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DYNAMICS OF PERMUTABLE
TRANSCENDENTAL ENTIRE FUNCTIONS

XIAOLING WANG, XINHOU HUA, CHUNG-CHUN YANG AND DEGUI YANG

ABSTRACT. Let f and g be two permutable transcendental
entire functions. Assume that f has the form

f(z) = p(z) + p1(z)eq1(z) + p2(z)eq2(z).

We shall investigate the dynamical properties of f and g and
show that they have the same Julia sets and Fatou sets, i.e.,
J(f) = J(g). This relates to an open question due to Baker.

1. Introduction and main results. Let f(z) be a transcendental
entire function, and denote by fn, n ∈ N , the nth iterate of f . The set
of normality, F (f), is defined to be the set of points, z ∈ C, such
that the sequence {fn} is normal in some neighborhood of z, and
J = J(f) = C − F (f). F (f) and J(f) are called the Fatou set and
Julia set of f , respectively. Clearly F (f) is open. It is well-known that
J(f) is a nonempty perfect set which coincides with C, or is nowhere
dense in C. For the basic results in the dynamical system theory of
transcendental functions, we refer the reader to books [12, 17], the
survey paper [2] and the papers of Fatou [9] and Julia [13].

In what follows, we shall use the following standard notations:

M(r, f) = max{|f(z)| : |z| = r},
m(r, f) = min{|f(z)| : |z| = r},

λ = λ(f) = lim sup
r→∞

log log M(r, f)
log r

,

ρ = ρ(f) = lim inf
r→∞

log log M(r, f)
log r

.
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We call them maximum modulus, minimum modulus, order of f
and lower order of f , respectively. We will use T (r, f) to denote the
Nevanlina characteristic of f , see for example [11] for an introduction
to Nevanlina theory.

A point a is called a singular value of f if it is either a critical value
or an asymptotic value of f . We denote by sing (f−1) the set of all
finite singular values of f :

sing (f−1) = {z ∈ C : z is a singularity of f−1}.

If the set sing (f−1) is bounded, then we say f is of bounded type. In
particular, if the set sing.(f−1) is finite, then f is of finite type, and we
denote this by f ∈ B and f ∈ S, respectively [2].

Let f and g denote two meromorphic functions. If

(1) f(g) = g(f),

then we call f and g permutable.

Theorem A [8, 21]. Let R1 and R2 be two permutable rational
functions. Then

1. F (R1) = F (R2) and J(R1) = J(R2);

2. if D is an attractive domain, a parabolic domain or a Siegel disk
of period m of R1, then it is also an attractive domain, a parabolic
domain or a Siegel disk of period m of R2, respectively.

Question 1 (Baker [1]). For two given distinct permutable transcen-
dental entire functions f and g, does it follow that F (f) = F (g)?

This is a difficult question to answer. So far, some answers to several
special cases or classes of functions of f and g are obtained. Firstly, we
recall the following two known results.

Theorem B ([1, 19]). Suppose that f and g are distinct permutable
transcendental entire functions, and g = af+b for some constant a �= 0.
Then F (f) = F (g).
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Theorem C [20]. Let f, g ∈ S and f ◦ g = g ◦ f . Then

1. J(f) = J(g);

2. If D is a superattractive stable domain, an attractive stable
domain, a parabolic stable domain or a Siegel disk of f , then D is also a
superattractive stable domain, an attractive stable domain, a parabolic
stable domain or a Siegel disk of g, respectively.

Theorem D [22]. Let f and g be two distinct permutable transcen-
dental entire functions and q(z) be a non-constant polynomial. Suppose
that q(g) = aq(f) + b, a( �= 0), b ∈ C. Then J(f) = J(g).

Theorem E [16]. If f and g are two permutable transcendental
entire functions, and there exists a non-constant polynomial Φ(x, y) in
both x and y such that Φ(f(z), g(z)) ≡ 0, then J(f) = J(g).

Theorem F [16]. Let f and g be two permutable transcendental
entire functions with λ(g) < ∞. If f(z) = p(z) + p1(z)eq(z), where
p(z), p1(z) and q(z) are polynomials, then g(z) = cf(z) + d for some
two constants c �= 0 and d.

From this theorem and Theorem B, we can easily get

Theorem 1. Let f and g be two permutable transcendental entire
functions with λ(g) < ∞, p(z), q(z) and r(z) be three polynomials.
Suppose that

f(z) = p(z) + q(z)er(z).

Then J(f) = J(g).

References [14, 15, 18, 19, 24] also studied the dynamics of two
transcendental entire functions.

In this paper, we shall prove the following results.

Theorem 2. Let f and g be two permutable transcendental entire
functions with λ(g) < ∞. Let p(z) and qi(z), i = 1, 2, be nonconstant
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polynomials and p1(z) �≡ 0 and p2(z) �≡ 0 be polynomials. Assume that

(2) f(z) = p(z) + p1(z)eq1(z) + p2(z)eq2(z).

Then J(f) = J(g).

Example 1. Let f(z) = z + γ sin z, g1(z) = z + γ sin z + 2kπ and
g2(z) = −z − γ sin z + 2kπ. Then f ◦ g1 = g1 ◦ f and f ◦ g2 = g2 ◦ f .
Here γ( �= 0) ∈ C and k ∈ Z.

Example 2. Let f(z) = z + γez, g(z) = z + γez + 2kπi. Then
f ◦ g = g ◦ f . Here γ( �= 0) ∈ C and k ∈ Z.

When p(z) is a constant, we have the following result.

Theorem 3. Let f and g be two permutable transcendental entire
functions with λ(g) < ∞ and

(3) f(z) = p + p1e
q1(z) + p2e

q2(z).

Let qi(z)(i = 1, 2) be nonconstant polynomials such that q′1/q′2 is not
constant. Assume that p, p1 �= 0 and p2 �= 0 are three constants. Then
J(f) = J(g).

Proof of Theorem 2.

Lemma 1 [10]. Let G0, G1, . . . , Gm and f be nonconstant entire
functions, and let h0, h0, . . . , hm, m ≥ 1, be nonzero meromorphic
functions. Suppose that K is a positive number and {ri} is an un-
bounded monotone increasing sequence of positive numbers such that,
for each j ≥ 1,

T (rj , hi) ≤ KT (rj , f), i = 0, . . . , m,

T (rj , f
′) ≤ (1 + o(1))T (rj, f).

If
h0G0(f) + h1G1(f) + · · · + hmGm(f) ≡ 0,



PERMUTABLE TRANSCENDENTAL ENTIRE FUNCTIONS 2045

then there exist polynomials {pj}, j = 0, 1, . . . , m, not all identically
zero such that

p0(z)G0(z) + p1(z)G1(z) + · · · + pm(z)Gm(z) ≡ 0.

Lemma 2 [5]. Let fj(z), j = 1, 2, 3, . . . n, and gj(z), j = 1, 2, 3, . . . n,
n ≥ 2, be two systems of entire functions satisfying the following
conditions:

1.
∑n

j=1 fj(z)egj(z) ≡ 0;

2. for 1 ≤ j, k ≤ n, j �= k, gj(z) − gk(z) is nonconstant;

3. for 1 ≤ h, k ≤ n, h �= k, 1 ≤ j ≤ n, T (r, fj) = o{T (r, egh−gk)}.
Then fj(z) ≡ 0(j = 1, 2, 3, . . . , n).

Lemma 3 [23]. Let f and g be two permutable entire functions
satisfying

1. λ(f) < ∞ and λ(g) < ∞;

2. ρ(f) > 0.

Then there exists a sequence {rj} tending to ∞ and a positive constant
K so that

T (rj , g
′) ≤ KT (rj , f) and T (rj , g

′′) ≤ KT (rj , f).

Proof of Theorem 2. If q1(z) − q2(z) is identically constant, then
Theorem 2 reduces to Theorem 1. Next we assume that with

q1(z) − q2(z) �≡ constant.

Note that ρ(f) = λ(f) = max{deg (q1), deg (q2)}. From (1) we have

(4) f ′(g) =
f ′

g′
g′(f)

and, hence,

(5) f ′′(g) =
f ′′g′ − f ′g′′

g′3
g′(f) +

(
f ′

g′

)2

g′′(f).
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From

(6) f(z) = p(z) + p1(z)eq1(z) + p2(z)eq2(z)

we get

(7) f ′(z) = p′(z)+[p′1(z)+p1(z)q′1(z)]eq1(z)+[p′2(z)+p2(z)q′2(z)]eq2(z)

and
(8)

f ′′(z) = p′′(z) + [p′′1(z) + 2p′1(z)q′1(z) + p1(z)q′′1 (z) + p1(z)q′1(z)2]eq1(z)

+ [p′′2(z) + 2p′2(z)q′2(z) + p2(z)q′′2 (z) + p2(z)q′2(z)2]eq2(z).

By eliminating the factors eq1(z) and eq2(z) from the three equations
(6), (7) and (8), we derive

(9) P2(z)f ′′(z) + P1(z)f ′(z) + P0(z)f(z) + P (z) = 0,

where

(10) P2 = p1p
′
2 − p′1p2 − p1p2(q′1 − q′2),

(11) P1 = − p1p
′′
2 + p′′1p2 − 2p1p

′
2q

′
2 + 2p′1p2q

′
1 + p1p2(q′′1 − q′′2 )

+ p1p2(q′21 − q′22 )

= −P ′
2 − P2(q′1 + q′2),

(12) P0 = −(p′′1 + 2p′1q
′
1 + p1q

′′
1 + p1q

′2
1 )(p′2 + p2q

′
2)

+ (p′′2 + 2p′2q
′
2 + p2q

′′
2 + p2q

′2
2 )(p′1 + p1q

′
1),

(13) P = p′′P2 + (p′′1 + 2p′1q
′
1 + p′1q

′′
1 + p1q

′2
1 )[(p′2 + p2q

′
2)p − p2p

′]
+ (p′′2 + 2p′2q

′
2 + p′2q

′′
2 + p2q

′2
2 )[−(p′1 + p1q

′
1)p + p1p

′].

Claim 1. P2 �≡ 0.

Proof of Claim 1. In fact, if, on the contrary, P2 ≡ 0, then

p1p
′
2 − p′1p2 = p1p2(q′1 − q′2),
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this contradicts the fact that q1(z)−q2(z) �≡ constant. Claim 1 follows.

Replacing z by g(z) in equation (9) yields

P2(g)f ′′(g) + P1(g)f ′(g) + P0(g)f(g) + P (g) = 0.

Combining this with (1), (4) and (5), we get

(14) P2(g)
(

f ′

g′

)2

g′′(f) +
[
P2(g)

f ′′g′ − f ′g′′

g′3
+ P1(g)

f ′

g′

]
g′(f)

+ P0(g)g(f) + P (g) = 0.

By Lemmas 1 and 3, there exist four polynomials Q(z), Q0(z), Q1(z)
and Q2(z), not all identically zero, such that

(15) Q2(z)g′′(z) + Q1(z)g′(z) + Q0(z)g(z) + Q(z) = 0.

Substituting z by f(z) in this equation, we get

(16) Q2(f)g′′(f) + Q1(f)g′(f) + Q0(f)g(f) + Q(f) = 0.

Eliminating the term g′′(f) from this and (14), we have

(17) H1g
′(f) + H0g(f) + H = 0,

where

(18) H1 = Q1(f)P2(g)
(

f ′

g′

)2

− Q2(f)
[
P2(g)

f ′′g′−f ′g′′

g′3
+ P1(g)

f ′

g′

]
,

(19) H0 = Q0(f)P2(g)
(

f ′

g′

)2

− Q2(f)P0(g),

(20) H = Q(f)P2(g)
(

f ′

g′

)2

− Q2(f)P (g).

From (1), (4) and (17) we deduce that

(21) H1
g′

f ′ f ′(g) + H0f(g) + H = 0.
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Replacing z by g(z) in the equations (6) and (7) first and then substi-
tuting them into (21), we obtain that

H1
g′

f ′ p′(g) + H0p(g) + H +
[
H1

g′

f ′ (p′1(g) + p1(g)q′1(g)) + H0p1(g)
]

× eq1(g) +
[
H1

g′

f ′ (p′2(g) + p2(g)q′2(g)) + H0p2(g)
]
eq2(g) = 0.

It follows from Lemmas 2 and 3 that

H1
g′

f ′ (p′1(g) + p1(g)q′1(g)) + H0p1(g) = 0(22)

and

H1
g′

f ′ (p′2(g) + p2(g)q′2(g)) + H0p2(g) = 0.(23)

Claim 2. H1 ≡ 0.

Proof of Claim 2. If H1 �≡ 0, then from (22) and (23) we get

p′1(g) + p1(g)q′1(g)
p1(g)

=
p′2(g) + p2(g)q′2(g)

p2(g)
if H0 �= 0

or
(p1(z)eq1(z))′ = 0 and (p2(z)eq2(z))′ = 0 if H0 = 0.

Thus

(24)
p′1(z)
p1(z)

+ q′1(z) =
p′2(z)
p2(z)

+ q′2(z)

or p1(z)eq1(z) = c1 and p2(z)eq2(z) = c2 for some constants c1 and
c2, which is a contradiction. But, from (24), we have p1(z)eq1(z) =
cp2(z)eq2(z) for some constant c. This obviously contradicts to the
assumptions of the theorem. Claim 2 follows.
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By Claim 2, (17) becomes H0f(g) + H = 0. It follows from Lemmas
2 and 3 again that H0 ≡ H ≡ 0. Hence,

Q1(f)P2(g)
(

f ′

g′

)2

− Q2(f)
[
P2(g)

f ′′g′ − f ′g′′

g′3
+ P1(g)

f ′

g′

]
= 0

(25)

Q0(f)P2(g)
(

f ′

g′

)2

− Q2(f)P0(g) = 0(26)

and

Q(f)P2(g)
(

f ′

g′

)2

− Q2(f)P (g) = 0.(27)

Claim 3. P0 �≡ 0.

Proof of Claim 3. If P0 ≡ 0, then from (12) we deduce that

(p′1 + p1q
′
1)′

p′1 + p1q′1
− (p′2 + p2q

′
2)′

p′2 + p2q′2
= q′1 − q′2,

which yields
p′1 + p1q

′
1

p′2 + p2q′2
= ceq1−q2

for some nonzero constant c; this implies that q1 − q2 is a constant, a
contradiction. Claim 3 follows.

Claim 4. Q2 �≡ 0.

Proof of Claim 4. Suppose on the contrary that Q2 ≡ 0. From
Claim 1 we know that P2 �≡ 0, then from (26) and (27) we get that
Q0 ≡ Q ≡ 0, and therefore Q1 ≡ 0 from (15), a contradiction. Claim 4
follows.

Claim 5. Q0 �≡ 0.

Proof of Claim 5. This follows from (26), Claim 3 and Claim 4.
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Note that the term with the highest degree in (12) is −p1p2q
′
1q

′
2(q′1 −

q′2), and the term with the highest degree in (13) is pp1p2q
′
1q

′
2(q

′
1 − q′2).

Since p(z) �≡ a constant, it follows from (12) and (13) that P (z) �≡ 0
and P0(z)/P (z) is not constant, and so, by (27), Q(z) �≡ 0. From (26)
and (27), we have

(28)
Q0(f)
Q(f)

=
P0(g)
P (g)

.

We rewrite this as

Q0(f)P (g) − Q(f)P0(g)
Q(f)P (g)

= 0

and consider two subcases.

If Q0(x)P (y) − Q(x)P0(y) is identically constant, then the constant
will be zero by the above equation. Thus,

Q0(x)P (y) = Q(x)P0(y)

for any x and y. In particular,

Q0(z)
Q(z)

=
P0(z)
P (z)

:= R(z)

for a rational function R(z). It follows from (28) that

R(f) = R(g).

Therefore, f = ±g + c for a constant c. By Theorem D, we get the
conclusion J(f) = J(g).

If Q0(x)P (y) − Q(x)P0(y) �≡ constant, then the conclusion follows
from this, (1) and Theorem F.

3. Proof of Theorem 3. Now we consider the case where p, p1 �= 0
and p2 �= 0 are three constants. From (12) and (13), we have

P (z) ≡ − pP0(z).
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By (28),
Q(z) ≡ − pQ0(z).

From (26), we get

(29)
(

f ′

g′

)2

=
Q2(f)P0(g)
Q0(f)P2(g)

.

By differentiating this equality, we derive that

(30)

f ′′g′ − f ′g′′

g′3
=

[Q′
2(f)Q0(f) − Q2(f)Q′

0(f)]P0(g)
2[Q0(f)]2P2(g)

+
[P ′

0(g)P2(g) − P0(g)P ′
2(g)]Q2(f)

2Q0(f)[P2(g)]2
· g′

f ′

= R1(f, g) + R2(f, g) · g′

f ′

where

R1(f, g) =
[Q′

2(f)Q0(f) − Q2(f)Q′
0(f)]P0(g)

2[Q0(f)]2P2(g)
(31)

and

R2(f, g) =
[P ′

0(g)P2(g) − P0(g)P ′
2(g)]Q2(f)

2Q0(f)[P2(g)]2
(32)

are two rational functions of f and g. Substituting (29) and (30) into
(25), we obtain that

(33)

Q1(f)Q2(f)P0(g)
Q0(f)

− Q2(f)P2(g)R1(f, g)

= Q2(f)P2(g)R2(f, g) · g′

f ′ + P1(g)Q2(f) · f ′

g′
.

Now squaring both sides of (33) and then substituting (29) into it, we
derive that

(34)

[
Q1(f)Q2(f)P0(g)

Q0(f)
− Q2(f)P2(g)R1(f, g)

]2

=
Q0(f)Q2(f)[P2(g)]3[R2(f, g)]2

P0(g)
+ 2P1(g)P2(g)[Q2(f)]2R2(f, g)

+
[P1(g)]2[Q2(f)]3P0(g)

Q0(f)P2(g)
.
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Substituting (31) and (32) into (34), then simplifying and rearranging
terms, we obtain that

(35) {2Q0(f)Q1(f) − [Q′
2(f)Q0(f) − Q2(f)Q′

0(f)]}2
P0(g)3P2(g)

= {2P0(g)P1(g) − [P ′
2(g)P0(g) − P2(g)P ′

0(g)]}2
Q0(f)3Q2(f).

Let
(36)

R(x, y) = {2Q0(x)Q1(x) − [Q′
2(x)Q0(x) − Q2(x)Q′

0(x)]}2
P0(y)3P2(y)

− {2P0(y)P1(y) − [P ′
2(y)P0(y) − P2(y)P ′

0(y)]}2
Q0(x)3Q2(x).

Then

(37) R(f, g) = 0.

If R(x, y) �≡ constant, then the conclusion follows from Theorem F. So
what we need to do is to show that R(x, y) �≡ constant.

Claim 6. R(x, y) �≡ constant.

Proof of Claim 6. If on the contrary R(x, y) ≡ constant, then by
(37), R(x, y) ≡ 0, and therefore

(38)
{2Q0(x)Q1(x) − [Q′

2(x)Q0(x) − Q2(x)Q′
0(x)]}2

Q0(x)3Q2(x)

≡ {2P0(y)P1(y) − [P ′
2(y)P0(y) − P2(y)P ′

0(y)]}2

P0(y)3P2(y)
.

If the left-hand side is a nonconstant rational function of x, then there
exist two different values a and b, and two different roots x1 and x2

such that

{2Q0(x1)Q1(x1) − [Q′
2(x1)Q0(x1) − Q2(x1)Q′

0(x1)]}2

Q0(x1)3Q2(x1)
≡ a

and

{2Q0(x2)Q1(x2) − [Q′
2(x2)Q0(x2) − Q2(x2)Q′

0(x2)]}2

Q0(x2)3Q2(x2)
≡ b.
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It follows from (38) that

a ≡ {2P0(y)P1(y) − [P ′
2(y)P0(y) − P2(y)P ′

0(y)]}2

P0(y)3P2(y)

and

b ≡ {2P0(y)P1(y) − [P ′
2(y)P0(y) − P2(y)P ′

0(y)]}2

P0(y)3P2(y)
;

this is a contradiction. Therefore, the left-hand side of (38) is a
constant, say c, and we have, by (38),

{2P0(y)P1(y) − [P ′
2(y)P0(y) − P2(y)P ′

0(y)]}2

P0(y)3P2(y)
≡ c.

Eliminating P1(y) by substituting (11) into the above equation, we get

(39)
[
P ′

0(y)
P0(y)

− 3
P ′

2(y)
P2(y)

− 2(q′1(y) + q′2(y))
]2

= c
P0(y)
P2(y)

.

Note that p, p1 �= 0 and p2 �= 0 are three constants. We deduce from
(10) and (12) that

P0 = − p1p2q
′
1q

′
2(q

′
1 − q′2), P2 = − p1p2q

′
1q

′
2.

Substituting these into (39), we have

(40)[
q′′1 (y)
q′1(y)

+
q′′2 (y)
q′2(y)

− 2
q′′1 (y) − q′′2 (y)
q′1(y) − q′2(y)

− 2(q′1(y) + q′2(y))
]2

= c q′1(y)q′2(y).

Note that
q′′1 (y)
q′1(y)

+
q′′2 (y)
q′2(y)

− 2
q′′1 (y) − q′′2 (y)
q′1(y) − q′2(y)

is a rational function and is of the form
a1

y − y1
+ · · · + ak

y − yk
,

note also that (q1(y)+q2(y))′ and q′1(y)q′2(y) are polynomials, it follows
from (40) that

q′′1 (y)
q′1(y)

+
q′′2 (y)
q′2(y)

− 2
q′′1 (y) − q′′2 (y)
q′1(y) − q′2(y)

≡ 0.
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Substituting this into (40) implies that

[−2(q′1(y) + q′2(y))]2 = c q′1(y)q′2(y).

This implies that q′1/q′2 is a constant, which contradicts the assumption
of the theorem.
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