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HERON TRIANGLES VIA ELLIPTIC CURVES

EDRAY HERBER GOINS AND DAVIN MADDOX

ABSTRACT. Given a positive integer n, one may ask if
there is a right triangle with rational sides having area n. Such
integers are called congruent numbers, and are closely related
to elliptic curves of the form y? = 23 —n? 2. In this paper, we
generalize this idea and show that there is a correspondence
between positive integers n associated with arbitrary triangles
with rational sides having area m and the family of elliptic
curves y? = z(x — n1)(z +n71) for nonzero rational 7.

1. Introduction. The Indian mathematician Brahmagupta,
598-668 A.D., considered triangles with integral sides and integral area.
He showed that if such a triangle has sides of length a, b and ¢ and has
area n, then there are positive integers p, ¢ and r such that

a=q(p* +17)
b=p(q*+r?)
(1.1) c=p+qqg—r?

n=pqr(p+q)(pg—1?);

as long as pgq > r%. (A modern proof can be found in [4].) In general,
the sides and area are related by a formula first proved by Greek
mathematician Heron of Alexandria (c. 10 A.D.—c. 75 A.D.):

a+b+e

(1.2) n=1+/s(s —a)(s—b)(s —c) where s= 5
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Triangles with rational sides and area are known as Heron triangles.
We are motivated by the following question: given a positive rational
number n, does there always exist a rational triangle [a, b, ¢] with area
n? This is a generalization of the congruent number problem, where the
rational triangle is assumed to be a right triangle. For example, n =1
is not a congruent number, but it is the area of a rational triangle:

3 5 17
(1.3) a=3, bfg, and 07E:>n71.

We may restrict our attention to integers n because n1/n9 is the area
of a rational triangle [a, b, ] if and only if nq ng is the area of a rational
triangle [ang, bng, cnsl.

In this paper we study Heron triangles by considering the family of
elliptic curves

(1.4) EM: y*=z(@—n71)(z+nr?)

as a generalization to the congruent number problem, i.e., when 7 = 1.
In fact, our main result is

Theorem 1.1. A positive integer n can be expressed as the area of
a triangle with rational sides if and only if for some nonzero rational
number T the elliptic curve

(1.5) EM: y=z@—n7)(z+n7")

T

has a rational point which is not of order 2.

For example, the rational triangle [a, b, ¢ is related to the curve with
7 =4n/(a+0b)? -2 (For more explicit formulas, see (2.11).) This
is closely related to the notion of the #-congruent number problem as
first outlined in [6]. However, our results are different since we work
with Heron triangles, i.e., we always assume the area of the rational
triangle is rational.

As a consequence of this main result, we have

Proposition 1.2. Fix a positive integer n.
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(1) There are infinitely many rational triangles with area n.

(2) n is the area of a rational right triangle if and only if the curve
y? = 2% —n?x has a nontrivial rational point, i.e., a point (x,y) with

y # 0.

(3) n is the area of a rational isosceles triangle if and only if the curve
v? = u* +n? has a nontrivial rational point, i.e., a point (u,v) with
u # 0.

(4) Say that n is the area of a rational triangle with an angle 0. If such

a triangle is not isosceles, there are infinitely many rational triangles
with area n possessing this fixed angle.

Such statements were already shown in [5] and [9]. We present

simplified proofs by exploiting properties of Eq(-n).

We also present a detailed description of isosceles triangles by study-
ing the torsion points on Ein), as explained in

Proposition 1.3. Fiz a positive integer n. The following are
equivalent:

(1) n is the area of an isosceles triangle.

(2) 2n is a congruent number.

(3) v2 = u* + n? has a nontrivial rational point.
(4)

4 E&n) has a rational point of order 4 for some nonzero rational 7.

(See Propositions 3.1 with Corollary 3.2.) In the congruent number
problem, if the associated elliptic curve E{n) has a rational point of
order different from 2, then the Mordell-Weil group is infinite. However,
there are integers n associated to elliptic curves Eﬁn) for 7 # 1 having
rational points of order different from 2 yet having finite Mordell-Weil

group. For example,

B (Q)

{11 0.0 @l (9. 5 ) [ 1, ma < 2

Z/27 x Z)AZ

(1.6)

R

arising from the isosceles triangle [5/2,5/2,4] with area n = 3. These
results do not appear to be in the literature.
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Moreover, we list a table of data for Heron triangles [a, b, ¢] with given
area n for 1 < n < 50, along with information about the Mordell-Weil
Groups of the associated elliptic curves Eﬁn). We find that the elliptic
curves of interest often have rank at least 2, a phenomenon that was also
discovered in [3]. As an example, consider n = 30; this is a congruent
number since it is the area of the [5,12,13] right triangle. The elliptic

curve E§3O) : y? = 2% — 900 has rank 1 with generator (150, 1800),
but a different orientation of the right triangle gives an elliptic curve
Eﬁg) o y? = 2% + 14422 — 900z of rank 2 with generators (45, 585)
and (240, 6480).

2. Elliptic curves. We begin our exposition by relating the
geometry of Heron triangles to the algebra of elliptic curves.

Theorem 2.1. A positive integer n can be expressed as the area of
a triangle with rational sides if and only if for some nonzero rational
number T the elliptic curve

(2.1) EM: 2 =zx—n7)(z+ntt)

has a rational point which is not of order 2. Moreover, n is a congruent
number if and only if we can choose T = 1.

A positive integer n is called congruent if it is the area of a right
rational triangle. It is well known that such numbers correspond to
the elliptic curve y? = 2% — n? 2. More properties can be found in |7,
Chapter 1]. The proof which follows mimics that construction. We
are motivated by the formula in Exercise 3(b) on page 9 of that text.
The reader may also notice similarities with the formulas in [6] for the
so-called #-congruent number problem.

Proof. Say that we have a triangle A A B C with area n. We explain
how to construct the elliptic curve above. Let a denote the length of
side A; and similarly with b and B; ¢ and C. Denote 6 as the measure
of angle ZC' between sides A and B so that the area of the triangle is
n=(1/2)ab siné.

We give a parametrization of the lengths of the sides. First, we claim
that both cosé and sin # are rational. Indeed, by considering the Law
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of Cosines and the area, we have the relations

2 B2 _ 2 9
(2.2) cosf = a—;TC and sinf = a—z
Denote 7 as the rational number
0 in 6 4
(23) T = tan — S n

2 1+cosf (a—l—b)z—cQ;

in particular, if A ABC is a right triangle then we may orient the
triangle such that 7 = 1. Now consider the rational numbers v =
(a —bcosl)/c and v = (bsinf)/c. The Law of Cosines states that
u? +v2 =1, so that

(2.4) u=

in terms of

u+1  (a+c¢)* - b
v dn '

t =

Hence, there is a rational number r such that
(2.5) a=7r(t*+2tcotf —1), b=2rtcsch, and c=r(t*+1).

Make the substitutions

a—2bcosf+c (a+c)?—b?
r=nt=mn =

b sin 6 N 4 ’
2.6
(2.6) _n_2_2n2a—2b0059+c_a(a+c)2—b2
=T b2 sin? 0 B 4 '

They are related by the equation y? = 2% + a 22 + Sz, where

9 2 122
(2.7) a:ta:(?:a +2 < =n(r7'—=7) and B=-n’

Denote by E™ the (projective) curve defined by this cubic equation.
We claim it is an elliptic curve, where the rational point P = (x,y)
does not have order 2. The discriminant of the curve is

(28)  A[ES)] = 16 (a2 — 46) 42 = 1662 b n* = 160° (7 + )2
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and is nonzero; hence, the cubic does indeed define a nonsingular curve.
The point P has order 2 if and only if y = 0; but this cannot happen
since y = n?/r # 0.

Conversely, we explain how to construct a rational triangle with area
n from points on the elliptic curve. Let (x,y) be a rational (affine)

point on EQL) which is not of order 2. Of the four points
(2.9)
n? n2y
(o) = (o 59) and (0,00 [l(o, ) = (-, )

we can choose one with positive - and y-coordinates. Without loss of
generality, say (z, y) is such a rational point with z > 0 and y > 0. A
rational triangle with sides of length

A E&n) 2 2

(2.10) a:g, b:#g and c=2 tn
T 4n? Yy Yy

has area n, as can be verified by Heron’s formula (1.2). o

We list for reference the transformation from the rational triangle to
the elliptic curve:

(2.11)
Triangle to Curve Curve to Triangle
n=+s(s—a)(s—b)(s—c) EM™:y2=z@—n7)(z+n7tt)
_ 4n 0 Y
T (a+b)2—¢? o
2—b2
T = % b:n(7+771)§
2 _p2 2 2
y:a(a+c) C:(x +n?)
4 Y

where s = (a+ b+ ¢)/2 in Heron’s formula and > 0, y > 0 for
the elliptic curve. As an example, when n = 1, the rational triangle
[3/2,5/3,(17)/6] mentioned in the introduction corresponds to the

rational point (4, 6) on the elliptic curve Eél). In fact,

(212)  F2 Q) = {lmi](0,0) © [m2](2, 0) & [ma](4, 6) | m; € 2}
' Z/27 x 7)27 x Z.

1R
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3. Torsion subgroups. As explained in the previous section, if the

3 — n22 has a rational point which is not

elliptic curve EYL) oyl =x
2-torsion, then n is congruent. The more general elliptic curve E&")
constructed above has all of its 2-torsion rational. Explicitly, when

T=4n/((a+b)? — c?), then
(3.1) Eﬁnwz]—-{(o,o% (932L%%ffﬂi,o>, <9312%%Zfﬁf,o>,c7}.

Proposition 2.1 explains why we wish to avoid such points of order 2. In
the congruent number problem, it is well known that the only torsion

)

points on the elliptic curve E§" are the points of order 2, but in general

there may be points of other orders on Eg"). Our goal in this section

is to completely characterize the torsion points. We will show that the

)

torsion subgroup of Eﬁn is either

(3.2) Z/2Z x Z)2Z or 7)2Z x Z/AZ,

with the latter case corresponding to isosceles triangles.

Proposition 3.1. Fiz a positive integer n. Denote the (hyper)elliptic
curves

(3.3) C™: 02 = (u* +n2)(9u* +n?) and D : v =ut +n2

(1) Eﬁn) has a rational point of order 3 for some T if and only if
there exists a nontrivial rational point on C" | i.e., a point (u, v) with

u # 0.

(2) Eﬁn) has a rational point of order 4 for some T if and only if
there exists a nontrivial rational point on D™ i.e., a point (u, v) with

u # 0.

We will see below that C'™ has no nontrivial rational points. How-
ever, D(™) does have nontrivial rational points for certain n. For ex-
ample, when n = 3 then (u, v) = (2, 5) is such a point.

Proof. Say that (z, y) is a point of order 3 on Eﬁ"). Then z is a root
of the 3-division polynomial

(3.4) Y3(z) = 32* —dn(r — 772 —6n?2? —nt.
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(See [10, p. 105] for the definition of a division polynomial.) Since
x # 0 is rational, we express 7 in terms of z:

3zt —6n?a? —nt £ (22 +n?) /(22 + n2)(922 + n?)
(35) 1= Yo .

Then (22 +n?)(9 22 +n?) = v? for some rational number v. Moreover,
since y is rational we have

(3.6) vV =x(x—n7)(z+nrt )= —(x2 Ixnz)z;

so that © = u? for some rational number u # 0. Hence (u, v) is a
nontrivial point on C'™. The converse is clear.

Now say that (z, y) is a point of order 4 on Eﬁn). Then z is a root
of the 4-division polynomial

(3.7)  a(z) =2(2* +n?)(2® —2n71a —n?)(2® +2n71 L x —n?).
Since z is rational, we only have four possibilities for a:

(3.8) r=nTEtnV1+72 or z=-n1t t+tnr V1+12

In either case, this implies n? + (n7)% = v? for some rational number

v. Again, considering the y-coordinate we have

2 2\ 2 2 2\ 2
(3.9) yQ:nT_l(aj 24;171 ) or —nT(x 2—|—n ) .

n

In either case this implies (n7)? = u* for some rational number u.
Hence (u, v) is a nontrivial point on D). Again, the converse is clear.
]

Corollary 3.2. Fiz a positive integer n. The following are equiva-
lent:

(1) D™ has a nontrivial rational point.
(2) n is the area of an isosceles triangle.

(3) 2n is a congruent number.
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Proof. 1 < 2. Say that (u, v) is a point on D™ with u # 0. Without
loss of generality, assume v and v are positive. Inverting the formulas
in (3.8) and (3.9) we set
(3.10)

2 2 2
T= u—, z=u?+v, and y= wvtv — (z,y) € E™[4].
n U
Then the positive numbers

(3.11)

2, 2
: bzn(T+T71)£=E, and c=Z 17

v
— =2u
u y o u Y

_ Yy
a=2
T

define a rational isosceles triangle with area n. The converse is clear.

2 < 3. Say that [a, a, c] is an isosceles triangle with area n. Scale the
triangle by a factor of 2 to find an isosceles triangle [2a, 2a, 2] with
area 4n. Choosing the side with length 2 ¢ as the base, the height of the
triangle is 4n/c, a rational number. We fold the isosceles triangle in
half and find a right triangle with base ¢, height 4n /¢, hypotenuse 2 a,
and area 2n. Hence, 2n is a congruent number. Again, the converse is
clear. O

We list for reference the transformation from the rational isosceles
triangle to the curve D(™):

Isosceles Triangle to Curve  Curve to Isosceles Triangle

n=+/s(s—a)(s—b)(s—c) D™ :v?=ut+n?

(312) ,_¢ amp?
2
b
v = % = 76 CcC = 2u
where s = (2a+¢)/2 = (2b+ ¢)/2 in Heron’s formula and « > 0, v > 0
for the curve. As an example, when n = 3, the rational triangle

[5/2,5/2, 4] corresponds to the rational point (2, 5) on the curve D®).
As predicted by the corollary, 2n = 6 is a congruent number because
it is the area of the right triangle [3,4,5].

Proposition 3.3. Fix a positive integer n.
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(1) E&n) does not have a point of order 6 or 8 for any nonzero rational
T.

(2) The torsion subgroup of E™ s either Z/27 x Z/2Z or Z/27Z x
Z/AZ.

(3) If any of the statements in Corollary 3.2 fail, then the torsion
subgroup of EM s Z/27 x Z/2Z.

The proof of the first part of the proposition is similar to that of [9,
Theorem 3; note the remarks on page 10 of that article]. The proof of
the complete proposition uses the full power of a result of Mazur [8]
classifying the torsion subgroups of rational elliptic curves, although
a more creative proof using class field theory has been pointed out to
the authors by Archimescu and Ramakrishnan; it will appear in the
doctoral thesis [1] of the former.

Proof. Assume that Eﬁn) has a rational point of order 6. Then it
also has a point of order 3, so C(") has a nontrivial rational point, say
(u, v), by Proposition 3.1. Denote (U, V) = (u?/n, v/n) as a nontrivial
rational point on the elliptic curve

(3.13) V2= (U?+1)(9U? +1).

However, using a symbolic computer package, we see that the only
(affine) rational points on this curve are (U, V) = (0, £1). (For
example, one may do this using MAGMA: the commands Points()
with PointsKnown() find four projective points, where two are at
“infinity.”) This is a contradiction, so Eﬁn) does not have any rational
points of order 6.

)

Similarly, say (z, y) is a rational point on E™ of order 8. Consider

the point

22 +n2\* z
(3.14) (X, Y) =[2(z, y) = (( ;y ) ’fé(y:‘))

in terms of the 4-division polynomial introduced in (3.7). This is a
point of order 4, so say X? — 2n7X — n? = 0. (The other roots
come from the reflection 7 — —771) As stated in the proof of
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Corollary 3.2, nT = u? and X = u? + v for some rational u and v
on the curve v? = u* 4+ n?. Choose a rational number z such that
x = (1+2) v+wu?; then the relation X = ((#2+n?)/(2y))? implies that
4(1 + 2)%(u? + v)? = u? v 2%, so that v = w? for some rational number
w. Then (U, V) = (w/u, n/u?) is a nontrivial rational point on the
elliptic curve

(3.15) Vi=U*-1.

Again, using a symbolic computer package we see that the only (affine)
rational points on this curve are (U, V) = (£1,0). (Again, the
MAGMA command Points() finds four projective points where two
are at “infinity.”) This is a contradiction, so Eﬁn) does not have any
rational points of order 8.

We now focus on the last two statements. The torsion subgroup of
E™ contains Z/27 x Z/27Z because the three points (0, 0), (n 7, 0)
and (—n 77!, 0) have order 2. Hence by the main result of [8] the
torsion subgroup is Z/27Z x Z/2m Z for m either 1, 2, 3 or 4. But m
cannot be 3 or 4 by the discussion above. Further, m cannot be even
when D(™ has no nontrivial rational points or else E&n) would have a
point of order 4 by Proposition 3.2. i

There are elliptic curves E&") with a finite group of rational points
where not all such points are 2-torsion. This is not the case with E}n)
because if a rational point is not 2-torsion then it must be of infinite

order. Indeed, when n = 3 the isosceles triangle [5/2,5/2,4] maps to a
point (9, 45/2) of order 4 on ES’)(Q) for 7 = 4/3. However,

(3.16)

ESL(Q) = {[ml](O, 0) @ [ma] (9, 4;) ’ my, my € z} ~7/2ZxZ/AZ,

i.e., there are no points of infinite order! Of course, we may rotate the
triangle to find a new elliptic curve, namely we may choose [4,5/2,5/2],

which maps to the point (9, 36) € Eq(-?’)(Q) for 7 = 1/3. This curve
does indeed have positive rank:

E{L(Q) = {[m1] (0, 0) @ [mo](1, 0) & [ms](9, 36) |m; € Z}

(3.17)
Z/27Z X Z/27Z x 7.

1
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4. More results. With the ideas introduced and results proved in
the previous section, we present new proofs of well-known results about
Heron triangles.

Proposition 4.1. Fix a positive integer n.
(1) There are infinitely many rational triangles with area n.

(2) n is the area of a rational right triangle if and only if the curve

y? = 23 — n?x has a nontrivial rational point, i.e., a point (x,y) with
y # 0.

(3) n is the area of a rational isosceles triangle if and only if the curve
v? = u* +n? has a nontrivial rational point, i.e., a point (u,v) with
u # 0.

(4) Say that n is the area of a rational triangle with an angle 0. If such
a triangle is not isosceles, there are infinitely many rational triangles
with area n possessing this fixed angle.

The first part of this proposition was answered in [5, Theorem 2] and
[9, Theorem 1]. We present a simplified proof using the formula due
to Chowla in [5, equations 25 and 26]. The last part of the proposition
is the fundamental result of [6] for the so-called #-congruent numbers
and was also discussed at the end of [9, see page 15 of that article].

Proof. First, we show that there exists at least one triangle having
area n. Following Proposition 2.1, it suffices to find some Eﬁn) with a
rational point not of order 2. We choose

2
2n+1°

(4.1)

(@, y) = 2n+1 4n®—1
TYE\TE T8

) € EM(Q) for 7=

By the formulas in (2.11), we have the rational triangle with sides
(4.2)
2n—1 n(4n?+4n+5) 20n? +4n+1
P b= s and c= ———
2 4n? —1 2(4n?-1)

a =

which indeed has area n. The point (z, y) does not have order 2 because
y # 0 when n is a positive integer.
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It is easy to verify that a # b so by Proposition 3.1, along with
Corollary 3.2, the point (x, y) does not have order 4. Proposition 3.3
implies this point is not torsion, and hence must be a point of infinite
order. Proposition 2.1 constructs a rational triangle out of [m] P having
area n for each nonzero integer m so we have infinitely many triangles.

The second statement was shown in Proposition 2.1 (and is well
known) while the third statement is just Corollary 3.2.

To show the last statement, say that we have a triangle A A B C with
area n, where 6 is the measure of angle ZC between sides A and B.
Then, by the proof of Proposition 2.1, we have a rational point on the
elliptic curve E™ where 7 = tan(0/2). Since A A B C is not isosceles,
it corresponds to a point of infinite order on E&n) by the preceding
discussion. But each point corresponds to a rational triangle of area n
having fixed angle 6, so we have infinitely many such triangles. o

5. Examples and data. In this section we present examples of
triangles and elliptic curves. We list rational triangles [a, b, ¢| having
small denominators associated to positive integers n not greater than
50. All of these entries may be verified by Heron’s formula:

a+b+ec
—

The Tables also contain information about the elliptic curves
(5.2)

EM: 2 =z(x—n7)(z+n7') intermsof 7=

(5.1) n=+/s(s—a)(s—b)(s—c) intermsof s=

4n
(a+b)% —c?

where we list the highest rank of the various orientations of the
triangles; in many cases there was more than one such choice of
orientation. We list only the generators of the free part of the Mordell-
Weil group, where at least one of the generators maps to the triangle
listed. The finite part of the Mordell-Weil group is chosen to be
Z/27Z xZ)2Z.

In many cases, the rank is greater than 1. This phenomenon was also
discovered in [3], where the authors considered Heron triangles with
rational medians. It may be possible that the examples of rational
triangles below have such properties, although we have not examined
this in detail.
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The Heron triangles were computed on a dual processor PowerMac G4
using algorithms written in C and Mathematica®. The ranks of the
elliptic curves were computed using MAGMA [2] on William Stein’s
“Mathematics Extreme Computation Cluster At Harvard” (MEC-
CAH).
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