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OSCILLATION OF SECOND ORDER DAMPED
ELLIPTIC EQUATIONS VIA WEIGHTED

AVERAGES TECHNIQUE

ZHITING XU AND YONG XIA

ABSTRACT. By using weighted averages technique, some
oscillation criteria for second order damped elliptic differential
equation

(E)

N∑
i,j=1

Di

[
aij(x)Djy

]
+

N∑
i=1

bi(x)Diy + p(x)f(y) = 0

are obtained. These criteria are extensions of the results due
to Coles for second order linear ordinary differential equation
to equation (E).

1. Introduction. Consider the second order damped elliptic
differential equation

(1.1)
N∑

i, j=1

Di

[
aij(x)Djy

]
+

N∑
i=1

bi(x)Diy + p(x)f(y) = 0

in Ω(a) ⊆ RN , where x = (x1, . . . , xN ) ∈ RN , N ≥ 2, Diy = ∂y/∂xi

for all i, |x| = [
∑N

i=1 x
2
i ]1/2, Ω(a) = {x ∈ RN : |x| ≥ a} for some

a > 0.

Throughout this paper, we shall assume that the following conditions
hold without further mention.

(A1) f ∈ C(R,R) ∪ C1(R − {0},R), yf(y) > 0 and f ′(y) ≥ k > 0
whenever y �= 0;

(A2) p ∈ Cμ
loc(Ω(a),R), bi ∈ C1+μ

loc (Ω(a),R) for all i, and μ ∈ (0, 1);

(A3) A = (aij)N×N is a real symmetric positive definite matrix
function with aij ∈ C1+μ

loc (Ω(a),R) for all i, j, and μ ∈ (0, 1).
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Denote by λmax(x) the largest eigenvalue of the matrix A. There
exists a function λ ∈ C([a,∞),R+) such that

λ(r) ≥ max
|x|=r

λmax(x) for r > a.

In what follows, the solution (classical solution) of equation (1.1) is
every function of the class C2+μ

loc (Ω(a),R), μ ∈ (0, 1), which satisfies
equation (1.1) almost everywhere on Ω(a). We consider only the
nontrivial solution of equation (1.1) which is defined for all large |x|,
cf. [2].

The oscillation is considered in the usual sense, i.e., a solution y(x)
of equation (1.1) is said to be oscillatory if it has zero on Ω(b) for every
b ≥ a. Equation (1.1) is said to be oscillatory if every solution (if
any exists) is oscillatory. Conversely, equation (1.1) is nonoscillatory if
there exists a solution which is not oscillatory.

Here we are concerned with extending oscillation criteria for second
order linear ordinary differential equation

(1.2) y′′(t) + p(t)y(t) = 0, p ∈ C([t0,∞),R),

to that of the second order damped elliptic differential equation of form
(1.1). For equation (1.2), the first important simple oscillation criterion
is the well-known Fite-Wintner theorem [3, 8] which states that if the
function p(t) satisfies

(1.3) lim
t→∞

∫ t

t0

p(s) ds = ∞,

then equation (1.2) is oscillatory. In fact, Fite [3] assumed in addition
that p(t) is nonnegative, while Wintner [8] proved a stronger result
which required a weaker condition involving the integral average, i.e.,

(1.4) lim
T→∞

1
T

∫ T

t0

∫ t

t0

p(s) ds dt = ∞.

Clearly, (1.3) implies (1.4).
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In a different direction, Coles [1] extended the Wintner theorem by
considering weighted averages of the integral of the function p(t) with
the form

Aφ(t, t0) =

∫ t

t0
φ(s)

∫ s

t0
p(u) du ds∫ t

t0
φ(s) ds

,

where φ(s) is positive and locally integrable but not an integrable
function on [t0,∞). He proved that the condition

(1.5) lim
t→∞Aφ(t, t0) = ∞

is sufficient for the oscillation of equation (1.2) and he also gave another
result for when a similar condition to that of (1.5) fails.

In the qualitative theory of nonlinear partial differential equations,
one of the important problems is to determine whether or not solutions
of the equation under consideration are oscillatory. For the semi-linear
elliptic differential equation

(1.6)
N∑

i,j=1

Di

[
aij(x)Djy

]
+ p(x)f(y) = 0,

the oscillation theory has been widely discussed in the literature,
see, for example, [5, 7, 9 11, 13] and other references contained
therein. In particular, Noussair and Swanson [5] first employed an
N -dimensional vector Riccati transformation and established Fite-
Wintner type oscillation criteria for equation (1.6), see [5, Theorem
4]. The survey paper by Swanson [7] contains a complete bibliography
up to 1979. Very recently, a classical theorem due to Kamenev [4]
(as extended and improved by Phiols [6] and Yan [12]) was extended
to equation (1.6), cf. [10, 11]. Unfortunately, their results cannot be
applied to the second order damped elliptic differential equation (1.1).
Motivated by this fact, in this paper, we use the N -dimensional vector
Riccati transformation which has been developed further here and
weighted averages technique similar to that exploited by Coles [1]
and establish oscillation criteria for equation (1.1). These criteria are
extensions of the results due to Coles for second order linear ordinary
differential equation (1.2) to equation (1.1), thereby improving the main
results in [5]. To the best of our knowledge, very little is known about
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the oscillation of equation (1.1) in general form, especially, when the
coefficient functions bi(x) for all i, and p(x) are allowed to change sign
on Ω(a).

2. Main results. First of all, we introduce the following princi-
ple notations without further mention. For arbitrary functions ρ ∈
C1([a,∞),R+) and λη ∈ C1([a,∞),R), we define for all r ≥ a

h(r) =
k

ωN

r1−N

λ(r)ρ(r)
, g(r) =

ρ′(r)
ρ(r)

+
2k
ωN

η(r)r1−N ,

θ(r) = ρ(r)

{∫
Sr

[
p(x) − 1

4k
BTA−1B − 1

2k

N∑
i=1

Dibi

]
dσ

+
k

ωN
λ(r)η2(r)r1−N − [λ(r)η(r)]′

}
,

and

θ1(r) = θ(r) − g2(r)
4h(r)

, θ2(r) = θ1(r) +
1
2

[
g(r)
h(r)

]′
,

where Sr = {x ∈ RN : |x| = r} for all r > 0, BT = (b1(x), . . . , bN (x)),
σ denotes the measure on Sr and ωN denotes the surface area of the
unit sphere in RN , i.e., ωN = 2πN/2/Γ(N/2).

Let Φ(r, a) denote the class of all nonnegative and local integrable
functions φ(s) on [a,∞) with

∫ ∞
a
φ(s) ds �≡ 0. For arbitrary functions

φ ∈ Φ(r, a) and ψ ∈ C( [a,∞),R), we define for all r ≥ a

α(r, a) =
∫ r

a

φ(s) ds, β(r, a) =
∫ r

a

φ2(s)
h(s)

ds,

and
X(φ, ψ; r, a ) =

1
α(r, a)

∫ r

a

φ(s)
∫ r

a

ψ(u) du ds.

Members of the function class Φ will be called weight functions.

Theorem 2.1. Suppose that there exist functions φ ∈ Φ(r, a),
ρ ∈ C1([a,∞),R+) and λη ∈ C1([a,∞),R) such that

(2.1) g(r) ≥ 0 for r ≥ a
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and

(2.2) lim
r→∞

∫ r

a

φ(s)[α(s, a)]δ

β(s, a)
ds = ∞ for some δ, 0 ≤ δ < 1.

If

(2.3) lim
r→∞X(φ, θ1; r, a) = ∞,

then equation (1.1) is oscillatory.

Proof. Let y = y(x) be a nonoscillatory solution of equation (1.1).
Without loss of generality we assume that y(x) �= 0 for x ∈ Ω(a).
Furthermore, we suppose that y(x) > 0 for all x ∈ Ω(a), since the
substitution u = −y transforms equation (1.1) into an equation of
the same form subject to the assumption of theorem. Hence the N -
dimensional vector Riccati operator

(2.4) W (x) =
1

f(y)
A(x)Dy +

1
2k

B

exists on Ω(a), where Dy = (D1y, . . . , DNy)T . Differentiation of the
ith component of (2.4) with respect to xi gives

DiWi(x) = − f ′(y)
f2(y)

Diy

[
N∑

i=1

aijDjy

]
+

1
f(y)

Di

[
N∑

j=1

aijDjy

]
+

1
2k

Dibi,

for all i. Summation over i and use of equations (1.1) and (2.4) lead to

(2.5)

divW (x) = − f ′(y)
f2(y)

(Dy)TADy − 1
f(y)

[
p(x)f(y)+BTDy

]
+

1
2k

N∑
i=1

Dibi

≤ − k

[
W − 1

2k
B

]T

A−1

[
W − 1

2k
B

]
− p(x)

− BTA−1

[
W − 1

2k
B

]
+

1
2k

N∑
i=1

Dibi

= − kWTA−1W − p(x) +
1
4k

BTA−1B +
1
2k

N∑
i=1

Dibi.
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Now, we introduce the generalized Riccati-type substitution and let

(2.6) Z(r) = ρ(r)
[∫

Sr

W (x) · ν(x) dσ + λ(r)η(r)
]

for r ≥ a,

where ν(x) = x/r, r = |x| �= 0, denotes the outward unit normal to Sr.
By means of the Green formula in (2.6) and noting (2.5), we have

(2.7)

Z ′(r) =
ρ′(r)
ρ(r)

Z(r) + ρ(r)
{∫

Sr

divW (x) dσ + [λ(r)η(r)]′
}

≤ ρ′(r)
ρ(r)

Z(r) − ρ(r)

{
k

∫
Sr

(WTA−1W )(x) dσ

+
∫

Sr

[
p(x) − 1

4k
BTA−1B − 1

2k

N∑
i=1

Dibi

]
dσ − [λ(r)η(r)]′

}
.

In view of (A3),

(WTA−1W )(x) ≥ λ−1
max(x) |W (x)|2.

By the Schwartz inequality,

∫
Sr

|W (x)|2 dσ ≥ r1−N

ωN

[ ∫
Sr

W (r) · ν(x) dσ
]2

.

Thus, by (2.7), we obtain

Z ′(r) ≤ ρ′(r)
ρ(r)

Z(r) − ρ(r)

{
kr1−N

ωNλ(r)

[ ∫
Sr

W (x) · ν(x) dσ
]2

+
∫

Sr

[
p(x) − 1

4k
BTA−1B − 1

2k

N∑
i=1

Dibi

]
dσ − [λ(r)η(r)]′

}

=
ρ′(r)
ρ(r)

Z(r) − ρ(r)

{
kr1−N

ωNλ(r)

[
Z(r)
ρ(r)

− λ(r)η(r)
]2

+
∫

Sr

[
p(x) − 1

4k
BTA−1B − 1

2k

N∑
i=1

Dibi

]
dσ − [λ(r)η(r)]′

}

= − θ(r) + g(r)Z(r) − h(r)Z2(r),
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that is, for r ≥ a,

(2.8) Z ′(r) ≤ −θ(r) + g(r)Z(r)− h(r)Z2(r).

Completing squares of Z(r) in (2.8) yields

(2.9) Z ′(r) ≤ − θ1(r) − h(r)
[
Z(r) − g(r)

2h(r)

]2

.

Now integrating from a to r on both sides of (2.9), we have

(2.10) Z(r) +
∫ r

a

h(s)
[
Z(s) − g(s)

2h(s)

]2

ds ≤ Z(a) −
∫ r

a

θ1(s) ds.

Multiplying (2.10) by φ(r) and integrating it from a to r, we get

(2.11)
∫ r

a

φ(s)Z(s) ds+
∫ r

a

φ(s)
∫ r

a

h(u)
[
Z(u) − g(u)

2h(u)

]2

du ds

≤ α(r, a)[Z(a) −X(φ, θ1; r, a)].

By (2.3), there exists a b > a such that

Z(a) −X(φ, θ1; r, a) < 0 for all r ≥ b.

Then, by (2.11), for all r ≥ b,

H(r) :=
∫ r

a

φ(s)
∫ s

a

h(u)
[
Z(u) − g(u)

2h(u)

]2

du ds ≤ −
∫ r

a

φ(s)Z(s) ds.

By (2.1), we obtain

H(r) ≤ H(r) +
1
2

∫ r

a

φ(s)g(s)
h(s)

ds ≤ −
∫ r

a

φ(s)
[
Z(s) − g(s)

2h(s)

]
ds.

Noting that H(r) is nonnegative, and using the Schwartz inequality,
we obtain

(2.12)

H2(r) ≤
( ∫ r

a

φ(s)
∣∣∣∣Z(s) − g(s)

2h(s)

∣∣∣∣ ds
)2

≤
[ ∫ r

a

φ2(s)
h(s)

ds

][ ∫ r

a

h(s)
(
Z(s) − g(s)

2h(s)

)2

ds

]

=
β(r, a)
φ(r)

H ′(r).
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On the other hand,
(2.13)

H(r) ≥
∫ r

b

φ(s)
(∫ b

a

h(u)
(
Z(u) − g(u)

2h(u)

)2

du

)
ds = M1α(r, b),

where

M1 =
∫ b

a

h(u)
[
Z(u) − g(u)

2h(u)

]2

du.

From (2.12) and (2.13), we get

(2.14)
Mδ

1φ(r)[α(r, a)]δ

β(r, a)
≤ Hδ−2(r)H ′(r) for all r ≥ b.

This implies that

Mδ
1

∫ r

b

φ(s)[α(s, a)]δ

β(s, a)
ds ≤ 1

1 − δ

1
H1−δ(b)

<∞,

which contradicts condition (2.2).

Corollary 2.1. Let Condition (2.3) in Theorem 2.1 be replaced by

lim
r→∞

∫ r

a

g2(s)
h(s)

ds <∞

and
lim

r→∞X(φ, θ; r, a) = ∞;

then the conclusion of Theorem 2.1 holds.

Theorem 2.2. Let the functions φ, ρ, η be as in Theorem 2.1 such
that (2.2) holds. If

(2.15) lim
r→∞X(φ, θ2; r, a) = ∞,

then equation (1.1) is oscillatory.
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Proof. Proceeding as in the proof of Theorem 2.1, we have that (2.8)
holds for all r ≥ a. Define

V (r) = Z(r) − g(r)
2h(r)

;

then (2.8) can be rewritten as

(2.16) V ′(r) ≤ − θ2(r) − h(r)V 2(r).

Inequality (2.16) is of the same type as inequality (2.9). Hence we can
use a similar procedure to complete the proof of Theorem 2.2.

Remark 2.1. For equation (1.6), let δ = 0 and φ(r) = h(r); then
Theorem 2.2 improves Theorem 4 in [5].

The following two oscillation criteria (Theorem 2.3 and Theorem 2.4)
treat the cases when it is not possible to verify easily conditions (2.3)
or (2.15).

Lemma 2.1 (cf. [1]). Suppose that �(r) ∈ C([a,∞), [0,∞) ) is
nondecreasing with

∫ ∞
a
φ(s) ds = ∞. Then

(1)
1

α(r, a)

∫ r

a

φ(s)�(s) ds is nondecreasing in r;

(2) If
1

α(r, a)

∫ r

a

φ(s)�(s) ds is bounded on [a,∞), so is �(s).

Theorem 2.3. Let the functions φ, ρ, η be as in Theorem 2.1 such
that (2.1) and (2.2) hold. If

(2.17) lim
r→∞X(φ, θ1; r, a) > −∞

and

(2.18) lim
r→∞

1∫ r

a
h(s) ds

∫ r

a

h(s)
∫ r

a

θ1(u) du ds = ∞,

then equation (1.1) is oscillatory.
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Proof. Proceeding as the proof of Theorem 2.1, we have that (2.10)
and (2.11) hold for all r ≥ a. Thus, by (2.17), there exist constants M2

and b1 > a such that, for all r > b1,

1
α(r, a)

{∫ r

a

φ(s)Z(s) ds+
∫ r

a

φ(s)
∫ s

a

h(u)
[
Z(u) − g(u)

2h(u)

]
du ds

}

≤ Z(a) −X(φ, θ1; r, a ) ≤M2.

Now, we claim that

1
α(r, a)

∫ r

a

φ(s)
∫ s

a

h(u)
[
Z(u)− g(u)

2h(u)

]
du ds is bounded on [ b1,∞).

If not, by Lemma 2.1 (1), it tends to ∞ and so, for large r,

∫ r

a

φ(s)Z(s) ds+
1
2

∫ r

a

φ(s)
∫ s

a

h(u)
[
Z(u) − g(u)

2h(u)

]2

du ds

≤ α(r, a)
[
M2− 1

2α(r, a)

∫ r

a

φ(s)
∫ s

a

h(u)
[
Z(u)− g(u)

2h(u)

]2

du ds

]
< 0.

Next, one proceeds as in proof of Theorem 2.1 to contradict (2.2). So,
by Lemma 2.1 (2), we get, for r ≥ a

(2.19)
∫ r

a

h(u)
[
Z(u) − g(u)

2h(u)

]2

du <∞.

Thus, by (2.1), (2.10) and (2.19), there exist constants M3 > 0 and
b2 > a such that, for r ≥ b2,∫ r

a

θ1(s) ds ≤M3 − Z(r) ≤M3 −
[
Z(r) − g(r)

2h(r)

]

≤M3 +
∣∣∣∣Z(r) − g(r)

2h(r)

∣∣∣∣.
Hence
(2.20)∫ r

a

h(s)
∫ s

a

θ1(u) du ds ≤M3

∫ r

a

h(s) ds+
∫ r

a

h(s)
∣∣∣∣Z(s) − g(s)

2h(s)

∣∣∣∣ ds.
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The Schwartz inequality yields that∫ r

a

h(s)
∣∣∣∣Z(s) − g(s)

2h(s)

∣∣∣∣ ds
≤

[ ∫ r

a

h(s) ds
]1/2[ ∫ r

a

h(s)
[
Z(s) − g(s)

2h(s)

]2

ds

]1/2

.

This and (2.20) imply that

(2.21)
1∫ r

a
h(s) ds

∫ r

a

h(s)
∫ s

a

θ1(u) du ds ≤M2

+

[∫ r

a
h(s)

[
Z(s) − (g(s))/(2h(s))

]2
ds∫ r

a
h(s) ds

]1/2

.

Observing (2.19) and h(r) > 0 for r > a, we get that the right side of
(2.21) is bounded; this contradicts (2.18).

Procedure of the proof of Theorem 2.3, we can also prove the following
theorem.

Theorem 2.4. Let the functions φ, ρ, η be as in Theorem 2.1 such
that (2.2) holds. If

(2.22) lim
r→∞X(φ, θ2; r, a) > −∞

and

(2.23) lim
r→∞

1∫ r

a
h(s) ds

∫ r

a

h(s)
∫ r

a

θ2(u) du ds = ∞,

then equation (1.1) is oscillatory.

Remark 2.2. In order that (2.2) can be satisfied by a nonnegative
local integrable function φ, it is necessary that

∫ ∞
a
φ(s) ds = ∞.

Remark 2.3. It should be pointed out here that the term 1/(2k)B
appearing in (2.4) is very important. Without this term, our method
does not apply to equation (1.1), cf. [5, 7, 9 11, 13].
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Remark 2.4. The above results hold true if we replace condition (A1)
with the following one:

(A′
1) f ∈ C(R,R), yf(y) > 0 and f(y)/y ≥ k > 0 whenever y �= 0.

But in this case, the function p(x) should be nonnegative on Ω(a).

Finally, we present examples that illustrate the results of this paper.
These examples are new and not covered by any of the known criteria
in [5, 9 11, 13].

Example 2.1. Consider equation (1.1) with N = 2, where

(2.24)

A(x) = diag
(

1
|x| ,

1
|x|

)
, bi(x) =

1
|x| , i = 1, 2,

p(x) = e|x|
{

2 + cos |x| − 2|x| sin |x|
4|x|3/2

+
1

4|x|
}
,

f(y) = y + y3,

for x ∈ Ω(π/2). Let

η(r) = π r and ρ(r) = e−r,

then
g(r) = 0 and h(r) =

er

2π
.

A direct computation implies that

θ(r) = π

[
− r−1/2 sin r +

1
2
r−1/2(2 + cos r)

]
,

∫ r

π/2

θ(s) ds = π

[
r1/2(2 + cos r) − 2

(
π

2

)1/2 ]

≥ π

[
r1/2 − 2

(
π

2

)1/2 ]
.

Let φ(r) = r, δ = 0, then∫ r

π/2

φ(s)
β(s, (π/2))

ds =
1
2π

∫ r

π/2

s

[∫ s

π/2

u2

eu
du

]−1

ds

≥ 1
4π

[∫ r

π/2

u2

eu
du

]−1 ∫ r

π/2

s ds,
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1∫ r

π/2
φ(s) ds

∫ r

π/2

φ(s)
∫ s

π/2

θ(u) du ds

≥ π

r2 − (π/2)2

∫ r

π/2

[
s3/2 − 2

(
π

2

)1/2

s

]
ds.

So, all the hypotheses of Theorem 2.2 are satisfied, and hence equa-
tion (2.24) is oscillatory.

Example 2.2. Consider equation (1.1) with N ≥ 2 where

(2.25)
A(x) = diag (|x|1−N , · · · , |x|1−N ),
bi(x) = 0 for all i,

f(y) = y + y2N+1,

for x ∈ Ω(1). Let ρ(r) = 1 and η(r) = 0; then h(r) = 1/ωN ,
g(r) = 0. Choose p(x) with θ(r) = θ̄n(r) for r ∈ [2n − 1, 2n + 1),
n ∈ N0 = {1, 2, . . . }, and

θ̄n(r) =
∫

Sr

p(x) dσ

=

⎧⎪⎨
⎪⎩

0 if 2n− 1 ≤ r ≤ 2n,

2r − 4n+ 1 if 2n < r ≤ 2n+ (1/2),

−2r + 4(n+ 1) if 2n+ (1/2) < r < 2n+ 1,

then
∫ 2n+1

2n−1
θn(s) ds = 2 for n ∈ N0. We have, for r ∈ (2n+ 1, 2n+ 3),

∫ r

1

h(s)
∫ s

1

θ(u) du ds

=
1
ωN

[
n∑

i=1

∫ 2i+1

2i−1

∫ s

1

θ̄n(u) du ds+
∫ r

2n+1

∫ s

1

θ̄n(u) du ds

]

≥ 1
ωN

n∑
i=1

∫ 2i+1

2i−1

[ ∫ 3

1

+
∫ 5

3

+ · · · +
∫ 2i−1

2i−3

]
ds

=
n(n+ 1)
ωN

.



2094 Z. XU AND Y. XIA

Then
lim

r→∞
1∫ r

1
h(s) ds

∫ r

1

h(s)
∫ s

1

θ(u) du ds = ∞.

Choose

φ(s) =
{

1 if 2n− 1 ≤ s ≤ 2n,
0 if 2n < s ≤ 2n+ 1,

then ∫ r

1
φ(s)

∫ s

1
θ(u) du ds∫ r

1
φ(s) ds

= 0.

Further, for 0 < δ < 1 and 2n+ 1 ≤ r ≤ 2n+ 3,
∫ r

1

φ(s)[β(s, 1)]−1[α(s, a)]δ ds

=
1
ωN

∫ r

1

φ(s)
[∫ s

1

φ2(u) du
]−1( ∫ s

1

φ(u) du
)δ

du ds

=
1
ωN

[ ∫ 2

1

+
∫ 4

3

+ · · · +
∫ 2n

2n−1

+
∫ r

2n+1

]

≥ 1
δωN

[(
1δ − 0

)
+

(
2δ − 1δ

)
+ · · · + (

nδ − (n− 1)δ
)]

=
nδ

δωN
→ ∞ as r → ∞.

Thus, all assumptions of Theorem 3.3 are satisfied and equation (2.25)
is oscillatory.
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