, Jiaozuo City, Henan 454000, China
E-mail address: qifeng@jzit.edu.cn, qifeng618@hotmail.com, qifeng@hpu.edu.cn, fengqi618@member.ams.org

[^0]: AMS Mathematics Subject Classification. Primary 26A48, 26D15.
 Key words and phrases. Monotonicity, inequality, mean, ratio.
 The authors were supported in part by NNSF (\#10001016) of China SF for the Prominent Youth of Henan Province (\#0112000200), the SF of Henan Innovation Talents at Universities, China.

 Received by the editors on August 4, 2003, and in revised form on November 7, 2003.

