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SG-PSEUDODIFFERENTIAL OPERATORS
AND GELFAND-SHILOV SPACES

MARCO CAPPIELLO AND LUIGI RODINO

1. Introduction. Linear partial differential operators, or more
generally pseudodifferential operators, of SG-type (symbol global-type)
are defined in Rn by imposing suitable algebraic asymptotics as x→ ∞
for the symbols of the operators. Basic examples are −Δ + 1 and for
k ≥ 1

(0.1) H = (1 + |x|2k)(−Δ + 1) + L1(x,D)

where L1(x,D) is a first order operator with polynomial coefficients of
degree 2k − 1. Let us refer to Parenti [16], Cordes [5], Schrohe [21],
Egorov and Schulze [10], Schulze [22] for a precise definition and the
corresponding pseudodifferential calculus in the frame of the Schwartz
spaces S(Rn),S ′(Rn). As an application for the SG-elliptic operators
P, having H in (0.1) as prototype, the above mentioned authors
construct parametrices and deduce in particular the following result
of global regularity: all the solutions u ∈ S ′(Rn) of Pu = f ∈ S(Rn)
are of class S(Rn). In particular, when P is self-adjoint, as we have
for H in (0.1) if L1(x,D) is suitably chosen, there exists a system
of eigenfunctions in the space S(Rn); see, for example, Maniccia and
Panarese [15] for the corresponding eigenvalue asymptotics.

Our aim in this paper is to obtain more precise information concern-
ing the behavior for x→ ∞ and the local regularity of the solutions un-
der related assumptions on the regularity of the coefficients. The func-
tional frame, providing the two results simultaneously, is given here by
the classes Sθθ (R

n), Sθ
′
θ (Rn), θ > 1, introduced by Gelfand and Shilov

[11]. Let us recall that Sθθ (R
n) is a subclass of S(Rn), combining the

exponential decay e−L|x|
1/θ

, L > 0, with the local Gevrey estimates
of order θ, i.e., |Dαu(x)| ≤ C |α|+1(α!)θ. In turn, the ultradistribution
space Sθ

′
θ (Rn) contains S ′(Rn) and admits as examples functions with

growth eL|x|
σ

, σ < 1/θ, see Section 1 for details. Observe that the
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classes Sθθ (R
n) have been widely used in other contexts under different

names and notations, cf. the recent papers by Biagioni and Gramchev
[2] and by Pilipovic and Teofanov [17, 18].

In Section 2, we give a pseudodifferential SG-calculus in Sθθ (R
n),

Sθ
′
θ (Rn). Proofs are given in a shortened form, since they are variants

of the standard SG versions after combining with the local Gevrey
calculus in Rodino [20], Zanghirati [26], Hashimoto, Matsuzawa and
Morimoto [13], Cappiello [3, 4]. As an application we obtain a result of
Sθθ -regularity for the SG-elliptic operators P, namely all the solutions
u ∈ Sθ

′
θ (Rn) of Pu = f ∈ Sθθ (R

n) are of class Sθθ (R
n), in particular,

they satisfy for θ > 1 estimates of the type

(0.2) |u(x)| ≤ Ce−L|x|
1/θ

, x ∈ Rn.

For H in (0.1), we intersect a number of known results, see for example
the work of Agmon [1], the recent paper of Rabier and Stuart [19]
and the references therein, using completely different arguments. The
estimate (0.2) with θ = 1 will remain unfortunately outside of our
result, because of the technical difficulties coming from the analytic
class.

The second part of the paper is devoted to a microlocal version of
the regularity theorem above. As a preliminary step, in Section 3 we
present polyhomogeneous SG-symbols according to the approach in
[10, 22]; basic examples are operators with polynomial coefficients
including (0.1) as a particular case. Finally, in Section 4, we define a
particular wave front set for distributions on Sθ

′
θ (Rn), which allows to

control their behavior “at infinity” and prove the microellipticity and
microregularity relations with respect to classical SG-operators defined
in Section 3. The results presented here will be used in forthcoming
papers to study the well posedness and the propagation of singularities
for SG-hyperbolic problems in Gelfand-Shilov spaces, see Cordes [5],
Coriasco and Rodino [9], Coriasco and Panarese [8], Coriasco and
Maniccia [7] for the corresponding analysis in S(Rn),S ′(Rn).

1. Gelfand-Shilov spaces. In this section we introduce the
functional frame for our pseudodifferential calculus giving the basic
definitions and properties of the Gelfand-Shilov spaces Sθθ (R

n), θ > 1,
and describing their relations with the Gevrey spaces. We will refer to
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[11, 12] for proofs and details. In the following, we will denote by Z+

the set of all positive integers and by N the set Z+ ∪ {0}.
Let A,B ∈ Z+ and θ be a positive real number such that θ > 1.

Definition 1.1. We denote by Sθ,Bθ,A (Rn) the space of all functions
u in C∞(Rn) such that

(1.1) sup
α,β∈Nn

sup
x∈Rn

A−|α|B−|β|(α!β!)−θ
∣∣xα∂βxu(x)∣∣ < +∞.

We set
Sθθ (R

n) =
⋃

A,B∈Z+

Sθ,Bθ,A (Rn).

For any A,B ∈ Z+, the space Sθ,Bθ,A (Rn) is a Banach space endowed
with the norm given by the left-hand side of (1.1). Therefore, we
can consider the space Sθθ (R

n) as an inductive limit of an increasing
sequence of Banach spaces.

Let us give another characterization of the space Sθθ (R
n), providing

another equivalent topology to Sθθ (R
n), cf. the proof of Theorem 2.2

below.

Proposition 1.2. Sθθ (R
n) is the space of all functions u ∈ C∞(Rn)

such that

sup
β∈Nn

sup
x∈Rn

B−|β|(β!)−θeL|x|
1/θ |∂βxu(x)| < +∞

for some positive B,L.

Proposition 1.3. The following statements hold.

i) Sθθ (R
n) is closed under the differentiation;

ii) If f is a function in C∞(Rn) such that, for every ε > 0 and for
some B > 0

|∂αx f(x)| ≤ CεB
|α|(α!)θeε|x|

1/θ

for all x ∈ Rn, α ∈ Nn, then the multiplication by f is a continuous
map from Sθθ (R

n) to Sθθ (R
n).
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Remark 1. We have

Gθo(R
n) ⊂ Sθθ (R

n) ⊂ Gθ(Rn),

where Gθ(Rn) is the Gevrey space of all functions u ∈ C∞(Rn)
satisfying for every compact subset K of Rn estimates of the form

sup
β∈Nn

B−|β|(β!)−θ sup
x∈K

|∂βxu(x)| < +∞

for some B = B(K) > 0 and Gθo(Rn) is the space of all functions of
Gθ(Rn) with compact support.

We shall denote by Sθ
′
θ (Rn) the dual space, i.e., the space of all linear

continuous forms on Sθθ (R
n).

An equivalent characterization of the elements of Sθ
′
θ (Rn) is given by

the following proposition.

Proposition 1.4. A linear form u on Sθθ (R
n) belongs to Sθ

′
θ (Rn)

if and only if for every A,B ∈ Z+, there exists C = C(A,B) > 0 such
that

|u(v)| ≤ C sup
α,β∈Nn

A−|α|B−|β|(α!β!)−θ sup
x∈Rn

|xα∂βxv(x)|

for all v ∈ Sθθ (R
n).

Remark 2. Given u ∈ Sθ
′
θ (Rn), the restriction of u on Gθo(R

n) is a
Gevrey ultradistribution in D′

θ(R
n), topological dual of Gθo(Rn). In

this sense, we have that Sθ
′
θ (Rn) ⊂ D′

θ(R
n). Similarly, the space of the

ultradistributions with compact support E ′
θ(R

n) can be regarded as a
subset of Sθ

′
θ (Rn).

Theorem 1.5. There exists an isomorphism between the space
L(Sθθ (R

n), Sθ
′
θ (Rn)) of all linear continuous maps from Sθθ (R

n) to
Sθ

′
θ (Rn), and Sθ

′
θ (R2n), which associates to every T ∈ L(Sθθ (R

n),
Sθ

′
θ (Rn)) a distribution KT ∈ Sθ

′
θ (R2n) such that

〈Tu, v〉 = 〈KT , v ⊗ u〉

for every u, v ∈ Sθθ (R
n). KT is called the kernel of T .
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Finally we give a result concerning the action of the Fourier transfor-
mation on Sθθ (R

n).

Proposition 1.6. The Fourier transformation u→ û defined by

û(ξ) =
∫
Rn

e−i〈x,ξ〉u(x) dx

is an automorphism of Sθθ (R
n), and it extends to an automorphism of

Sθ
′
θ (Rn).

2. SG-calculus on Gelfand-Shilov spaces. In the following we
will use the following notation:

〈x〉 = (1 + |x|2)1/2 for x ∈ Rn

Dα
x = Dα1

x1
. . .Dαn

xn
for all α ∈ Nn, x ∈ Rn,

where Dxh
= −i∂xh

, h = 1, . . . , n.

Let μ, ν be real numbers such that μ > 1, ν > 1, and let m =
(m1,m2) ∈ R2.

Definition 2.1. For every C > 0, we denote by Γmμν(R2n;C) the
Banach space of all functions p(x, ξ) ∈ C∞(R2n) such that

sup
α,β∈Nn

sup
(x,ξ)∈R2n

C−|α|−|β|(α!)−μ(β!)−ν〈ξ〉−m1+|α|〈x〉−m2+|β|

× ∣∣Dα
ξD

β
xp(x, ξ)

∣∣ < +∞
endowed with the norm ‖ · ‖C given by the left-hand side of (2.1).

We set
Γmμν(R

2n) = lim
−→

C→+∞
Γmμν(R

2n;C)

with the topology of inductive limit of an increasing sequence of Banach
spaces.

Given a symbol p ∈ Γmμν(R2n), we can consider the associated
pseudodifferential operator defined by

(2.2) Pu(x) = p(x,D)u(x) =
∫
Rn

ei〈x,ξ〉p(x, ξ)û(ξ)d−ξ, u ∈ Sθθ (R
n)
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where d−ξ = (2π)−n dξ. We denote by OPSmμν(Rn) the space of all
operators of the form (2.2) defined by a symbol p ∈ Γmμν(R2n). We set

OPSμν(Rn) =
⋃

m∈R2

OPSmμν(R
n).

This is a subclass of the SG-pseudodifferential operators in [5, 10,
16, 21, 22] on S(Rn),S ′(Rn). Taking advantage of the estimates (2.1)
we are able to prove continuity on Sθθ (R

n).

Theorem 2.2. Let p ∈ Γmμν(R2n), and let θ be a real number such
that θ ≥ max{μ, ν}. Then, the operator P defined by (2.2) is a linear
continuous operator from Sθθ (R

n) to Sθθ (R
n) and it extends to a linear

continuous map from Sθ
′
θ (Rn) to Sθ

′
θ (Rn).

Proof. Let A,B ∈ Z+ and F be a bounded subset of Sθ,Bθ,A (Rn). It is
sufficient to show that there exists A1, B1 ∈ Z+, C > 0, such that for
every α, β ∈ Nn,

(2.3) sup
x∈Rn

∣∣xαDβ
xPu(x)

∣∣ ≤ CA
|α|
1 B

|β|
1 (α!β!)θ

for all u ∈ F , with A1, B1, C independent of u ∈ F . We have, for every
N ∈ Z+

xαDβ
xPu(x) = xα

∑
β′≤β

(
β

β′

) ∫
Rn

ei〈x,ξ〉ξβ
′
Dβ−β′
x p(x, ξ)û(ξ)d−ξ

= xα〈x〉−2N
∑
β′≤β

(
β

β′

) ∫
Rn

ei〈x,ξ〉(1 − Δξ)N
[
ξβ

′
Dβ−β′
x p(x, ξ)û(ξ)

]
d−ξ.

By Propositions 1.2 and 1.6, we easily obtain the estimate:∣∣xαDβ
xPu(x)

∣∣ ≤ C0B
|β|+2N
0 (2N !)θ〈x〉|α|+m2−2N

·
∑
β′≤β

(
β

β′

)
(β′!)θ(β − β′!)ν

∫
Rn

〈ξ〉m1e−a|ξ|
1/θ

d−ξ

for some B0, C0, a > 0 independent of u ∈ F . Hence, choosing
N = min{n ∈ Z+ : 2N ≥ |α| + m2}, we obtain that there exist
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A1, B1, C > 0 such that (2.3) holds for all u ∈ F . This concludes
the first part of the proof. To prove the second part, we observe that,
for u, v ∈ Sθθ (R

n),

∫
Rn

Pu(x)v(x)dx =
∫
Rn

û(ξ)pv(ξ) dξ

where

pv(x, ξ) =
∫
Rn

ei〈x,ξ〉p(x, ξ)v(x)d−x.

By the same argument of the first part of the proof, the map v → pv is
linear and continuous from Sθθ (R

n) to itself. Then, we can define, for
u ∈ Sθ

′
θ (Rn)

Pu(v) = û(pv), v ∈ Sθθ (R
n).

This map is linear and continuous from Sθ
′
θ (Rn) to itself and it extends

P .

By Theorems 1.5 and 2.2, we can associate to P a kernel KP ∈
Sθ′θ (R2n) given as standard by

(2.4) KP (x, y) =
∫
Rn

ei〈x−y,ξ〉p(x, ξ) d−ξ

where (2.4) has the meaning of an oscillatory integral. We can prove
the following result of regularity for the kernel (2.4).

Theorem 2.3. Let p ∈ Γmμν(R2n). For k ∈ (0, 1), define

Ωk = {(x, y) ∈ R2n : |x− y| > k〈x〉}.

Then the kernel KP defined by (2.4) is in C∞(Ωk), and there exist
positive constants C, a depending on k such that

(2.5)
∣∣Dβ

xD
γ
yKP (x, y)

∣∣ ≤ C |β|+|γ|+1(β!γ!)θ exp
[
−a(|x|1/θ + |y|1/θ)

]

for every (x, y) ∈ Ωk and for every β, γ ∈ Nn.
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Lemma 2.4. For any given R > 0, we may find a sequence
ψN (ξ) ∈ C∞

0 (Rn), N = 0, 1, 2, . . . such that

∞∑
N=0

ψN = 1 in Rn,

suppψ0 ⊂ {ξ : 〈ξ〉 ≤ 3R}
suppψN ⊂ {ξ : 2RNθ ≤ 〈ξ〉 ≤ 3R(N + 1)θ}, N = 1, 2, . . . ,

and ∣∣Dα
ξ ψN (ξ)

∣∣ ≤ C |α|+1(α!)θ
[
R sup(Nθ, 1)

]−|α|

for every α ∈ Nn and for every ξ ∈ Rn.

Proof. Let φ ∈ C∞
0 (Rn) such that φ(ξ) = 1 if 〈ξ〉 ≤ 2, φ(ξ) = 0 if

〈ξ〉 ≥ 3. Assume further φ ∈ Gθ(Rn), i.e.,

∣∣Dα
ξ φ(ξ)

∣∣ ≤ C |α|+1(α!)θ

for all α ∈ Nn and for all ξ ∈ Rn. We may then define

ψ0(ξ) = φ

(
ξ

R

)

ψN (ξ) = φ

(
ξ

R(N + 1)θ

)
− φ

(
ξ

RNθ

)
, N ≥ 1.

Proof of Theorem 2.3. We can assume without loss of generality that
p is in Γ0

μν(R2n). Let us consider a sequence {ψN}N≥0 as in Lemma 2.4.
We have, for u, v ∈ Sθθ (R

n),

〈KP , v ⊗ u〉 =
∞∑
N=0

〈KN , v ⊗ u〉

with

KN (x, y) =
∫
Rn

ei〈x−y,ξ〉p(x, ξ)ψN(ξ) d−ξ
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so we may decompose

KP =
∞∑
N=0

KN .

Let k ∈ (0, 1) and (x, y) ∈ Ωk. Let h ∈ {1, . . . , n} such that
|xh − yh| ≥ k/n〈x〉. Then, for every α, γ ∈ Nn,

Dα
xD

γ
yKN (x, y) = (−1)|γ|

∑
β≤α

(
α

β

) ∫
Rn

ei〈x−y,ξ〉ξβ+γψN (ξ)

×Dα−β
x p(x, ξ) d−ξ

= (−1)|γ|+N
∑
β≤α

(
α

β

)
(xh − yh)−N

×
∫
Rn

ei〈x−y,ξ〉DN
ξh

[
ξβ+γψN (ξ)Dα−β

x p(x, ξ)
]
dξ.

Now, given ζ > 0, we consider the operator

L =
1

m2θ,ζ(x− y)

∞∑
j=0

ζj

(j!)2θ
(1 − Δξ)j

where

m2θ,ζ(x− y) =
∞∑
j=0

ζj

(j!)2θ
〈x− y〉2j .

In view of the fact that Lei〈x−y,ξ〉 = ei〈x−y,ξ〉, we can integrate by parts
obtaining that

Dα
xD

γ
yKN (x, y) = (−1)|γ|+N

(xh − yh)−N

m2θ,ζ(x− y)

·
∑
β≤α

(
α

β

) ∞∑
j=0

ζj

(j!)2θ

∫
Rn

ei〈x−y,ξ〉λhjNαβγ(x, ξ) d−ξ

with

(2.6) λhjNαβγ(x, ξ) = (1 − Δξ)jDN
ξh

[
ξβ+γψN (ξ)Dα−β

x p(x, ξ)
]
.
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Let eh be the hth vector of the canonical basis of Rn and βh =
〈β, eh〉, γh = 〈γ, eh〉. Developing in the right-hand side of (2.6) we
obtain that

λhjNαβγ(x, ξ) =
∑

N1+N2+N3=N
N1≤βh+γh

(−i)N1
N !

N1!N2!N3!
· (βh + γh)!
(βh + γh −N1)!

· (1 − Δξ)j
[
ξβ+γ−N1ehDN2

ξh
ψN (ξ)DN3

ξh
Dα−β
x p(x, ξ)

]
.

Hence

|λhjNαβγ(x, ξ)|
≤

∑
N1+N2+N3=N
N1≤βh+γh

N !
N1!N2!N3!

· (βh + γh)!
(βh + γh −N1)!

C
|α−β|+N2+N3+1
1

· (N2!)θ(N3!)μ [(α− β)!]ν Cj2(j!)2θ
(

1
RNθ

)N2

〈ξ〉|β|+|γ|−N1−N3 .

We observe that on the support of ψN , 2RNθ ≤ 〈ξ〉 ≤ 3R(N + 1)θ.
Thus, from standard factorial inequalities, since θ ≥ max{μ, ν}, it
follows that

|λhjNαβγ(x, ξ)| ≤ C
|α|+|γ|+1
1 (α!γ!)θCj2(j!)2θ

(
C3

R

)N

with C3 independent of R. Moreover, by Proposition 2.4 in [14], we
have that

|m2θ,ζ(x− y)| ≥ C exp[c′ζ1/(2θ)|x− y|1/θ].
From these estimates, choosing ζ < C−1

2 , we deduce that

∣∣Dα
xD

γ
yKN (x, y)

∣∣ ≤ C
|α|+|γ|+1
1 (α!γ!)θ

(
C4

R

)N
exp[−c′ζ1/(2θ)|x− y|1/θ]

with C4 = C4(k) independent of R. Choosing R sufficiently large and
observing that |x − y| ≥ c′′(〈x〉 + 〈y〉) on Ωk, we obtain the estimates
(2.5).
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Remark 3. From Theorem 2.3, in view of Remark 2, it is possible
to deduce the pseudolocal property for the operator (2.2). Namely, we
have

θ − sing suppPu ⊂ θ − sing supp u

where θ− sing supp denotes the standard Gθ singular support, cf. [20].
We address the reader to Section 4 for more precise results in terms
of wave front sets concerning the subclass of the polyhomogeneous
operators, cf. Section 3.

Definition 2.5. A linear continuous operator from Sθθ (R
n) to

Sθθ (R
n) is said to be θ-regularizing if it extends to a linear continuous

map from Sθ
′
θ (Rn) to Sθθ (R

n).

We now give a symbolic calculus for our symbols. We set, for t ≥ 0,

Qt = {(x, ξ) ∈ R2n : 〈x〉 < t, 〈ξ〉 < t}
Qet = R2n \Qt.

Definition 2.6. We denote by FSmμν(R2n) the space of all formal
sums

∑
j≥0 pj(x, ξ) such that pj(x, ξ) ∈ C∞(R2n) for all j ≥ 0, and

there exist B,C > 0 such that

(2.7)
sup
j≥0

sup
α,β∈Nn

sup
(x,ξ)∈Qe

Bjμ+ν−1

C−|α|−|β|−2j(α!)−μ(β!)−ν(j!)−μ−ν+1

· 〈ξ〉−m1+|α|+j〈x〉−m2+|β|+j ∣∣Dα
ξD

β
xpj(x, ξ)

∣∣ < +∞.

We observe that every symbol p ∈ Γmμν(R2n) can be identified with
an element of FSmμν(R2n) by setting p0 = p and pj = 0 for all j ≥ 1.

Definition 2.7. We say that two sums
∑
j≥0 pj ,

∑
j≥0 p

′
j from

FSmμν(R2n) are equivalent, we write∑
j≥0

pj ∼
∑
j≥0

p′j ,
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if there exist constants B,C > 0 such that

sup
N∈Z+

sup
α,β∈Nn

sup
(x,ξ)∈Qe

BNμ+ν−1

C−|α|−|β|−2N (α!)−μ(β!)−ν(N !)−μ−ν+1

· 〈ξ〉−m1+|α|+N 〈x〉−m2+|β|+N

∣∣∣∣∣∣Dα
ξD

β
x

∑
j<N

(pj − p′j)

∣∣∣∣∣∣ < +∞.

Theorem 2.8. Given
∑
j≥0 pj ∈ FSmμν(R2n), there exists a symbol

p ∈ Γmμν(R
2n) such that

p ∼
∑
j≥0

pj in FSmμν(R
2n).

Proof. Let ϕ ∈ C∞(R2n), 0 ≤ ϕ ≤ 1 such that ϕ(x, ξ) = 0 if
(x, ξ) ∈ Q2, ϕ(x, ξ) = 1 if (x, ξ) ∈ Qe3 and

(2.8) sup
(x,ξ)∈R2n

∣∣∣Dγ
ξD

δ
xϕ(x, ξ)

∣∣∣ ≤ C |γ|+|δ|+1(γ!)μ(δ!)ν .

We define, for R > 0,

ϕ0(x, ξ) ≡ 1 on R2n

ϕj(x, ξ) = ϕ

(
x

Rjμ+ν−1
,

ξ

Rjμ+ν−1

)
, j ≥ 1.

We want to prove that if R is sufficiently large, then

p(x, ξ) =
∑
j≥0

ϕj(x, ξ)pj(x, ξ)

is in Γmμν(R
2n) and p ∼ ∑

j≥0 pj in FSmμν(R
2n).

Consider

Dα
ξD

β
xp(x, ξ) =

∑
j≥0

∑
γ≤α
δ≤β

(
α

γ

)(
β

δ

)
Dα−γ
ξ Dβ−δ

x pj(x, ξ)D
γ
ξD

δ
xϕj(x, ξ).
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If R ≥ B, where B is the same constant of Definition 2.6, we can apply
the estimates (2.7) and obtain∣∣Dα

ξD
β
xp(x, ξ)

∣∣ ≤ C |α|+|β|+1α!β!〈ξ〉m1−|α|〈x〉m2−|β| ∑
j≥0

Hjαβ(x, ξ)

where

Hjαβ(x, ξ) =
∑
γ≤α
δ≤β

(α− γ)!μ−1(β − δ)!ν−1

γ!δ!
C2j−|γ|−|δ|(j!)μ+ν−1

· 〈ξ〉|γ|−j〈x〉|δ|−j
∣∣∣Dγ

ξD
δ
xϕj(x, ξ)

∣∣∣ .
The condition (2.8) implies that

Hjαβ(x, ξ) ≤ C |α|+|β|+1(α!)μ−1(β!)ν−1

(
C1

R

)j
,

with C1 independent of R. Choosing R sufficiently large, we obtain that
p is in Γmμν(R

2n). It remains to prove that p ∼ ∑
j≥0 pj in FSmμν(R

2n).
Let N be a positive integer. We observe that, for (x, ξ) ∈ Qe3RNμ+ν−1 ,

p(x, ξ) −
∑
j<N

pj(x, ξ) =
∑
j≥N

pj(x, ξ)ϕj(x, ξ)

which we can estimate by arguing as above.

Proposition 2.9. Let p ∈ Γ0
μν(R2n), and let θ ≥ μ+ ν− 1. If p ∼ 0

in FS0
μν(R2n), then the operator P is θ-regularizing.

To prove this proposition, we need the following preliminary result.

Lemma 2.10. Let M, r, �,B be positive numbers, � ≥ 1. We define

h(λ) = inf
0≤N≤Bλ1/�

MrN (N !)r

λrN/�
, λ ∈ R+.

Then there exist positive constants C, τ such that

h(λ) ≤ Ce−τλ
1/�

, λ ∈ R+.
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Proof. See Lemma 3.2.4 in [20] for the proof.

Proof of Proposition 2.9. It is sufficient to prove that the kernel

(2.9) KP (x, y) =
∫
Rn

ei〈x−y,ξ〉p(x, ξ) d−ξ

is in Sθθ (R
2n). This will easily imply that P is θ-regularizing.

If p ∼ 0, by Definition 2.7, there exist positive constants B1, C1 such
that, for every (x, ξ) ∈ R2n,∣∣Dα

ξD
β
xp(x, ξ)

∣∣ ≤ C
|α|+|β|+1
1 (α!)μ(β!)ν〈ξ〉−|α|〈x〉−|β|

· inf
0≤N≤B1(〈ξ〉〈x〉)1/μ+ν−1

C2N (N !)μ+ν−1

〈ξ〉N 〈x〉N
.

Applying Lemma 2.10, we obtain

(2.10)
∣∣Dα

ξD
β
xp(x, ξ)

∣∣ ≤ C
|α|+|β|+1
2 (α!β!)θ exp[−σ(|x|1/θ + |ξ|1/θ)]

for some positive C2, σ. Therefore, p ∈ Sθθ (R
2n). Applying (2.10) in

(2.9), we easily obtain that also KP ∈ Sθθ (R
2n).

Proposition 2.11. Let P = p(x,D) ∈ OPSmμν(Rn), and let tP be
its transpose defined by

(2.11) 〈 tPu, v〉 = 〈u, Pv〉, u ∈ Sθ
′
θ (Rn), v ∈ Sθθ (R

n).

Then, tP = Q+R, where R is a θ-regularizing operator for θ ≥ μ+ν−1
and Q = q(x,D) is in OPSmμν(R

n) with

q(x, ξ) ∼
∑
j≥0

∑
|α|=j

(α!)−1∂αξ D
α
xp(x,−ξ)

in FSmμν(R2n).

Theorem 2.12. Let P = p(x,D) ∈ OPSmμν(Rn), Q = q(x,D) ∈
OPSm

′
μν (Rn). Then PQ = T + R where R is θ-regularizing for

θ ≥ μ+ ν − 1 and T = t(x,D) in OPSm+m′
μν (Rn) with

t(x, ξ) ∼
∑
j≥0

∑
|α|=j

(α!)−1∂αξ p(x, ξ)D
α
xq(x, ξ)
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in FSm+m′
μν (R2n).

To prove Proposition 2.11 and Theorem 2.12, it is convenient to
introduce more general classes of symbols.

Let μ, ν be real numbers such that μ > 1, ν > 1, and let m =
(m1,m2,m3) ∈ R3.

Definition 2.13. For C > 0, we shall denote by Πm
μν(R3n;C) the

Banach space of all functions a(x, y, ξ) ∈ C∞(R3n) such that

sup
α,β,γ∈Nn

sup
(x,y,ξ)∈R3n

C−|α|−|β|−|γ|(α!)−μ(β!γ!)−ν

· 〈ξ〉−m1+|α|〈x〉−m2+|β|〈y〉−m3+|γ| ∣∣Dα
ξD

β
xD

γ
ya(x, y, ξ)

∣∣ < +∞.

We set
Πm
μν(R

3n) = lim
−→

C→+∞
Πm
μν(R

3n;C).

It is immediate to verify the following relations:

i) if a(x, y, ξ) ∈ Πm
μν(R3n), then the function (x, ξ) → a(x, x, ξ)

belongs to Γm̄μν(R
2n), where m̄ = (m1,m2 +m3).

ii) if p ∈ Γmμν(R2n) for some m = (m1,m2) ∈ R2, then p(x, ξ) ∈
Π(m1,m2,0)
μν (R3n) and p(y, ξ) ∈ Π(m1,0,m2)

μν (R3n).

Given a ∈ Πm
μν(R

3n), we can associate to a a pseudodifferential
operator defined by

(2.12) Au(x) =
∫
R2n

ei〈x−y,ξ〉a(x, y, ξ)u(y) dy d−ξ, u ∈ Sθθ (R
n)

with the standard meaning of oscillatory integral.

Theorem 2.2 and Theorem 2.3 hold also for operators (2.12).

In order to prove Proposition 2.11 and Theorem 2.12, we give the
following result. The proof follows the same line of the proof of
Theorem 3.9 in [3] and we will omit it for the sake of brevity.

Theorem 2.14. Let A be an operator defined by an amplitude
a ∈ Πm

μν(R
3n), m = (m1,m2,m3) ∈ R3. Then we may write
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A = P +R, where R is a θ-regularizing operator for θ ≥ μ+ ν − 1 and
P = p(x,D) ∈ OPSm̄μν(Rn), m̄ = (m1,m2 + m3) with p ∼ ∑

j≥0 pj,
where

(2.13) pj(x, ξ) =
∑
|α|=j

(α!)−1∂αξ D
α
y a(x, y, ξ)|y=x .

Proof of Proposition 2.11. By (2.11), tP is defined by

tPu(x) =
∫
R2n

ei〈x−y,ξ〉p(y,−ξ)u(y) dy d−ξ, u ∈ Sθθ (R
n).

Thus, tP is an operator of the form (2.12) with amplitude p(y,−ξ). By
Theorem 2.14, tP = Q+R where R is θ-regularizing and Q = q(x,D) ∈
OPSmμν(Rn), with

q(x, ξ) ∼
∑
j≥0

∑
|α|=j

(α!)−1∂αξ D
α
xp(x,−ξ).

Proof of Theorem 2.12. We can write Q = t(tQ). Then, by
Theorem 2.14 and Proposition 2.11, Q = Q1 + R1, where R1 is θ-
regularizing and

(2.14) Q1u(x) =
∫
R2n

ei〈x−y,ξ〉q1(y, ξ)u(y) dy d−ξ

with q1(y, ξ) ∈ Γm
′

μν (R
2n), q1(y, ξ) ∼ ∑

α(α!)−1∂αξ D
α
y q(y,−ξ). From

(2.14) it follows that

Q̂1u(ξ) =
∫
Rn

e−i〈y,ξ〉q1(y, ξ)u(y) dy, u ∈ Sθθ (R
n)

from which we deduce that

PQu(x) =
∫
R2n

ei〈x−y,ξ〉p(x, ξ)q1(y, ξ)u(y) dy d−ξ + PR1u(x).
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We observe that p(x, ξ)q1(y, ξ) ∈ Π(m1+m
′
1,m2,m

′
2)

μν (R3n), then we may
apply Theorem 2.14 and obtain that

PQu(x) = Tu(x) +Ru(x)

where R is θ-regularizing and T = t(x,D) ∈ OPSm+m′
μν (Rn) with

t(x, ξ) ∼
∑
j≥0

∑
|α|=j

(α!)−1∂αξ p(x, ξ)D
α
xq(x, ξ)

in FSm+m′
μν (R2n).

Remark 4. In Theorem 2.12, if p ∼ ∑
j≥0 pj in FSmμν(R2n) and

q ∼ ∑
j≥0 qj in FSm

′
μν (R2n), then

t(x, ξ) ∼
∑
j≥0

∑
|α|+h+k=j

(α!)−1∂αξ ph(x, ξ)D
α
x qk(x, ξ) in FSm+m′

μν (R2n).

To conclude this section, we introduce a notion of ellipticity for
the elements of OPSμν(Rn). It coincides with the definition of SG
ellipticity in [5, 10, 16, 21, 22].

Definition 2.15. A symbol p ∈ Γmμν(R2n) is said to be elliptic if
there exist B,C > 0 such that

|p(x, ξ)| ≥ C〈ξ〉m1〈x〉m2 for all (x, ξ) ∈ QeB .

Theorem 2.16. If p ∈ Γmμν(R2n) is elliptic, then there exist
E1, E2 ∈ OPS−m

μν (Rn) such that E1P = I +R1, PE2 = I +R2, where
R1, R2 are θ-regularizing operators, for θ ≥ μ+ ν − 1.

Proof. Let e10(x, ξ) be fixed such that

e10(x, ξ) = p(x, ξ)−1 for all (x, ξ) ∈ QeB

and define, by induction, for j ≥ 1

e1j (x, ξ) = −e10(x, ξ)
∑

0<|α|≤j
(α!)−1∂αξ e

1
j−|α|(x, ξ)D

α
xp(x, ξ).
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It is easy to verify that
∑

j≥0 e
1
j (x, ξ) ∈ FS−m

μν (R2n). Applying Theo-
rem 2.8, we can find e1 ∈ Γ−m

μν (R2n) such that e1 ∼ ∑
j≥0 e

1
j . Denote

by E1 the operator with symbol e1. By construction, Theorem 2.12
implies that E1P − I is a θ-regularizing operator. The construction of
e2 is analogous. Proposition 2.9 gives the conclusion.

As an immediate consequence of Theorem 2.16, we obtain the follow-
ing result of global regularity.

Corollary 2.17. Let p ∈ Γmμν(R2n) be elliptic, and let f ∈ Sθθ (R
n)

for some θ ≥ μ + ν − 1. Then, if u ∈ Sθ
′
θ (Rn) is a solution of the

equation
Pu = f,

then u ∈ Sθθ (R
n).

Example. Consider the operator in (0.1):

H = (1 + |x|2k)(−Δ + 1) + L1(x,D)

where k ≥ 1 and L1(x,D) is a first order operator with polynomial
coefficients of degree 2k − 1. H is elliptic and its symbol is in
Γ(2,2k)
μν (R2n) for every μ, ν such that μ > 1, ν > 1. By Corollary 2.17,

if u is a solution of the equation Pu = f ∈ Sθθ (R
n), θ > 1, and

u ∈ Sθ
′
θ (Rn), then u ∈ Sθθ (R

n).

Our result is not sharp for the solutions of the homogeneous equation
Hu = 0. Namely, beside observing the well-known local analyticity
of the solutions, we may test the behavior at infinity in the one-
dimensional case and for k = 1 as follows.

Example. Consider

(2.15) Hy = −(1 + x2)y′′ + x2y − 2xy′, x ∈ R.

The operator H is L2 self-adjoint and then there exists a sequence
λj ∈ R, j = 1, 2, . . . , such that Hyj = λjyj for some nontrivial
yj ∈ S(R), cf. [15]. From Corollary 2.17, we obtain yj ∈ Sθθ (R)
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for every θ > 1. On the other hand, by the theory of asymptotic
integration, see Tricomi [24] and Wasow [25], we have that

yj(x) = Cx−1e−|x| +O(x−2e−|x|) when |x| → +∞,

giving more precise information about the behavior at infinity.

We can generalize Definition 2.15 giving the notion of ellipticity of a
symbol with respect to another one, which will be applied in Section 4.

Definition 2.18. Let m,m′ ∈ R2, and let p ∈ Γmμν(R
2n), q ∈

Γm
′

μν (R2n). We say that p is elliptic with respect to q if there exist
B,C > 0 such that

|p(x, ξ)| ≥ C〈ξ〉m1〈x〉m2 for all (x, ξ) ∈ QeB ∩ supp (q).

We observe that a symbol p is elliptic according to Definition 2.15 if
it is elliptic with respect to q(x, ξ) ≡ 1.

Proposition 2.19. Let p ∈ Γmμν(R
2n), q ∈ Γm

′
μν (R

2n). If p is elliptic
with respect to q, then there exist E1, E2 ∈ OPSm

′−m
μν (R2n) such that

E1P = Q+ R1, PE2 = Q+R2

where R1, R2 are θ-regularizing operators.

Proof. The proof follows the same lines of the one of Theorem 2.16,
by defining

e10(x, ξ) =
q(x, ξ)
p(x, ξ)

for all (x, ξ) ∈ QeB,

e1j (x, ξ) = − 1
p(x, ξ)

∑
0<|α|≤j

(α!)−1∂αξ e
1
j−|α|(x, ξ)D

α
xp(x, ξ),

j ≥ 1.
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3. Polyhomogeneous symbols. The examples at the end of
Section 2 suggest the study of a subspace of Γmμν(R2n); namely, we
introduce classical polyhomogeneous SG-symbols. We will refer to the
approach of Egorov and Schulze [10, 23] in the S − S ′-frame and we
will define three principal subclasses of Γmμν(R2n), whose elements are
respectively polyhomogeneous in x, in ξ and in both x, ξ. Before giving
precise definitions for these spaces, we need to introduce in our context
a notion of asymptotic expansion with respect to x and ξ separately.

Let μ, ν be real numbers such that μ > 1, ν > 1, and letm = (m1,m2)
be a vector of R2.

Definition 3.1. We denote by FSmμν,ξ(R
2n) the space of all formal

sums
∑
j≥0 pj(x, ξ) such that pj ∈ C∞(R2n) for all j ≥ 0, and there

exist B,C > 0 such that

(3.1) sup
j≥0

sup
α,β∈Nn

sup
〈ξ〉≥Bjμ+ν−1

x∈Rn

C−|α|−|β|−j(α!)−μ(β!)−ν(j!)−μ−ν+1

· 〈ξ〉−m1+|α|+j〈x〉−m2+|β| ∣∣Dα
ξD

β
xpj(x, ξ)

∣∣ < +∞.

As in Definition 2.7, we can define an equivalence relation among the
elements of FSmμν,ξ(R

2n).

Definition 3.2. Two sums
∑
j≥0 pj ,

∑
j≥0 p

′
j ∈ FSmμν,ξ(R

2n) are
said to be equivalent, we write

∑
j≥0

pj ∼ξ
∑
j≥0

p′j ,

if there exist B,C > 0 such that

sup
N∈Z+

sup
α,β∈Nn

sup
〈ξ〉≥BNμ+ν−1

x∈Rn

C−|α|−|β|−N (α!)−μ(β!)−ν(N !)−μ−ν+1

·〈ξ〉−m1+|α|+N 〈x〉−m2+|β|
∣∣∣∣Dα

ξD
β
x

∑
j<N

(pj − p′j)
∣∣∣∣ < +∞.
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In an analogous way, we can define the space FSmμν,x(R2n) and the
corresponding relation ∼x.

Remark 5. We observe that

FSmμν(R
2n) ⊂ FSmμν,ξ(R

2n) ∩ FSmμν,x(R2n).

Furthermore, if
∑

j≥0 pj ∼
∑
j≥0 p

′
j in FSmμν(R2n), then

∑
j≥0

pj ∼ξ
∑
j≥0

p′j and
∑
j≥0

pj ∼x
∑
j≥0

p′j .

With the same arguments of Theorem 2.8, it is easy to prove the
following result.

Proposition 3.3. Given
∑

j≥0 pj ∈ FSmμν,ξ(R
2n),

∑
j≥0 qj ∈

FSmμν,x(R2n), then there exist p, q ∈ Γmμν(R2n) such that

p ∼ξ
∑
j≥0

pj in FSmμν,ξ(R
2n),

q ∼x
∑
j≥0

qj in FSmμν,x(R
2n)

We can define the following classes of homogeneous symbols.

Definition 3.4. We denote by Γ[m1],m2
μν (R2n) the space of all

symbols p ∈ Γmμν(R2n) such that p(x, λξ) = λm1p(x, ξ) for all λ ≥ 1,

|ξ| ≥ c > 0, x ∈ Rn. Analogously, we define the space Γm1,[m2]
μν (R2n)

by interchanging the roles of x and ξ. Finally, we set

Γ[m1],[m2]
μν (R2n) = Γ[m1],m2

μν (R2n) ∩ Γm1,[m2]
μν (R2n).

Using Definitions 3.1, 3.2 and 3.4, we can now introduce classical
polyhomogeneous symbols.
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Definition 3.5. We denote by Γm1,[m2]
μν,cl(ξ) (R2n) the space of all

p ∈ Γm1,[m2]
μν (R2n) satisfying the following condition: there exists a

sum
∑
k≥0 pk ∈ FSmμν,ξ(R

2n) such that pk ∈ Γ[m1−k],[m2]
μν (R2n) for all

k ≥ 0 and p ∼ξ
∑
k≥0 pk in FSmμν,ξ(R

2n).

Definition 3.6. We denote by Γm1,m2
μν,cl(ξ)(R

2n) the space of all symbols
p ∈ Γmμν(R

2n) satisfying the following condition: there exists a sum∑
k≥0 pk ∈ FSmμν,ξ(R

2n) such that pk ∈ Γ[m1−k],m2
μν (R2n) for all k ≥ 0

and p ∼ξ
∑

k≥0 pk in FSmμν,ξ(R
2n).

Analogous definitions can be given for the spaces Γ[m1],m2
μν,cl(x)(R

2n) and
Γm1,m2
μν,cl(x)(R

2n), by interchanging the roles of x and ξ. Finally, we define
a space of symbols which are classical polyhomogeneous with respect
to both the variables.

Definition 3.7. We denote by Γmμν,cl(R
2n) the space of all symbols

p ∈ Γmμν(R2n) for which the following conditions hold:

i) there exists
∑
k≥0 pk ∈ FSmμν,ξ(R

2n) with pk ∈ Γ[m1−k],m2
μν,cl(x) (R2n)

for all k ∈ N, p ∼ξ
∑
k≥0 pk in FSmμν,ξ(R

2n) and p − ∑
k<N pk ∈

Γm1−N,m2
μν,cl(x) (R2n) for all N ∈ Z+;

ii) there exists
∑
h≥0 qh ∈ FSmμν,x(R2n) with qh ∈ Γm1,[m2−h]

μν,cl(ξ) (R2n)
for all h ∈ N, p ∼x

∑
h≥0 qh in FSmμν,x(R2n) and p − ∑

h<N qh ∈
Γm1,m2−N
μν,cl(ξ) (R2n) for all N ∈ Z+.

The following inclusions hold:

(3.2) Γm1,[m2]
μν,cl(ξ) (R2n) ⊂ Γmμν,cl(R

2n), Γ[m1],m2
μν,cl(x)(R

2n) ⊂ Γmμν,cl(R
2n).

A simple homogeneity argument shows that for every p ∈ Γmμν,cl(R
2n)

and for every k ∈ N, there exists a unique function σm1−k
ψ (p) ∈

C∞(Rn×(Rn\{0})) such that σm1−k
ψ (p)(x, λξ) = λm1−kσm1−k

ψ (p)(x, ξ)
for all λ > 0, x ∈ Rn, ξ �= 0 and σm1−k

ψ (p)(x, ξ) = pk(x, ξ) for
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|ξ| ≥ c > 0. Analogously, in view of condition ii) of Definition 3.7,
we can associate to every p ∈ Γmμν,cl(R

2n) the functions σm2−h
e (p)

for all h ∈ N such that σm2−h
e (p) belongs to C∞((Rn \ {0}) × Rn),

σm2−h
e (p)(x, ξ) = qh(x, ξ) for |x| ≥ c > 0 and σm2−h

e (p)(λx, ξ) =
λm2−hσm2−h

e (p)(x, ξ) for all λ > 0, ξ ∈ Rn, x �= 0.

We also observe that if ω ∈ Gμ(Rn) is an excision function, i.e.,
ω = 0 in a neighborhood of the origin and ω = 1 in a neighborhood
of ∞, then ω(ξ)σm1−k

ψ (p)(x, ξ) is in Γ[m1−k],m2
μν,cl(x) (R2n). Similarly, if

χ(x) is an excision function in Gν(Rn), then χ(x)σm2−h
e (p)(x, ξ) is

in Γm1,[m2−h]
μν,cl(ξ) (R2n).

By these considerations and by the inclusions (3.2), we can also
consider the functions σm1−k

ψ (σm2−h
e (p)) and σm2−h

e (σm1−k
ψ (p)). It is

easy to show that

σm1−k
ψ (σm2−h

e (p)) = σm2−h
e (σm1−k

ψ (p))

for all h, k ∈ N.

In particular, given p ∈ Γmμν,cl(R
2n), we can consider the triple

{σm1
ψ (p), σm2

e (p), σmψe(p)}

where we denote σmψe(p) = σm1
ψ (σm2

e (p)).

The function σm1
ψ (p) is called the homogeneous principal interior

symbol of p and the pair {σm2
e (p), σmψe(p)} is the homogeneous principal

exit symbol of p.

By the previous results, it turns out that, given two excision functions
ω(ξ) in Gμ(Rn) and χ(x) ∈ Gν(Rn), then we have

p(x, ξ)− ω(ξ)σm1
ψ (p)(x, ξ) ∈ Γ(m1−1,m2)

μν,cl (R2n)(3.3)

p(x, ξ) − χ(x)σm2
e (p)(x, ξ) ∈ Γ(m1,m2−1)

μν,cl (R2n)(3.4)

(3.5)
p(x, ξ) − ω(ξ)σm1

ψ (p)(x, ξ)− χ(x)(σm2
e (p)(x, ξ)− ω(ξ)σmψe(p)(x, ξ))

∈ Γm−e
μν,cl(R

2n),
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where we denote e = (1, 1). We denote by OPSmμν,cl(R
n) the set of all

operators of the form (2.2) defined by a symbol p ∈ Γmμν,cl(R
2n), and

we set, for θ > 1,

OPSθcl(R
n) =

⋃
m∈R2

μ,ν∈(1,+∞)
μ+ν−1≤θ

OPSmμν,cl(R
n).

Remark 6. Arguing as in the previous section and applying Remark 4,
it is easy to prove that if P ∈ OPSmμν,cl(R

n), Q ∈ OPSm
′

μν,cl(R
n), then

the operator PQ is in OPSm+m′
μν,cl (Rn).

To conclude this section, we give an alternative definition of ellipticity
for classical polyhomogeneous symbols.

Definition 3.8. A symbol p ∈ Γmμν,cl(R
2n) is said to be elliptic if

the three following conditions hold:

i) σm1
ψ (p)(x, ξ) �= 0 for all (x, ξ) ∈ Rn × (Rn \ {0})

ii) σm2
e (p)(x, ξ) �= 0 for all (x, ξ) ∈ (Rn \ {0}) × Rn

iii) σmψe(p)(x, ξ) �= 0 for all (x, ξ) ∈ (Rn \ {0}) × (Rn \ {0}).

Remark 7. A symbol p ∈ Γmμν,cl(R
2n) is elliptic if and only if it is

elliptic according to Definition 2.15.

Proof. See Proposition 1.4.37 in [23] for the proof.

Example. Consider a partial differential operator with polynomial
coefficients

P =
∑

|α|≤m1
|β|≤m2

cαβx
βDα.

The corresponding symbol belongs to Γmμν,cl(R
2n) for every μ > 1,

ν > 1, with m = (m1,m2). The operator P is elliptic in the SG-sense
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and Corollary 2.17 applies if

σm1
ψ =

∑
|α|=m1
|β|≤m2

cαβx
βξα �= 0,

σm2
e =

∑
|α|≤m1
|β|=m2

cαβx
βξα �= 0,

σmψe =
∑

|α|=m1
|β|=m2

cαβx
βξα �= 0,

according to Definition 3.8. In particular, for H in (0.1) we have
σ2
ψ = (1 + |x|2k)|ξ|2, σ2k

e = |x|2k(|ξ|2 + 1), σ2,2k
ψe = |x|2k|ξ|2.

4. Wave front set. In this section we introduce a notion of
wave front set for the distributions of Sθ

′
θ (Rn), which allows to control

their behavior “at infinity,” and prove the standard properties of
microellipticity with respect to the polyhomogeneous operators defined
in the previous section. Similar results have been proved by Coriasco
and Maniccia [7] for Schwartz tempered distributions.

For every ηo ∈ Rn \{0}, we will denote by ∞ηo the projection ηo/|η0|
on the unit sphere Sn−1. In the following, an open set V ⊂ Rn is said
to be a conic neighborhood of the direction ∞ηo if it is the intersection
of an open cone containing the direction ∞ηo with the complementary
set of a closed ball centered in the origin. The decomposition of the
principal symbol into three components in the previous section suggests
to define for the elements of Sθ

′
θ (Rn) three sets which we will denote

by WF θψ, WF θe , WF θψe, θ > 1.

To give precise definitions, we need to introduce two types of cut-off
functions.

Definition 4.1. Let yo ∈ Rn and fix ν > 1. We denote by Rν
yo

the
set of all functions ϕ ∈ Gνo(Rn) such that 0 ≤ ϕ ≤ 1 and ϕ ≡ 1 in a
neighborhood of yo.

Definition 4.2. Let ηo ∈ Rn \ {0} and fix μ > 1. We denote by
Zμ
ηo

the set of all functions ψ ∈ C∞(Rn) such that ψ(λξ) = ψ(ξ) for
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all λ ≥ 1 and |ξ| large, 0 ≤ ψ ≤ 1, ψ ≡ 1, in a conic neighborhood V
of ∞ηo, ψ ≡ 0 outside a conic neighborhood V ′ of ∞ηo, V ⊂ V ′ and

|Dα
ηψ(η)| ≤ C |α|+1(α!)μ〈η〉−|α|, η ∈ Rn

for every α ∈ Nn and for some C > 0.

Elements in Zμ
ηo

can be constructed by considering Gevrey functions
ψ� of order μ on Sn−1, ψ� = 1 in a neighborhood of ηo, ψ� = 0 outside
a larger neighborhood, extending them as homogeneous functions of
order 0 on Rn and cutting-off in a neighborhood of the origin, cf. [20,
pp. 153 154].

Definition 4.3. Let θ be a positive real number such that θ > 1,
and let u ∈ Sθ

′
θ (Rn).

• We say that (xo, ξo) ∈ Rn × (Rn \ {0}) is not in WF θψu if there
exist positive numbers μ, ν ∈ (1,+∞) such that θ ≥ μ + ν − 1,
and there exist cut-off functions ϕxo

in Rν
xo

, ψξo
∈ Zμ

ξo
such that

ϕxo
(ψξo

(D)u) ∈ Sθθ (R
n).

• We say that (xo, ξo) ∈ (Rn \ {0}) × Rn is not in WF θe u if there
exist positive numbers μ, ν ∈ (1,+∞) such that θ ≥ μ + ν − 1,
and there exist cut-off functions ϕξo

in Rμ
ξo

, ψxo
∈ Zν

xo
such that

ψxo
(ϕξo

(D)u) ∈ Sθθ (R
n).

• We say that (xo, ξo) ∈ (Rn \ {0}) × (Rn \ {0}) is not in WF θψeu if
there exist positive numbers μ, ν ∈ (1,+∞) such that θ ≥ μ + ν − 1,
and there exist cut-off functions ψxo

∈ Zν
xo

, ψξo
∈ Zμ

ξo
such that

ψxo
(ψξo

(D)u) ∈ Sθθ (R
n).

Remark 8. We can consider WF θψu as a subset of Rn × Sn−1,
being WF θψu invariant with respect to the multiplication of the second
variable ξ by positive scalars. Analogously, we can consider WF θe u ⊂
Sn−1 × Rn and WF θψeu ⊂ Sn−1 × Sn−1.

Remark 9. Every u ∈ Sθ
′
θ (Rn) can be regarded as an element

of D′
θ(R

n), according to Remark 2. It is easy to show that WF θψu
coincides with the standard Gevrey wave front set of u, see for example
[20].
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Example. Consider the distribution

u =
∑
α∈Nn

aαδ
(α)

where the coefficients aα satisfy the following estimate. For every ε > 0,
there exists Cε > 0 such that

(4.1) |aα| ≤ Cεε
|α|(α!)−θ.

Under the assumption (4.1), u ∈ E ′
θ(R

n) ⊂ Sθ
′
θ (Rn) ⊂ D′

θ(R
n), and

we have

WF θψu = {0} × Sn−1, WF θe u = WF θψeu = ∅.

Let us characterize the sets defined before in terms of characteristic
manifolds of polyhomogeneous operators. For p ∈ Γmμν,cl(R

2n), we
define

Charψ(P ) = {(x, ξ) ∈ Rn × Sn−1 : σm1
ψ (p)(x, ξ) = 0}

Chare(P ) = {(x, ξ) ∈ Sn−1 × Rn : σm2
e (p)(x, ξ) = 0}

Charψe(P ) = {(x, ξ) ∈ Sn−1 × Sn−1 : σmψe(p)(x, ξ) = 0}.

Proposition 4.4. Let u ∈ Sθ
′
θ (Rn). We have the following relations:

WF θψu =
⋂

P∈OPSθ
cl(R

n)

Pu∈Sθ
θ (Rn)

Charψ(P ), WF θe u =
⋂

P∈OPSθ
cl(R

n)

Pu∈Sθ
θ (Rn)

Chare(P ),

WF θψeu =
⋂

P∈OPSθ
cl(R

n)

Pu∈Sθ
θ (Rn)

Charψe(P )

Proof. Let (xo,∞ξo) /∈ WF θψu. Then, there exist μ, ν as in Defini-
tion 4.3 and ϕxo

in Rν
xo

, ψξo
in Zμ

ξo
such that Pu = ϕxo

(ψξo
(D)u) ∈

Sθθ (R
n). Observe that P can be regarded as a pseudodifferential opera-

tor with symbol ϕxo
(x)ψξo

(ξ) ∈ Γ0
μν,cl(R

2n) and that ϕxo
(xo)ψξo

(λξo) =
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1 for λ ∈ R+ sufficiently large. Hence, (xo,∞ξo) does not be-
long to ∩P∈OPSθ

cl(R
n)

Pu∈Sθ
θ (Rn)

Charψ(P ). Conversely, let us assume that there

exists P = p(x,D) in OPSθcl(R
n) such that Pu ∈ Sθθ (R

n) and
σψ(p)(xo,∞ξo) �= 0. Then, there exists a neighborhood U of xo and
a conic neighborhood V of ∞ξo such that σψ(p)(x,∞ξ) �= 0 for all
(x, ξ) ∈ U × V . Furthermore, by (3.3), it turns out that if |ξ| is suffi-
ciently large, we have that

|p(x, ξ)|
|ξ|m1〈x〉m2 ≥ |σψ(p)(x, ξ)|

|ξ|m1〈x〉m2 − |p(x, ξ)− σψ(p)(x, ξ)|
|ξ|m1〈x〉m2 ≥ C > 0

for some C > 0. Hence, we can construct two cut-off functions ϕxo
, ψξo

respectively supported in U and in V such that p is elliptic with respect
to ϕxo

(x)ψξo
(ξ). By Theorem 2.19, there exists E ∈ OPS−m

μν (Rn) such
that EPu = ϕxo

(ψξo
(D)u) + Ru, where R is θ-regularizing. Then,

ϕxo
(ψξo

(D)u) = Ru − EPu ∈ Sθθ (R
n). This gives the statement

for WF θψu. The corresponding relation for WF θe u can be obtained
with the same argument by simply interchanging the roles of x and
ξ. For what concerns the third relation, we obtain the inclusion
∩P∈OPSθ

cl(R
n)

Pu∈Sθ
θ (Rn)

Charψe(P ) ⊂ WF θψeu directly again from Definition 4.3.

Assume now that there exists P ∈ OPSθcl(R
n) such that Pu ∈ Sθθ (R

n)
and σψe(p)(∞x0,∞ξ0) �= 0. Then, there exist two conic neighborhoods
Vx0 , Vξ0 such that σψe(p)(x, ξ) �= 0 if (x, ξ) ∈ Vx0×Vξ0 . Hence, by (3.5),
we have that

|p(x, ξ)|
|ξ|m1 |x|m2

≥ C > 0

if |x| and |ξ| are large enough. Then, we can conclude arguing as for
WF θψu.

Remark 10. By the arguments in the preceding proof, it follows
easily that Definition 4.3 is independent of the choice of μ and ν.
Namely, if (xo,∞ξo) /∈ WF θψu, then for any given μ > 1, ν > 1, with
μ + ν − 1 ≤ θ, we may actually find ϕxo

∈ Rν
xo

, ψξo
∈ Zμ

ψξo
such that

ϕxo
(ψξo

(D)u) ∈ Sθθ (R
n), and similarly for WF θe u,WF θψeu.
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Theorem 4.5. Let u ∈ Sθ
′
θ (Rn) and p ∈ Γmμν,cl(R

2n), with μ+ν−1 ≤
θ. Then, the following inclusions hold:

WF θψ(Pu) ⊂WF θψu ⊂WF θψ(Pu) ∪ Charψ(P )(4.2)

WF θe (Pu) ⊂WF θe u ⊂WF θe (Pu) ∪ Chare(P )(4.3)
WF θψe(Pu) ⊂WF θψeu ⊂WFψe(Pu) ∪ Charψe(P ).(4.4)

Proof. If (xo, ξo) /∈ WF θψu, then there exist cut-off functions ϕxo
∈

Rν
xo

, ψξo
∈ Zμ

ξo
such that ϕxo

(ψξo
(D)u) ∈ Sθθ (R

n), where, in view
of Remark 10, we may take the same μ, ν of the class Γmμν,cl(R

2n).
Shrinking the neighborhoods of xo,∞ξo, we can construct two cut-
off functions ϕ̃xo

∈ Rν
xo

, ψ̃ξo
∈ Zμ

ξo
such that ϕ̃xo

ϕxo
= ϕ̃xo

and
ψ̃ξo

ψξo
= ψ̃ξo

. Denote by Q the operator with symbol ϕxo
ψξo

and
by Q̃ the operator with symbol ϕ̃xo

ψ̃ξo
. By Theorem 2.12, we have

that
Q̃QPu = Q̃PQu+ Q̃[Q,P ]u = Q̃PQu+Ru

whereR is θ-regularizing. But Q̃Q ∈ OPSθcl(R
n) and σψ(Q̃Q)(xo,∞ξo)

= σψ(Q̃)(xo,∞ξo)σψ(Q)(xo,∞ξo) �= 0. Then, by Proposition 4.4, we
conclude that (xo,∞ξo) /∈WF θψ(Pu). This proves the first inclusion in
(4.2). Assume now that (xo,∞ξo) /∈ WF θψ(Pu). By Proposition 4.4,
there exists Q = q(x,D) ∈ OPS0

μν,cl(R
n) such that QPu ∈ Sθθ (R

n)
and σψ(Q)(xo,∞ξo) �= 0. Furthermore, if (xo,∞ξo) /∈ Charψ(P ), then
σψ(QP )(xo,∞ξo) = σψ(Q)(x0,∞ξo)σψ(P )(xo,∞ξo) �= 0. Moreover,
QP ∈ OPSmμν,cl(R

n). Hence, by Proposition 4.4, we conclude that
(xo,∞ξo) /∈WF θψu. The proofs of (4.3) and (4.4) are analogous.

Let us give an example showing that the second inclusion in (4.4) can
be a nontrivial identity.

Example. Consider the operator

P (x,Dx) = Dx − x, x ∈ R

for which Charψ(P ) = ∅, Chare(P ) = ∅, Char ψe(P ) = S0 × S0. A
solution of the equation Pu = 0 is given by u(x) = ei(x

2/2) for which
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it is easy to verify that WF θψu = WF θe u = ∅, WF θψeu = S0 × S0,
see also [7]. We leave to the reader an application of Theorem 4.5 to
the example at the end of Section 3, under different assumptions on
Charψ(P ), Chare(P ), Charψe(P ).

Proposition 4.6. Let u ∈ Sθ
′
θ (Rn). Then, u ∈ Sθθ (R

n) if and only
if WF θψu = WF θe u = WF θψeu = ∅.

Proof. If WF θψeu = ∅, then, for every (∞xo,∞ξo) ∈ Sn−1 × Sn−1,
there exist ψxo

∈ Zν
xo

, ψξo
∈ Zμ

ξo
such that ψxo

(ψξo
(D)u) ∈ Sθθ (R

n).
In view of Remark 10, we may fix μ, ν independent of (∞xo,∞ξo). Let
us observe that σ0,0

ψe (ψxo
(x)ψξo

(ξ)) = 1 in a conic set in R2n, obtained
as a product of conic sets of Rn

x and Rn
ξ , intersecting Sn−1 × Sn−1

in a neighborhood Vxo,ξo
of (∞xo,∞ξo). By the compactness of

Sn−1 × Sn−1, we can find a finite family (∞xj ,∞ξj), j = 1, . . . , N ,
such that Vxj ,ξj

, j = 1, . . . , N cover Sn−1 × Sn−1. Define

qo(x, ξ) =
∑

j=1,... ,N

ψxj
(x)ψξj

(ξ).

If |ξ| > R and |x| > R, with R sufficiently large, then qo(x, ξ) ≥ C > 0.
Moreover, by construction, qo(x,D)u ∈ Sθθ (R

n). Applying similar
compactness arguments to {x ∈ Rn : |x| ≤ R} × Sn−1 and to
Sn−1×{ξ ∈ Rn : |ξ| ≤ R} and using the assumptionWF θψu = WF θe u =
∅, we can construct q1(x, ξ), q2(x, ξ) such that q1(x,D)u ∈ Sθθ (R

n),
q2(x,D)u ∈ Sθθ (R

n) and q1(x, ξ) ≥ C1 > 0 if |ξ| > R, |x| ≤ R, and
q2(x, ξ) ≥ C2 > 0 if |x| > R, |ξ| ≤ R. Moreover, obviously qo, q1, q2 ∈
Γ0
μν,cl(R

2n). Then, the function q(x, ξ) = qo(x, ξ)+q1(x, ξ)+q2(x, ξ) is
an elliptic symbol of order 0 and q(x,D)u ∈ Sθθ (R

n). Then, u ∈ Sθθ (R
n)

in view of Corollary 2.17. The inverse implication is trivial.

We conclude with a proposition which makes clear in what sense the
exit components WF θe ,WF θψe determine the behavior of a distribution
of Sθ

′
θ (Rn) at infinity. The proof follows the same arguments of the

proof of Proposition 4.6. We omit it for the sake of brevity.
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Proposition 4.7. Let u ∈ Sθ
′
θ (Rn), and denote by Πx : R2n

x,ξ → Rn
x

the standard projection on the variable x. If x0 /∈ Πx(WF θe u∪WF θψeu),
then there exists ψx0 ∈ Zθ

x0
such that ψx0u ∈ Sθθ (R

n).
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