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CONGRUENCES AND RATIONAL EXPONENTIAL
SUMS WITH THE EULER FUNCTION

WILLIAM D. BANKS AND IGOR E. SHPARLINSKI

ABSTRACT. We give upper bounds for the number of
solutions to congruences with the Euler function ϕ(n) modulo
an integer q ≥ 2. We also give nontrivial bounds for rational
exponential sums with ϕ(n)/q.

1. Introduction. Let ϕ(n) denote the Euler function:

ϕ(n) = #{1 ≤ a ≤ n | gcd(a, n) = 1}.
For any integer q ≥ 2, let eq(z) denote the exponential function
exp(2πiz/q), which is defined for all z ∈ R.

In this paper, we give upper bounds for rational exponential sums of
the form

Sa(x, q) =
∑
n≤x

eq(aϕ(n)),

where gcd(a, q) = 1, and x is sufficiently large. Our results are
nontrivial for a wide range of values for the parameter q. In the special
case where q = p is a prime number, however, stronger results have
been obtained in [1].

One of the crucial ingredients of [1] is an upper bound on the number
solutions of a congruence with the Euler function. To be more precise,
let T (x, q) denote the number of positive integers n ≤ x such that
ϕ(n) ≡ 0 (mod q). The results of [1] are based on the bound

(1) T (x, p) = O

(
x log log x

p

)

which is a partial case of [4, Theorem 3.5].

Here we obtain an upper bound on T (x, q), albeit weaker than (1),
and we follow the approach of [1] to estimate the sums Sa(x, q).
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As in [1], we expect that our methods can be suitably modified
to obtain nontrivial bounds for more general exponential sums. For
instance, one should be able to estimate sums of the form

Sf (x, q) =
∑
n≤x

eq(f(ϕ(n))),

where f(X) is a polynomial with integer coefficients and positive
degree.

Throughout the paper, the implied constants in the symbols “O,”
“�” and “�” are absolute (we recall that the notations U � V and
V � U are equivalent to the statement that U = O(V ) for positive
functions U and V ). We also use the symbol “o” with its usual meaning:
the statement U = o(V ) is equivalent to U/V → 0.

As usual, p always denotes a prime number.

2. Preliminary estimates. The following estimate is well known,
see [8, Chapter 1, Theorem 5.1]:

(2)
n

log log n
� ϕ(n) ≤ n.

Let τw(n) be the number of representations of n as a product of w
positive integers:

τw(n) = #
{
(n1, . . . , nw) ∈ Nw | n = n1n2 · · ·nw

}
.

In particular, τ (n) = τ2(n) is the number of positive integer divisors
of n. If ω(n) denotes the number of distinct prime divisors of n, then
clearly

(3) τ (n) ≥ 2ω(n).

Let N(x,w) be the number of positive integers n ≤ x such that
ω(n) > w. Very precise results about the asymptotic behavior of
N(x,w) have been derived in [5]; for our purposes, however, the
following estimate is sufficient:

(4) N(x,w) � 2−wx log x.
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To see this, we first observe that (3) implies

N(x,w) =
∑
n≤x

ω(n)>w

1 <
∑
n≤x

ω(n)>w

τ (n)
2w

≤ 2−w
∑
n≤x

τ (n).

The estimate (4) then follows from the well-known expansion, see [9,
Section I.3.2, Theorem 2]:∑

n≤x

τ (n) = x(log x+ 2γ − 1) +O(x1/2),

where γ is the Euler-Mascheroni constant.

We also need the following upper bound from [10]:

(5) τw(n) ≤ exp
(

(logn)(logw)
log logn

(
1 +O

(
log log logn+ logw

log log n

)))
,

which is valid for all n,w ≥ 2.

For any integer n ≥ 2, let P (n) denote the largest prime divisor of n,
and put P (1) = 1. As usual, we say that an integer n ≥ 1 is Y -smooth
if and only if P (n) ≤ Y . Let

ψ(X,Y ) = #{1 ≤ n ≤ X | n is Y -smooth}.
The following estimate is a substantially relaxed and simplified version
of Corollary 1.3 of [6]; see also [3].

Lemma 1. Let u = (logX)/(log Y ). For any u→ ∞ with u ≤ Y 1/2,
we have

ψ(X,Y ) � Xu−u+o(u).

Now let T (x,w, q) denote the number of positive integers n ≤ x such
that ω(n) ≤ w and ϕ(n) ≡ 0 (mod q).

Lemma 2. The bound

T (x,w, q) � x(c log log x)w−1

(
τw(q)τ (q)

q

)1/2

holds for some absolute constant c > 0.
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Proof. Let T (x, y, w, q) denote the number of positive integers n ≤ x
such that ω(n) ≤ w, ϕ(n) ≡ 0 (mod q), and if n = s2m, then s ≤ y.
Clearly,

(6) T (x,w, q) ≤ T (x, y, w, q) +
∑
s>y

∑
n≤x
s2|n

1 = T (x, y, w, q) +O(x/y).

Let R(x,w, q) denote the number of positive squarefree integers
m ≤ x such that ω(m) ≤ w and ϕ(m) ≡ 0 (mod q).

If n ≤ x, n = s2m, ϕ(n) ≡ 0 (mod q) and m is squarefree, then it
follows that ϕ(m) ≡ 0 (mod d) for some divisor d | q with d ≥ q/s2.
Indeed, put d = gcd(ϕ(m), q). Since m is squarefree, we see that
ϕ(m) | ϕ(n); hence, lcm(ϕ(m), q) | ϕ(n), and thus

ϕ(m) q
d

= lcm(ϕ(m), q) ≤ ϕ(n) = s2m
∏
p|sm

(1 − 1/p) ≤ s2ϕ(m).

This shows that d ≥ q/s2, as claimed. As a consequence, we now derive
that

(7) T (x, y, w, q) ≤
∑
s≤y

∑
d|q

d≥q/s2

R(x/s2, w, d).

It is therefore sufficient to estimate R(x,w, q) for all integers w, q ≥ 1
and all x > 0.

Now, fix a factorization of q into ν ≤ w factors:

(8) q = q1 · · · qν .
We proceed to estimate the number Q(x; q1, . . . , qν) of squarefree
m ≤ x of the form m = p1 · · · pν , where pj is prime with pj ≡ 1
(mod qj), j = 1, . . . , ν.

By the bound (3.1) from [4] (see also [2, Lemma 1]) and estimate (2),
it follows that for any positive integer r and any real number y ≥ r,
the bound

(9)
∑
p≤y

p≡1 (mod r)

1
p
≤ c (log log y)2

r
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holds for some absolute constant c > 0, and it also holds when r > y ≥ 1
since, in that case, the sum on the left-hand side is empty.

We now prove by induction on ν that, with the same constant c > 0,
the bound

(10) Q(x; q1, . . . , qν) ≤ x(c log log x)2(ν−1)

q1 · · · qν
holds. For ν = 1, this is obvious since

Q(x; q1) ≤ x

q1
.

We also have

Q(x; q1, . . . , qν) ≤
∑

pν≤x
pν≡1 (mod qν)

Q(x/pν ; q1, . . . , qν−1).

Then, using the inductive hypothesis for ν − 1 ≥ 1, we obtain that

Q(x; q1 · · · qν) ≤ x(c log log x)2(ν−2)

q1 · · · qν−1

∑
pν≤x

pν≡1 (mod qν)

1
pν
,

hence the estimate (9) yields the bound (10).

Considering all possible factorizations (8), we derive from (10) the
following bound:

(11) R(x,w, q) ≤ τw(q)
x(c log log x)2(w−1)

q
.

Finally, after applying the estimate (11), with appropriate changes in
the parameters, to the bound (7), we see that

T (x, y, w, q) ≤ x(c log log x)2(w−1)
∑
s≤y

∑
d|q

d≥q/s2

τw(d)
s2d

≤ xy (c log log x)2(w−1)τw(q)τ (q)
q

.
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Choosing

y =
(

q

(c log log x)2(w−1)τw(q)τ (q)

)1/2

in order to balance both terms in (6), we obtain the stated result.

Finally, our principal tool is the following bound for exponential sums
over prime numbers, which follows immediately from [11, Theorem 2]
by partial summation, see also [1].

Lemma 3. For any X ≥ 2, the following bound holds:

max
gcd(c,q)=1

∣∣∣∣
∑
p≤X

eq(cp)
∣∣∣∣ � (q−1/2 +X−1/4q1/8 + q1/2X−1/2)X log3X.

3. Congruences with the Euler function. As before, we denote
by T (x, q) the number of positive integers n ≤ x such that ϕ(n) ≡ 0
(mod q).

Theorem 1. For some absolute constant δ > 0, the bound

T (x, q) � x 2−(log q)δ

holds for all q ≥ exp((log log x)2/δ) provided that x is sufficiently large.

Proof. Using (4) and Lemma 2, we have for any w ≥ 1:

(12)

T (x, q) ≤ T (x,w, q) +N(x,w)

� x(c log log x)(w−1)

(
τw(q)τ (q)

q

)1/2

+ 2−wx log x.

According to (5), for some absolute constant c0 > 0, the bound

τw(q) ≤ exp
(

(log q)(logw)
log log q

(
1 + c0

(
log log log q + logw

log log q

)))
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holds for all q, w ≥ 2. Choose δ such that δ(1 + c0δ) = 1/2, say, and
put w = 
2(log q)δ�; it follows that τw(q) ≤ q1/2+o(1). Remarking that

(w − 1) log(c log log x) = o(log q),

we see that the first term in (12) is bounded by xq−1/4+o(1); since
w = o(log q), this term is dominated by 2−wx log x. For q in the
specified range, we also have

log log x ≤ (log q)δ/2 = o(w),

and the result follows.

On the other hand, we remark that by [7, Lemma 2], almost all values
of ϕ(n), 1 ≤ n ≤ x, are divisible by all prime powers pr with

pr � log log x
log log log x

.

Therefore, for some constant α > 0 and all q with

q ≤ exp
(
α

log log x
log log log x

)
,

one has T (x, q) = x+ o(x).

4. Exponential sums with the Euler function. We now show
that the same arguments used in [1] combined with the bound of
Lemma 2 can be used to estimate exponential sums with the Euler
function.

Theorem 2. For some absolute constant δ > 0, the bound

max
gcd(a,q)=1

|Sa(x, q)| � x
(
v−2v/5+o(v) + 2−(log q)δ

)

holds with v = (log x)/(log q) provided that

v ≤ log x
(log log x)2/δ

.
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Proof. Let δ > 0 be the constant from Theorem 1; replacing δ by a
smaller value if necessary, we can assume that δ < 1/(8 log 2). Without
loss of generality, we can also assume that q ≥ log8 x since the bound is
trivial otherwise. Throughout the proof, fix a with gcd(a, q) = 1. We
define y = q5/2 and denote by E1 the set of n ≤ x which are y-smooth.
Let

u =
log x
log y

= 2v/5.

It is easy to see that, if v ≥ q, then q ≤ log x and the bound is trivial;
thus, we can assume that u ≤ q ≤ y1/2. Hence, by Lemma 1, we have
that

#E1 � xu−u+o(u).

Denote by E2 the set of n ≤ x for which P (n) > y and P (n)2 | n.
Then

#E2 �
∑
p≥y

x/p2 � x/y = xq−5/2.

Put w = 
5(log q)δ� and denote by E3 the set of n ≤ x with
ω(n) ≥ w + 1. By (4), we see that

#E3 � 2−wx log x.

Finally, let N = {1, . . . , N}\(E1 ∪ E2 ∪ E3), where N = 
x�.
From the preceding bounds, it follows that

(13) Sa(x, q) =
∑
n∈N

eq(aϕ(n))+O
(
xu−u+o(u)+xq−5/2+2−wx log x

)
.

For the remainder of the proof, we denote by P the set of all
prime numbers, P[Y,X] the set of p ∈ P with Y < p ≤ X, and
P[X] = P[1, X].

Now every integer n ∈ N has a unique representation of the form
n = mp, where p ∈ P[y, x] and p > P (m). Conversely, if M is the set
of m ≤ x/y such that ω(m) ≤ w and Lm = max{y, P (m)}, then for
any m ∈ M and any p ∈ P[Lm, x/m], we have n = mp ∈ N . Then,
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observing that ϕ(n) = ϕ(m)(p− 1), we obtain
∑
n∈N

eq(aϕ(n)) =
∑

m∈M

∑
p∈P[Lm,x/m]

eq(aϕ(mp))

=
∑

m∈M
eq(−aϕ(m))

∑
p∈P[Lm,x/m]

eq(aϕ(m)p).

For any divisor d | q, denote by Md the set of m ∈ M with
gcd(q, ϕ(m)) = d. Then

(14)
∑
n∈N

eq(aϕ(n)) �
∑
d|q

∑
m∈Md

∣∣∣∣∣
∑

p∈P[Lm,x/m]

eq(aϕ(m)p)

∣∣∣∣∣.

Write
∑

p∈P[Lm,x/m]

eq(aϕ(m)p)

=
∑

p∈P[x/m]

eq(aϕ(m)p)−
∑

p∈P[Lm]

eq(aϕ(m)p),

and observe that the right-hand side of the bound in Lemma 3 is a
monotonically increasing function of X. Then, since m ≤ x/y for all
m ∈ M, it follows that for all m ∈ Md,

∑
p∈P[Lm,x/m]

eq(aϕ(m)p)

� x

m

(
(q/d)−1/2 + x−1/4m1/4(q/d)1/8 + (q/d)1/2x−1/2m1/2

)
log3 x

� x

m

(
(q/d)−1/2 + (q/d)1/8y−1/4 + (q/d)1/2y−1/2

)
log3 x

� x

m

(
q−1/2d1/2 + q1/8y−1/4 + q1/2y−1/2

)
log3 x.

Recalling the definition of y, we see that the first term always domi-
nates; therefore,

∑
p∈P[Lm,x/m]

eq(aϕ(m)p) � xd1/2 log3 x

mq1/2
.
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We now derive that

∑
m∈Md

∣∣∣∣∣
∑

p∈P[Lm,x/m]

eq(aϕ(m)p)

∣∣∣∣∣ �
xd1/2 log3 x

q1/2

∑
m∈Md

1
m
.

By Lemma 2 and partial summation, we have

∑
m∈Md

1
m

�
∑

1≤m≤x/y

(
1
m

− 1
m+1

)
T (m,w, d) +

y

x
T (x/y, w, d)

�
∑

1≤m≤x/y

1
m

(c log logm)w−1

(
τw(d)τ (d)

d

)1/2

+ (c log log x)w−1

(
τw(d)τ (d)

d

)1/2

� (c log log x)w−1

(
τw(q)τ (q)

d

)1/2

log x.

Hence,

∑
m∈Md

∣∣∣∣∣
∑

p∈P[Lm,x/m]

eq(aϕ(m)p)

∣∣∣∣∣
� xq−1/2(c log log x)w−1(τw(q)τ (q))1/2 log4 x.

Summing up over all divisors d | q and recalling (14), we obtain

∑
m∈M

∣∣∣∣∣
∑

p∈P[Lm,x/m]

eq(aϕ(m)p)

∣∣∣∣∣
� xq−1/2(c log log x)w−1τw(q)1/2τ (q)3/2 log4 x.

Now, from (13) we derive

Sa(x, q) � x
(
u−u+o(u) + 2−w log x

+ q−1/2(c log log x)w−1τw(q)1/2τ (q)3/2 log4 x
)
.
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Recalling the choice of w, we see (as in the proof of Theorem 1) that
under the condition of the theorem, both the second and the third
terms inside the parentheses are dominated by 2−(log q)δ

, which finishes
the proof.

5. Remarks. Sums with multiplicative characters might also be
considered; in principle, our methods should provide nontrivial bounds
in certain ranges, similar to those of Theorem 2.

Finally, we mention that our methods can be applied to the sum of
divisors function σ(n). However, it is still not clear how to estimate
exponential sums with the Carmichael function λ(n), even given its
close relationship to the Euler function. We recall that λ(n) is defined
as the largest possible order of elements of the unit group in the residue
ring modulo n. More explicitly, for a prime power pk we define

λ(pk) =
{
pk−1(p− 1) if p ≥ 3 or k ≤ 2;
2k−2 if p = 2 and k ≥ 3;

and finally,
λ(n) = lcm

(
λ(pk1

1 ), . . . , λ(pkν
ν )

)
,

where
n = pk1

1 · · · pkν
ν

is the prime number factorization of m.
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