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THE FROBENIUS NUMBER AND a-INVARIANT

HOSSEIN SABZROU AND FARHAD RAHMATI

ABSTRACT. We will give two different proofs for the fact
that the Frobenius number of a numerical semigroup is the a-
invariant of the semigroup algebra associated to it. These give
rise to two different algorithms for computing the Frobenius
number.

1. Introduction. Let A = {w1, . . . , wn} be a set of strictly positive
integers and Q a subsemigroup of N generated by A, i.e.,

Q = 〈A〉 = Nw1 + · · · + Nwn.

We say that Q is numerical if the greatest common divisor of A, gcd (A),
is equal to 1, or equivalently N \ Q is a finite set [9, Exercise 10.2.4].

For the numerical semigroup Q the largest integer f∗ not in Q is called
the Frobenius number of Q, and the problem of finding this number is
called the Frobenius problem. In other words, the problem is finding
the largest integer f∗ which cannot be written as a nonnegative integral
combination of the wi’s. Thus the Frobenius number is concerned with
a family of linear equations

∑
wixi = f , as f varies over all positive

integers. The Frobenius problem has been examined by many authors
([5, 6, 7]).

Let k be a field, k[x] := k[x1, . . . , xn] the polynomial ring over k,
A := [w1, . . . , wn] an integer 1 × n-matrix whose entries generate the
numerical semigroup Q, B an integer n×(n−1)-matrix whose columns
generate the lattice

LB := KerZA := {u ∈ Zn : Au = 0},
and k[Q] � k[tw1 , . . . , twn ] the semigroup algebra associated to Q. For
every u ∈ Zn we define the body

Pu := {v ∈ Rn−1 : Bv ≤ u}·
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Since the matrix B is homogeneous, this body is polytope [6, Proposi-
tion 2.1]. Two polytopes Pu and Pu′ are lattice translates of each other
if u − u′ ∈ LB. Disregarding lattice equivalence we write PC := Pu.
PC is called the polytope of fiber C ∈ Nn/LB [6, Construction 2.2].
The polytope PC is said to be a maximal lattice point free polytope if it
contains no lattice points in its interior, but every facet of it contains
at least one lattice point in its relative interior. We denote by T (B)
the set of all maximal lattice point free polytopes PC associated to the
matrix B.

In [7] the authors proved that

f∗ = max{Au : Pu is a maximal lattice point free polytope }−
n∑

i=1

wi,

where u varies over all integral vectors.

In this paper we will translate this formula to its algebraic counter-
part, Theorem 2.1. In fact, we will prove by two different methods that
for a numerical semigroup Q

f∗(Q) = a(k[Q]),

that is the Frobenius number of Q is the a-invariant of the semigroup
algebra k[Q]. We will use these methods to give two algorithms for
computing f∗.

In Section 2, we will give our first proof and algorithm which are
based on the highest minimal syzygies of the semigroup algebra k[Q].

In Section 3, we will give our second proof and algorithm which are
based on the Hilbert-Poincaré series of the semigroup algebra k[Q].

2. The highest minimal syzygies. For each monomial xu ∈ k[x],
we define deg Q(xu) = Au. Then the ring k[x] will have a Q-graded
structure. The defining ideal of the semigroup Q is the toric ideal IA [8,
Chapter 4] associated to A. The ring k[x] is ∗local [2, Definition 1.5.13]
and we can consider the minimal Q-graded free resolution of k[Q] over
k[x]. The highest minimal syzygies of k[Q] over k[x] are those which are
of the highest homological degree. Since k[Q] is one dimensional domain
it is Cohen-Macaulay k-algebra. Thus the projective dimension of k[Q]
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is codim(IA) and all the syzygies of homological degree codim (IA) will
be the highest minimal syzygies of k[Q] over k[x].

Theorem 2.1. With the above notations, suppose g1, . . . , gt are the
highest minimal syzygies of k[Q] over k[x] where t is Cohen-Macaulay
type of k[Q]. Then

f∗ = max{deg Q(gi) | i = 1, . . . , t} −
n∑

i=1

wi.

Proof. Let u ∈ Zn be such that Pu is a maximal lattice point
free polytope. We chose a lattice point v0 ∈ Pu and we consider
Pu − v0 = Pu′ , where u′ = u − Bv0 is a non-negative integer vector.
Thus Pu′ is equal to the maximal lattice point free polytope PC where
C is the fiber containing the monomial xu′

. Consequently, we have
Pu′ = PC ∈ T (B) and by [6, Theorem 3.2], k[Q] has the highest
minimal syzygy with Q-degree Au = Au′. Now the proof follows from
[6, Theorem 3.8].

The relationship between Theorem 2.1 and the a-invariant of k[Q] is
given in Remark 3.2. Our first algorithm is based on Theorem 2.1 and
goes as follows:

Algorithm 2.2.

Input: A strictly positive integer 1 × n-matrix A = [w1, . . . , wn].

Output: f∗, the Frobenius number of Q = Nw1 + · · · + Nwn.

Steps of the Algorithm:

1. Compute the toric ideal IA [4, Theorem 12.24], [8, Chapter 12].

2. Find Q-degree of each of the highest minimal syzygies of k[Q]
over k[x] by computing the minimal Q-graded free resolution of k[Q] �
k[x]/IA over k[x] [3].

3. Use Theorem 2.1 to compute f∗.

Example 2.3 [5]. Suppose A = [271, 277, 281, 283] and R =
k[t, x, y, z]. Using a computer algebra system one can see that

IA = 〈x2 − tz, y3 − xz2, t48 − xy2z43, t47x − y2z44, t47y − z46〉
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and the last term in the minimal Q-graded free resolution of k[Q] over
R is R(−13566) ⊕ R(−14134). Thus, using Theorem 2.1, we have

f∗ = max{13566, 14134} − 271 − 277 − 281 − 283 = 13022.

3. Hilbert-Poincaré series. Again we consider Q-graded k-algebra
k[Q] � k[x]/IA. Its Hilbert function and Hilbert-Poincaré series are
defined by

H(k[Q], i) = dimk k[Q]i

and

F (k[Q], t) =
∞∑

i=0

H(k[Q], i)ti,

respectively, where k[Q]i is the k-vector space generated by all mono-
mials of Q-degree i. By the Hilbert-Serre theorem, we know that

F (k[Q], t) =
h(t)∏n

i=1(1 − twi)

where h(t) ∈ Z[t]. The degree of F (k[Q], t) as a rational function is
denoted by a(k[Q]) and is called the a-invariant of k[Q] [9, Definition
4.1.5].

Theorem 3.1. With the above notations, we have

f∗(Q) = a(k[Q]).

Proof. Suppose θ(t) =
∑

i∈N\Q ti. Since Q is a numerical semi-
group, θ(t) is a polynomial and by definition of the Frobenius number,
deg θ(t) = f∗. Clearly, we have

F (k[Q], t) =
∑

j∈Q

tj =
1

1 − t
−

∑

i∈N\Q

ti

=
1

1 − t
− θ(t).
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By the Hilbert-Serre theorem we also have

F (k[Q], t) =
h(t)∏n

i=1(1 − twi)
.

Thus we conclude that

(1 − t)h(t) =
n∏

i=1

(1 − twi) − (1 − t)
n∏

i=1

(1 − twi)θ(t).

Since the degrees of the left- and right-hand side of the above equality
are the same, we have

1 + deg h(t) = 1 +
n∑

i=1

wi + deg θ(t).

This implies the result.

Remark 3.2. Theorem 3.1 together with [9, Proposition 4.2.3] will
give us another proof for the Theorem 2.1.

The second algorithm is based on Theorem 3.1 and goes as follows:

Algorithm 3.3.

Input: A strictly positive integer 1 × n-matrix A = [w1, . . . , wn].

Output: f∗, the Frobenius number of Q = Nw1 + · · · + Nwn.

Steps of the Algorithm:

1. Compute the toric ideal IA [4, Theorem 12.24], [8, Chapter 12].

2. Compute the Hilbert-Poincaré series of k[Q] [1], [4, Theorem
12.24].

3. Use Theorem 3.1 to compute f∗.

Example 3.4 (continued from Example 2.3). We can see that the
numerator of Hilbert-Poincaré series is

1 − t554 − t843 + t1397 − t13008 − t13014 − t13018 + t13285 + t13289

+ t13291 + t13295 − t13566 + t13580 − t14134.
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Thus, using Theorem 3.1, we have

f∗ = 14134 − 271 − 277 − 281 − 283 = 13022.
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(1997), 237 253.

2. W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge Univ. Press,
Cambridge, 1993.

3. A. Capani, G. Dominicis, G. Niesi and L. Robbiano, Computing minimal finite
free resolutions, J. Pure Appl. Algebra 117, 118 (1997), 105 117.

4. E. Miller and B. Sturmfels, Combinatorial commutative algebra, Vol. 227,
Springer-Verlag, New York, 2005.

5. R.W. Owens, An algorithm to solve the Frobenius problem, Math. Mag. 79
(2003), 264 275.

6. H. Sabzrou and F. Rahmati, Matrices defining Gorenstein lattice ideals, Rocky
Mountain J. Math. 35 (2005), 1029 1042.

7. H. Scarf and D. Shallcross, The Frobenius problem and maximal lattice free
bodies, Math. Oper. Res. 18 (1993), 511 515.
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