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ON ONE-COMPLEMENTED SUBSPACES OF
MINKOWSKI SPACES WITH SMOOTH RIESZ NORMS

BAS LEMMENS AND ONNO VAN GAANS

ABSTRACT. In this paper we study one-complemented
subspaces of Minkowski spaces. The main objective is to ex-
amine norms on Rn for which every one-complemented sub-
space has a block basis, i.e., a basis of vectors with mutually
disjoint supports. We introduce a collection of norms on Rn

and show that, for these norms, each one-complemented sub-
space has a block basis. This collection contains, among oth-
ers, finite sums of �p-norms, where 1 < p < ∞ and p �= 2, and
their duals. In the proofs an important role is played by the
derivative of the (scaled) duality map and, in particular, its
behavior near the coordinate planes.

1. Introduction. This paper concerns one-complemented subspaces
of Minkowski spaces, that is, subspaces of Rn that are the range of a
projection of norm one. A classic result of Kakutani [9] says that if X
is a real Banach space of dimension at least three, then X is Euclidean
if and only if every subspace of X is one-complemented. This implies
that the one-complemented subspaces of a Banach space that is not
Euclidean are somehow special. The special nature of these subspaces
is manifested in the following result, compare Bohnenblust [4] and
Lindenstrauss and Tzafriri [10, Theorem 2.a.4]. If Rn is equipped
with an lp-norm, where 1 < p < ∞ and p �= 2, then a subspace is one-
complemented if and only if it is the linear span of a family of vectors
with mutually disjoint supports. With this result in mind it is natural
to ask for which norms on Rn the one-complemented subspaces are
spanned by vectors with mutually disjoint supports.

This question has been examined in general Banach spaces. It is
known, for instance, to have a positive answer for Lp-spaces, where
1 ≤ p < ∞ and p �= 2, see Ando [1], Bernau and Lacey [3], Douglas
[7] and Tzafriri [17], and for some natural generalizations of Lp-
spaces such as Lorenz sequence spaces and Orlicz sequence spaces, see
Randrianantoanina [12 14, 16] and Jamison, Kamińska and Lewicki
[8]. On the other hand, there exist one-complemented subspaces of R3
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that do not admit such a basis if the norm is the �∞-norm, see [6].
An extensive overview of many of these results and related problems is
given in [15].

The purpose of this paper is to extend some of the ideas used by
Lindenstrauss and Tzafriri in the proof of Theorem 2.a.4 in [10].
This theorem asserts that a subspace of an lp-sequence space, where
1 < p < ∞ and p �= 2, is one-complemented if and only if it is spanned
by a set of vectors with mutually disjoint supports. The extension
allows us to introduce a class of norms on Rn and show that for these
norms each one-complemented subspace has a basis of vectors with
mutually disjoint supports. The class of norms include, among others,
positive linear combinations of lp-norms, where 1 < p < ∞ and p �= 2,
and their duals.

Besides the introduction the paper contains six sections. In Section 2
several definitions and basic facts are collected. Subsequently we
introduce in Section 3 a class of norms on Rn, denoted by Nn, and
show that for these norms each one-complemented subspace is spanned
by vectors with mutually disjoint supports. To decide whether a norm
belongs to Nn, one has to verify several properties of its dual norm.
As the dual norm is often not at hand this can be difficult. Therefore
we examine in Sections 4 and 5 simpler conditions for a norm to be
in Nn. In Section 6 the results are applied to sums of �p-norms. The
final section contains a proof of a technical lemma, which is used in
Section 5.

2. Basic definitions and facts. Vectors in Rn will sometimes be
viewed as functions from {1, . . . , n} to R. Accordingly we write xy for
the coordinate-wise product of x and y in Rn. The support of x ∈ Rn

is denoted by S(x) = {i : xi �= 0}. Further we let χ(x) denote the
indicator of the support of x, so χ(x)i = 1 if i ∈ S(x), and χ(x)i = 0
otherwise.

For simplicity, we say that a subspace R of Rn has a block basis if it
is the linear span of a set of vectors {v1, . . . , vk} in Rn, with mutually
disjoint supports, that is, the intersection of S(vi) with S(vj) is empty
for all i and j distinct. To verify that a subspace has a block basis one
can use the following simple observation.
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Lemma 2.1. For a subspace R of Rn, the following assertions are
equivalent:

(i) R has a block basis;

(ii) for every x, y ∈ R there exists z ∈ R with S(z) = S(x) ∩ S(y);

(iii) for every x, y ∈ R one has that χ(x)y ∈ R.

Let ρ be a norm on Rn. We say that ρ is a Ck-norm if ρ is k
times continuously differentiable on Rn \ {0}. We restrict ourselves to
strictly convex norms, that is, norms for which the unit sphere does
not contain any line-segments, or equivalently, ρ(x+y)/2 < 1 for every
distinct x and y with ρ(x) = ρ(y) = 1. The dual norm of ρ is denoted
by ρ∗, so ρ∗(y) = sup{〈x, y〉 : x ∈ Rn and ρ(x) ≤ 1} for all y ∈ Rn.
Here 〈·, ·〉 is the standard inner product on Rn. There exists a simple
relation between the differentiability of the norm and the geometry of
its dual. A norm ρ on Rn is a C1-norm if and only if its dual ρ∗

is strictly convex. Moreover ρ is a C1-norm if and only if for each
x ∈ Rn there exists a unique point x∗ ∈ Rn such that ρ∗(x∗) = ρ(x)
and 〈x, x∗〉 = ρ∗(x∗)ρ(x). The map Jρ : Rn → Rn given by Jρ(x) = x∗

is called the (scaled) duality map of ρ. Throughout the text we often
write x∗ instead of Jρ(x). The duality map has the following basic
properties, see [2] or [11].

Proposition 2.2. Let ρ be a C1-norm on Rn.

(i) The duality map Jρ : Rn → Rn satisfies Jρ(0) = 0 and

(1) Jρ(x) = (ρ∇ρ)(x) = ρ(x)∇ρ(x) for all x ∈ R \ {0}.

(ii) If ρ is strictly convex, then Jρ is a continuous bijection from Rn

to Rn with a continuous inverse. Moreover the inverse is Jρ∗ and

(2) (ρ∗∇ρ∗)((ρ∇ρ)(x)) = x for all x ∈ Rn \ {0}.

We will often consider norms that have a second derivative as well.
If ρ is C2 on an open subset V of Rn, then we denote its Hesse matrix
at x ∈ V by Hρ(x), so

Hρ(x)ij = (DiDjρ)(x).
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A special role will be played by the derivative of the duality map.
Observe that if ρ is a C2-norm on an open subset V of Rn, then ρ∇ρ
is C1 on V , and hence by Proposition 2.2 we see that Jρ is C1 on V .
We denote its derivative at x by Gρ(x), so

(3) Gρ(x) = D(ρ∇ρ)(x) = ∇ρ(x)∇ρ(x)�+ ρ(x)Hρ(x) for all x∈V.

Note that Gρ(x) is a symmetric matrix, as ρ is a C2-norm, and that
Gρ(x) is positive semi-definite, since ρ is a nonnegative convex function.
By applying the inverse function theorem and the chain rule to equation
(2), one can establish the following lemma.

Lemma 2.3. Let ρ be a strictly convex C1-norm on Rn. If ρ is C2

on an open set V , then ρ∗ is C2 on Jρ(V ) if and only if detGρ(x) �= 0
for all x ∈ V . Moreover, in that case, one has that Gρ∗(x∗)Gρ(x) = I
for all x ∈ V .

3. One-complemented subspaces. In this section we give an
abstract theorem on one-complemented subspaces of Rn. The ideas
behind this theorem can be conveniently outlined by considering lp-
norms. Let ρ be an lp-norm on Rn with p ≥ 2. Then both ρ and ρ∗ are
C2 on U = {x ∈ Rn : xi �= 0 for all i}. Moreover, if p > 2 and x ∈ Rn

with xi = 0, then the ith row and column of Gρ(x) are zero. If x ∈ U ,
then Lemma 2.3 yields that detGρ(x) �= 0 and Gρ∗(x∗)Gρ(x) = I. By
using these observations it is not difficult to show that

lim
m→∞Gρ∗(u∗

m)Gρ(x) = Diag (χ(x))

for x �= 0 and (um)m a sequence in U with um → x. Further, if R is
a one-complemented subspace of Rn under ρ, then one can prove that
Gρ∗(u∗

m)Gρ(x)y is in R whenever x, y ∈ R and um ∈ U ∩ R for all m.
Now if R contains a vector with full support, then for every x in R the
set U ∩ R contains a sequence that converges to x, and hence we find
that χ(x)y ∈ R for all x, y ∈ R. If R does not contain a vector with
full support the same arguments can be used after a reduction of the
dimension. It turns out that the above ideas can be applied to more
general norms on Rn than lp-norms. Indeed we will see that the ideas
also work for the following class of norms.
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Definition 3.1. Let Nn be the set of all strictly convex C2-norms
ρ on Rn such that ρ∗ is C2 on Jρ(U), where U = {x ∈ Rn : xi �=
0 for all i}. Moreover, it is required that for every x �= 0 and every
sequence (um)m in U with um → x, one has that

(a) Gρ(x)ij = 0 for every i �∈ S(x) and 1 ≤ j ≤ n,

(b) Gρ∗(u∗
m)ij converges for all i, j ∈ S(x) as m → ∞ , and

(c) Gρ∗(u∗
m)ij converges to 0 for every i ∈ S(x) and j /∈ S(x) as

m → ∞.

It is not hard to verify that an lp-norm is in Nn if p > 2. For more
general norms, however, it can be rather difficult to verify the properties
of the dual norm. In Section 5 we will see how to partly overcome this
problem. We now state the main theorem of this section.

Theorem 3.2. If ρ is a norm in Nn and R is a one-complemented
subspace of Rn under ρ, then R has a block basis.

The proof of the theorem is based on three lemmas, which will be
discussed first.

Lemma 3.3. If ρ is a C1-norm on Rn, and R is a one-complemented
subspace of Rn under ρ, then the following assertions are true:

(i) Jρ(R) is a linear subspace;

(ii) if ρ is C2 on an open set V , then Gρ(x)y ∈ Jρ(R) for every
x ∈ V ∩ R and y ∈ R.

Proof. Let P : Rn → Rn be a projection of ρ-norm one and range R.
We remark that the transpose P� of P is a projection of ρ∗-norm one.
Indeed, 〈x, P�y〉 = 〈Px, y〉 ≤ ρ(Px)ρ∗(y) ≤ ρ(x)ρ∗(y), so that

(4) ρ∗(P�y) = sup{〈x, P�y〉 : ρ(x) ≤ 1} ≤ ρ∗(y) for y ∈ Rn.

To prove the first assertion, we show that Jρ(R) is the range of P�. So
let x ∈ R, and observe that

ρ(x)ρ∗(x∗) = 〈x, x∗〉 = 〈Px, x∗〉 = 〈x, P�x∗〉 ≤ ρ(x)ρ∗(P�x∗).
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Combining this inequality with equation (4) yields ρ∗(P�x∗) = ρ∗(x∗)
and 〈x, x∗〉 = ρ(x)ρ∗(P�x∗). As ρ is a C1-norm, this gives P�x∗ = x∗.
Thus, Jρ(R) is a subset of the range of P�.

Now let R(P�) denote the range of P�. By duality we have that
Jρ∗(R(P�)) is contained in R. Now using (ii) in Proposition 2.2, we
find that R(P�) ⊂ Jρ(R), and hence Jρ(R) is the range of P�.

To prove the second assertion, let x ∈ V ∩R and y ∈ R. As Jρ(R) is
a linear subspace we see that

Gρ(x)y = lim
t→0

ρ(x + ty)∇ρ(x + ty) − ρ(x)∇ρ(x)
t

= lim
t→0

Jρ(x + ty) − Jρ(x)
t

is in Jρ(R), which completes the proof.

We would like to mention that the converse of the first assertion in
the previous lemma also holds, see Calvert [5].

Lemma 3.4. Let ρ be a norm in Nn and let x ∈ Rn with x �= 0.
If (um)m is a sequence in U = {z ∈ Rn : zi �= 0 for all i} such that
um → x as m → ∞, then

(5) lim
m→∞Gρ∗(u∗

m)Gρ(x) = Diag (χ(x)).

Proof. First let i, j ∈ S(x). By property (b) in Definition 3.1, we can
define numbers aij = limm→∞ Gρ∗(u∗

m)ij . From Lemma 2.3, it follows
that

n∑
l=1

Gρ∗(u∗
m)ilGρ(um)lj = δij for all m.

By letting m → ∞ in the previous equality, and using property (a) in
Definition 3.1, we deduce that

(6)
∑

l∈S(x)

ailGρ(x)lj = δij for all i, j ∈ S(x).
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Thus we find for every i, j ∈ S(x) that

lim
m→∞(Gρ∗(u∗

m)Gρ(x))ij = lim
m→∞

∑
l∈S(x)

Gρ∗(u∗
m)ilGρ(x)lj

=
∑

l∈S(x)

ailGρ(x)lj = δij .

Now let i ∈ S(x) and j /∈ S(x). We remark that Gρ(x) is symmetric,
as ρ is a C2-norm. Exploiting this fact and property (a) shows that

Gρ∗(u∗
m)ilGρ(x)lj = Gρ∗(u∗

m)ilGρ(x)jl = 0 for all m.

Therefore limm→∞(Gρ∗(u∗
m)Gρ(x))ij = 0 for i ∈ S(x) and j /∈ S(x).

Finally, let i /∈ S(x) and 1 ≤ j ≤ n. As ρ∗ is C2 on Jρ(U) the matrix
Gρ∗(u∗

m) is symmetric for all m. Therefore we can use properties (a)
and (c) to obtain

(7)

lim
m→∞(Gρ∗(u∗

m)Gρ(x))ij

= lim
m→∞

( ∑
l∈S(x)

Gρ∗(u∗
m)liGρ(x)lj +

∑
l �∈S(x)

Gρ∗(u∗
m)ilGρ(x)lj

)

= 0.

By collecting the pieces we find that limm→∞ Gρ∗(u∗
m)Gρ(x) =

Diag (χ(x)).

The following technical lemma is used to reduce the dimension in the
proof of Theorem 3.2.

Lemma 3.5. Let ρ be a norm on Rn, and let 1 ≤ k ≤ n. Suppose
η : Rk → R is defined by η(x) = ρ(x̄) for all x ∈ Rk, where x̄i = xi

for 1 ≤ i ≤ k, and x̄i = 0 otherwise. If ρ ∈ Nn, then η ∈ N k.

Proof. Since ρ is a strictly convex C2-norm on Rn, it follows directly
from the definition of η that η is a strictly convex C2-norm on Rk.
Moreover,

Gη(x)ij = Gρ(x̄)ij for all 1 ≤ i, j ≤ k and x ∈ Rk.
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Let W = {x ∈ Rk : xi �= 0 for all i}. To show that η∗ is C2 on Jη(W ),
we fix v ∈ W . By mixing sequences it follows from (b) in Definition 3.1
that, if 1 ≤ i, j ≤ k, then Gρ∗(u∗

m)ij converges to the same limit, say
aij , for every sequence (um)m in U = {x ∈ Rn : xi �= 0 for all i} with
um → v̄.

Let A(v) = (aij) and put B(v) = (Gρ(v̄)ij), where 1 ≤ i, j ≤ k.
By property (a) we know that Gρ(v̄)ij = 0 for all k < i ≤ n and
1 ≤ j ≤ n, and hence A(v)B(v) = I by Lemma 3.4. This implies that
detB(v) �= 0. We now remark that B(v) = Gη(v), so that we can apply
Lemma 2.3 to see that η∗ is C2 on Jη(W ). Moreover,

(8) Gη∗(v∗) = Gη(v)−1 = B(v)−1 = A(v).

We conclude the proof by verifying the properties (a), (b), and (c)
for η. Let x ∈ Rk and x �= 0. Clearly Gη(x)ij = 0, if i �∈ S(x) and
1 ≤ j ≤ k, because Gη(x)ij = Gρ(x̄)ij = 0 if i �∈ S(x̄) = S(x) and
1 ≤ j ≤ n.

Let (wm)m be a sequence in W such that wm → x, where x �= 0. Then
we know from property (b) for ρ that Gρ∗((wm, ε, . . . , ε)∗)ij converges
to A(wm)ij , as ε → 0 for each m ≥ 1 and 1 ≤ i, j ≤ k. It follows from
(8) that Gη∗(w∗

m)ij = A(wm)ij for all 1 ≤ i, j ≤ k and m ≥ 1. Thus,
for each m ≥ 1, there exists εm > 0 such that

|Gρ∗((wm, εm, . . . , εm)∗)ij − Gη∗(w∗
m)ij | < 1/m for all 1 ≤ i, j ≤ k.

Combining this inequality with (b) and (c) for ρ gives that Gη∗(w∗
m)ij

converges for each i, j ∈ S(x), and Gη∗(w∗
m)ij converges to 0 for all

i ∈ S(x) and j �∈ S(x).

By applying the previous lemmas we can now prove Theorem 3.2.

Proof of Theorem 3.2. Let R be a one-complemented subspace of
Rn under ρ. Then there exists a projection P : Rn → Rn of ρ-
norm one and range R. Let I = {i : xi �= 0 for some x ∈ R}. By
relabeling we may assume that I = {1, . . . , k} for a certain 1 ≤ k ≤ n.
Define η : Rk → R by η(x) = ρ(x̄), where x̄i = xi for 1 ≤ i ≤ k,
and x̄i = 0 otherwise. Further, let S = {x ∈ Rk : x̄ ∈ R}. It is
easy to see that S is a one-complemented subspace of Rk under η.
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Indeed define Q : Rk → Rk by (Qx)i = (P x̄)i for 1 ≤ i ≤ k and
x ∈ Rk. Observe that Qx = P x̄, as (P x̄)i = 0 for all i > k. Therefore,
Qx = x if and only if P x̄ = x̄, so that S is the set of fixed points of
Q. Moreover, (Q(Qx))i = (PP x̄)i = (P x̄)i = (Qx)i for 1 ≤ i ≤ k, and
η(Qx) = ρ(P x̄) ≤ ρ(x̄) = η(x) for x ∈ Rk. Thus, we conclude that Q
is a projection of η-norm at most one and range S.

Now let x, y ∈ S. By taking a suitable linear combination of elements
of R we can find a vector in R with support {1, . . . , k}, so that S
contains a vector with all its entries nonzero. Therefore we can find
a sequence (wm)m in the intersection of S with W = {z ∈ Rk : zi �=
0 for all 1 ≤ i ≤ k} such that wm → x as m → ∞. We know by
Lemma 3.5 that η ∈ N k, and hence Gη(x)y ∈ Jη(S) by Lemma 3.3.
Applying Lemma 3.3 again for η∗ and recalling that Jη∗ is the inverse
of Jη gives Gη∗(w∗

m)Gη(x)y ∈ S for all m. Consequently, Lemma 3.4
yields that

lim
m→∞Gη∗(w∗

m)Gη(x)y = χ(x)y ∈ S.

Using Lemma 2.1 we find that S has a block basis, and from this it
follows that R has a block basis.

If ρ is a Riesz norm, the assertion in Theorem 3.2 is also true if the
conditions are satisfied by ρ∗ instead of ρ. Recall that a norm ρ on Rn

is a Riesz norm if ρ(x) ≤ ρ(y) for all x, y ∈ Rn with |x| ≤ |y|. The
proof of the corollary uses the fact that the dual norm of a Riesz norm
is again a Riesz norm.

Corollary 3.6. If ρ is a Riesz norm on Rn and ρ∗ ∈ Nn, then
every one-complemented subspace of Rn under ρ has a block basis.

Proof. Let P : Rn → Rn be a projection of ρ-norm one and range
R. Then P� : Rn → Rn is a projection with ρ∗-norm one and range
Jρ(R). From Theorem 3.2 it follows that Jρ(R) has a block basis.

Now let x, y ∈ R. We will show that there exists z ∈ R such that
S(z) = S(x)∩S(y). As Jρ(R) has a block basis we know by Lemma 2.1
that there exists w ∈ Jρ(R) such that S(w) = S(x∗) ∩ S(y∗). Put
z = Jρ∗(w) and remark that z ∈ R. Now it suffices to prove that
S(v) = S(v∗) for all v ∈ Rn. So let v ∈ Rn. Put u = sgn (v)|v∗|,
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where sgn (v)i = 1 if vi > 0, sgn (v)i = −1 if vi < 0, and sgn (v)i = 0
otherwise. Since ρ is a Riesz norm, so is ρ∗, and hence ρ∗(u) ≤ ρ∗(v∗).
This implies that

〈v, u〉 = 〈|v|, |v∗|〉 ≥ 〈v, v∗〉 = ρ(v)ρ∗(v∗) ≥ ρ(v)ρ∗(u).

Therefore v∗ = u and hence S(v∗) is contained in S(v). The other
inclusion is obtained by using duality, and this completes the proof.

4. A matrix lemma. To apply Theorem 3.2 one needs to decide if
ρ satisfies the properties in Definition 3.1. A major difficulty is to verify
the properties for the dual of ρ. For instance, if ρ is a positive linear
combination of �p-norms, then it is not clear what the dual of ρ is, and
hence there is no direct way to verify the properties. It is therefore
useful to find assumptions for ρ that yield the properties for ρ∗. In this
section a matrix lemma is presented that will help to formulate such
conditions for ρ. This lemma is of a purely linear algebraic nature and
is more or less independent of the main issue of the paper.

Before we give the lemma it is convenient to introduce the following
technical definition.

Definition 4.1. A sequence of n × n matrices (A(m))m, where
A(m) = (a(m)ij), is said to behave well relative to S ⊂ {1, . . . , n} if

(1) (a(m)ij)i,j∈S converges to an invertible matrix,

(2) a(m)ii �= 0 for all i /∈ S and m large,

(3) a(m)ij/a(m)ii → 0 as m → ∞ for all i /∈ S and j �= i,

(4) a(m)ij → 0 as m → ∞ for all i ∈ S and j /∈ S.

The matrix lemma can now be stated as follows.

Lemma 4.2. Let (A(m))m and (B(m))m be two sequences of n × n
matrices, and let S ⊂ {1, . . . , n}. If B(m)A(m) = I for all m, then
(A(m))m behaves well relative to S if and only if (B(m)�)m behaves
well relative to S. In that case b(m)iia(m)ii → 1 for all i /∈ S and
limm→∞(B(m)A(m))i,j∈S = I.
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Proof. As A(m)�B(m)� = (B(m)A(m))� = I, it suffices to prove
one implication of the equivalence. So suppose that (A(m))m behaves
well relative to S. Without loss of generality, we may assume that
S = {1, . . . , k}. Next we divide the matrices in blocks in the following
manner:

A(m) =
(

A11(m) A12(m)
A21(m) A22(m)

)

and

B(m) =
(

B11(m) B12(m)
B21(m) B22(m)

)
,

where A11(m) and B11(m) are k×k matrices, and A22(m) and B22(m)
are (n − k) × (n − k) matrices. Define for each m ≥ 1 the matrix

C(m) =
(

A11(m) 0
0 C22(m)

)
,

where C22(m) = Diag (a(m)(n−k)(n−k), . . . , a(m)nn). From property
(1) in Definition 4.1 it follows that A = limm→∞ A11(m) is invertible.
Therefore A11(m) is invertible for all m sufficiently large, and hence
A11(m)−1 → A−1 as m → ∞. Consequently A11(m)−1 is bounded.
Since

C(m)−1(A(m) − C(m))

=
(

0 A(m)−1
11 A12(m)

C22(m)−1A21(m) C(m)−1
22 (A22(m) − C22(m))

)

and (A(m))m behaves well relative to S, we deduce that (C(m)−1(A(m)
−C(m)))ij → 0 as m → ∞ for all 1 ≤ i, j ≤ n. Indeed, A12(m) → 0 by
property (4) and the n− k bottom rows converge to 0 by property (3).
Thus, ‖I − C(m)−1A(m)‖ < 1 for all m sufficiently large, so that
C(m)−1A(m) is invertible and

‖I − A(m)−1C(m)‖ =
∥∥∥∥

∞∑
i=1

(I − C(m)−1A(m))i

∥∥∥∥
≤ ‖I − C(m)−1A(m)‖

1 − ‖I − C(m)−1A(m)‖ .
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As the righthand side converges to 0 as m → ∞, and B(m)A(m) = I
for all m, we find that ‖I −B(m)C(m)‖ → 0. From this, we obtain the
following four relations as m → ∞:

B11(m)A11(m) −→ I, B22(m)C22(m) −→ I,

B12(m)C22(m) −→ 0, B21(m)A11(m) −→ 0.

The first relation implies that B11(m) → A−1, and hence (B(m)�ij)i,j∈S

converges to an invertible matrix. Moreover b(m)iia(m)ii → 1 for all
i /∈ S by the second relation, so that b(m)ii �= 0 for all m large.

Recall that (A11(m)−1)m is bounded. Therefore it follows from the
last relation that B21(m) = B21(m)A11(m)A11(m)−1 → 0, and thus
b(m)ij → 0 for all i /∈ S and j ∈ S. Hence (B(m)�)m satisfies property
(4) in Definition 4.1.

To prove property (3) in Definition 4.1, we remark that b(m)ij ×
a(m)jj → 0 for all i, j /∈ S and i �= j by the second relation. As
b(m)jja(m)jj → 1 for all j /∈ S, we see that b(m)ij/b(m)jj → 0
for all i, j /∈ S and i �= j. Furthermore, it follows from the third
relation that b(m)ija(m)jj → 0 for i ∈ S and j /∈ S, and hence we
find that b(m)ij/b(m)jj → 0 for i ∈ S and j /∈ S. Thus (B(m)�)m

satisfies property (3) in Definition 4.1, and hence (B(m)�)m behaves
well relative to S.

To conclude this section we remark that, if both (A(m))m and
(B(m))m are sequences of symmetric matrices, and B(m)A(m) = I
for each m ≥ 1, then (A(m))m behaves well relative to S if and only if
(B(m))m behaves well relative to S.

5. Sufficient conditions to be in Nn. The main objective of
this section is to give conditions for a norm ρ to be in Nn, which can
be verified without any knowledge of its dual norm. In fact, we define
another class of norms, and show that this class is contained in Nn.
Let Nn

0 be the collection of strictly convex C1-norms ρ on Rn such
that ρ is a Riesz norm, ρ is C2 on U = {x ∈ Rn : xi �= 0 for all i}, and
detGρ(x) �= 0 for all x ∈ U .

Definition 5.1. A norm ρ ∈ Nn
0 is said to be in Nn

1 if for every
x ∈ Rn \ {0} and every sequence (um)m in U , with um → x, the
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sequence (Gρ(um))m behaves well relative to S(x), and Gρ(um)ii → 0
for all i /∈ S(x). It is said to be in Nn

2 if, for every x ∈ Rn \ {0} and
every sequence (um)m in U , with um → x, the sequence (Gρ(um))m

behaves well relative to S(x), and Gρ(um)ii → ∞ for all i /∈ S(x).

We will see that Nn
1 is contained in Nn. But before we discuss this

inclusion we first show that Nn
1 is dual to Nn

2 .

Lemma 5.2. A norm ρ belongs to Nn
1 if and only if ρ∗ belongs to

Nn
2 .

Proof. Let ρ be in Nn
0 . Then we know from general theory that ρ∗ is

a strictly convex C1-norm on Rn, and that ρ∗ is a Riesz norm. Since
detGρ(x) �= 0 for all x ∈ U , Lemma 2.3 implies that ρ∗ is a C2 function
on Jρ(U). As ρ∗ is a Riesz norm, Jρ(U) = U , so that ρ∗ is C2 on U .

Further, Gρ∗(u∗)Gρ(u) = I for all u ∈ U by Lemma 2.3. This implies
that Gρ∗(u) is invertible for all u ∈ U , as Jρ(U) = U . Therefore
detGρ∗(u) �= 0 for all u ∈ U . Thus, ρ∗ ∈ Nn

0 and by duality we
conclude that ρ ∈ Nn

0 if and only if ρ∗ ∈ Nn
0 .

Now let ρ ∈ Nn
1 . From the previous paragraph it follows that

ρ∗ ∈ Nn
0 . Let y ∈ Rn \ {0} and (vm)m be a sequence in U with

vm → y. Let x = J−1
ρ (y) and, for each m ≥ 1, let um = J−1

ρ (vm).
Clearly, (um)m in U and um → x. Furthermore, S(x) = S(y), since ρ
is a Riesz norm. By Lemma 2.3 we have that Gρ∗(vm)Gρ(um) = I for
all m ≥ 1. We remark that both Gρ∗(vm) and Gρ(um) are symmetric
for all m ≥ 1. Therefore, Lemma 4.2 implies that (Gρ∗(vm))m behaves
well relative to S(x) = S(y). Moreover,

(10) Gρ∗(vm)iiGρ(um)ii −→ 1 for all i /∈ S(y).

To infer that Gρ∗(vm)ii → ∞ for all i /∈ S(y), we remark that Gρ(um)
is invertible for all m ≥ 1. Combining this with the fact that Gρ(um)
is positive semi-definite implies that Gρ(um) is positive definite for all
m ≥ 1. Therefore Gρ(um)ii > 0 for all i /∈ S(x) and m ≥ 1. Now (10)
and the fact that Gρ(um)ii → 0 for i /∈ S(x) yields that Gρ∗(vm)ii → ∞
for all i /∈ S(y). Thus we find that ρ∗ ∈ Nn

2 . The other implication
can be proved in a similar fashion.
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Next we show that every norm in Nn
1 belongs to Nn. The greater

part of the proof of this inclusion consists of showing that a norm in
Nn

1 is a C2-norm. To establish this fact some arguments from analysis
are required and for the reader’s convenience we prove it separately in
Section 7.

Lemma 5.3. Every norm in Nn
1 is a C2-norm.

Using this lemma we now show that every norm in Nn
1 is in Nn.

Proposition 5.4. Every norm in Nn
1 belongs to Nn.

Proof. Let ρ ∈ Nn
1 . It follows from Lemma 5.3 that ρ is a C2-

norm. Hence, Gρ(x) is continuous. Furthermore Lemma 5.2 implies
that ρ∗ ∈ Nn

2 , so that ρ∗ is C2 on U = {x ∈ Rn : xi �= 0 for all i}.
Now let x �= 0 and (um)m be a sequence in U with um → x. From
property (3) in Definition 4.1 it follows that Gρ(um)ij → 0 for all
i /∈ S(x) and j �= i, because Gρ(um)ii → 0 if i /∈ S(x). Thus
Gρ(x)ij = limm→∞ Gρ(um)ij = 0 for all i /∈ S(x) and 1 ≤ j ≤ n.
This proves the first property in Definition 3.1.

To establish the second property, we remark that u∗
m ∈ U for

all m and u∗
m → x∗, so that by property (1) in Definition 4.1

(Gρ∗(u∗
m))i,j∈S(x∗) converges to an invertible matrix. Since S(x) =

S(x∗), this implies that (Gρ∗(u∗
m))ij converges for all i, j ∈ S(x). The

third property is an immediate consequence of property (4) in Defini-
tion 4.1 for Gρ∗(u∗

m), and this completes the proof.

A combination of Theorem 3.2, Corollary 3.6 and Proposition 5.4
yields the following corollary.

Corollary 5.5. If R is a one-complemented subspace in Rn under
ρ, and ρ is in Nn

1 or Nn
2 , then R has a block basis.

6. Sums of �p-norms. In this section the previous results are
applied to positive linear combinations of �p-norms. In particular, the
following theorem is proved.
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Theorem 6.1. Let α1, . . . , αr > 0 and let p1, . . . , pr ∈ (1,∞).
Suppose that η(x) =

∑r
k=1 αkρk(x) for all x ∈ Rn, where ρk is the

�p-norm on Rn with p = pk. If min{p1, . . . , pr} �= 2, then every one-
complemented subspace of Rn under η has a block basis. Moreover,
η ∈ Nn

1 if min{p1, . . . , pr} > 2, and η ∈ Nn
2 if min{p1, . . . , pr} < 2.

Proof. By Corollary 5.5 it suffices to show the second assertion. We
remark that ρk ∈ Nn

0 for 1 ≤ k ≤ r. Indeed, as ρk is an �p-norm on Rn

with 1 < p < ∞, it is clear that ρk is a strictly convex C1-norm, and
ρk is C2 on U = {x ∈ Rn : xi �= 0 for all i}. Moreover, ρk is Riesz, so
that Jρk

(U) = U . As ρ∗k is again an �p-norm with 1 < p < ∞, we can
apply Lemma 2.3 to see that detGρk

(u) �= 0 for all u ∈ U .

Thus, to prove that η ∈ Nn
0 , it suffices to show that if ρ, γ ∈ Nn

0 ,
then ρ + γ ∈ Nn

0 . Clearly ρ + γ is a C1-norm and it is C2 on U . It is
also straightforward to verify that ρ+γ is a strictly convex Riesz norm.
To see that detGρ+γ(u) �= 0 for all u ∈ U , observe that

(11) Gρ+γ(u) = Gρ(u) + Gγ(u) + Hργ(u) for all u ∈ U.

The matrices Gρ(u) and Gγ(u) are positive semi-definite and invertible
for each u ∈ U , and hence both positive definite. As ρ and γ are
both nonnegative convex functions, the matrix Hργ(u) is positive semi-
definite for u ∈ U . Therefore, Gρ+γ(u) is positive definite and hence
detGρ+γ(u) �= 0 for all u ∈ U , which proves that ρ + γ ∈ Nn

0 .

Now, let x �= 0, and let (um)m be a sequence in U such that um → x.
Further, let S denote S(x). We show that if ρ and γ are norms in Nn

0

such that the matrices (Gρ(um))i,j∈S and (Gγ(um))i,j∈S converge to
an invertible matrix, then (Gρ+γ(um))i,j∈S converges to an invertible
matrix. Since ∇ρ and ∇γ are continuous, and

Gρ(u) = ∇ρ(u)∇ρ(u)� + ρ(u)Hρ(u)

and

Gγ(u) = ∇γ(u)∇γ(u)� + γ(u)Hγ(u) for all u ∈ U,

it follows that (Hρ(um))i,j∈S and (Hγ(um))i,j∈S are convergent. As

Hργ(u) = ∇ρ(u)∇γ(u)� + ∇γ(u)∇ρ(u)� + ρ(u)Hγ(u) + γ(u)Hρ(u)
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for all u ∈ U , this implies that (Hργ(um))i,j∈S converges. We remark
that, for each m ≥ 1, the matrix Hργ(um) is positive semi-definite, and
therefore (Hργ(um))i,j∈S converges to a positive semi-definite matrix.
Thus, it follows from (11) that (Gρ+γ(um))i,j∈S converges to a positive
definite matrix and hence its limit is invertible.

Now, if ρ is an �p-norm with p ∈ (1,∞) and (um)m a sequence
in U with um → x, then (Gρ(um))i,j∈S(x) converges to an invertible
matrix, and thus we conclude that (Gη(um))m satisfies property (1) in
Definition 4.1.

The other three properties in Definition 4.1 can be verified straight-
forwardly by using the following identity:

(12) Gη(u) =
∑
k,l

αkαl∇ρk(u)∇ρl(u)� +
∑
k,l

αkαlρk(u)Hρl
(u)

for u ∈ U , and remarking that for ρ an �p-norm:

(13) (Diρ)(u) = sgn (ui)|ui|p−1‖u‖1−p
p ,

(14) (DiDjρ)(u) = (1−p)sgn (ui)sgn (uj)|uiuj |p−1‖u‖1−2p
p , for i �= j,

and

(15) (DiDiρ)(u) = (p−1)|ui|p−2‖u‖1−p
p (1 − |ui|p‖u‖−p

p ).

Thus, we conclude that (Gη(um))m behaves well relative to S(x).

From (15) we see that Gρ(um)ii → 0 for all i /∈ S(x), if ρ is an �p-norm
with p ∈ (2,∞). On the other hand, if p ∈ (1, 2), then Gρ(um)ii → ∞
for all i /∈ S(x). Thus, η ∈ Nn

1 if min{p1, . . . , pr} > 2, and η ∈ Nn
2 if

min{p1, . . . , pr} < 2.

Using similar ideas it can be shown that if ρ is a norm in Nn
2 and γ is

a norm either in Nn
1 or in Nn

2 , then the sum ρ + γ is again in Nn
2 . By

using this observation and the duality relation in Lemma 5.2, one can
find many other norms for which each one-complemented subspace has
a block basis. For instance, (‖ · ‖2

√
2 + ‖ · ‖π)∗ + ‖ · ‖37. However, we

do not know whether each one-complemented subspace admits a block
basis, if the norm is given by ‖ · ‖2 + ‖ · ‖3.

7. Proof of Lemma 5.3. To prove Lemma 5.3 we use the following
observation.
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Lemma 7.1. Let g : Rn → Rn be a continuous map, and let
U ⊂ Rn be such that, for each x, y ∈ Rn and every ε > 0, there
exist x′, y′ ∈ U with ‖x − x′‖ < ε, ‖y − y′‖ < ε, and the line-segment
between x′ and y′ contains at most finitely many points in Rn \ U . If
g : Rn → Rn is differentiable on U and there exists a continuous map
B : Rn → L(Rn,Rn) such that (Dg)(u) = B(u) for all u ∈ U , then g
is C1 on Rn, and moreover (Dg)(x) = B(x) for all x ∈ Rn.

Proof. The proof is based on the following claim.

Claim. For each x, h ∈ Rn, we have that

(16) g(x + h) − g(x) =
∫ 1

0

B(x + th)h dt.

Indeed, if we assume the claim for a moment and we let x, h ∈ Rn,
then

‖g(x + h) − g(x) − B(x)h‖
‖h‖ =

1
‖h‖

∥∥∥∥
∫ 1

0

B(x + th)h dt −
∫ 1

0

B(x)h dt

∥∥∥∥
≤ sup

0≤t≤1
‖B(x + th) − B(x)‖.

The right-hand side goes to 0 as h → 0, since B is continuous.
Therefore, g is differentiable on Rn and (Dg)x = B(x) for each x ∈ Rn.
Moreover, g is C1 on Rn, since B is continuous.

To prove the claim we first assume that x + th ∈ U for all t ∈ (0, 1).
Put r(t) = g(x + th) for t ∈ [0, 1]. Then r is differentiable in each
t ∈ (0, 1), and continuous on [0, 1]. This implies that r(1) − r(0) =∫ 1

0
r′(t) dt, and hence

g(x + h) − g(x) =
∫ 1

0

B(x + th)h dt.

Now if the line-segment {x+th : 0 ≤ t ≤ 1} contains only finitely many
points in Rn \ U , then we can break it into finitely many pieces and
apply the previous observation for each piece. Therefore the equality
(16) is also true for this case.
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Finally, we consider the general case. From the assumptions it follows
that there exist (xn)n ∈ U and (hn)n ∈ Rn, with xn + hn ∈ U , such
that xn → x, xn + hn → x + h, and for each n ≥ 1 the intersection of
the line-segment {xn + thn : 0 ≤ t ≤ 1} with Rn \ U finite. We know
that

g(xn + hn) − g(xn) =
∫ 1

0

B(xn + thn)hn dt for each n ≥ 1.

Since g is continuous and B is uniformly continuous on compact sets,
we can take limits on both sides and deduce that

g(x + h) − g(x) =
∫ 1

0

B(x + th)h dt.

This completes the proof of the claim.

Proof of Lemma 5.3. Let ρ be in Nn
1 , and let U = {x ∈ Rn :

xi �= 0 for all i}. Clearly there exist for each x, y ∈ Rn and every
ε > 0 points x′, y′ ∈ U such that ‖x − x′‖ < ε, ‖y − y′‖ < ε, and the
intersection of the line-segment between x′ and y′ with Rn \U finite. It
follows from Proposition 2.2 that Jρ : Rn → Rn is a continuous map.
Since ρ is C2 on U , the map Jρ is differentiable on U .

Now define B : Rn → L(Rn,Rn) by B(x) = (DJρ)x = Gρ(x) for
each x ∈ U and B(x) = limm→∞ Gρ(um), if x ∈ Rn \ U , where (um)m

in U is such that um → x. We remark that B is well defined. Indeed
ρ ∈ Nn

1 implies that for every x ∈ Rn and every sequence (um)m in
U with um → x the matrix (Gρ(um))i,j∈S(x) converges to an invertible
matrix, Gρ(um)ij → 0 for i ∈ S(x) and j /∈ S(x), and Gρ(um)ij → 0
for i /∈ S(x) and 1 ≤ j ≤ n.

The map B is continuous by construction, and hence Lemma 7.1
implies that Jρ is C1 on Rn. Therefore, Gρ is continuous on Rn, and
hence ρ is C2 on Rn \ {0}, because ∇ρ(x) = Jρ(x)/ρ(x) for x �= 0.
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8. J. Jamison, A. Kamińska and G. Lewicki, One-complemented subspaces of
Musielak-Orlicz spaces, J. Approx. Theory 130 (2004), 1 37.

9. S. Kakutani, Some characterizations of Euclidean spaces, Japan. J. Math. 16
(1940), 93 97.

10. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I. Sequence spaces,
Springer-Verlag, Berlin, 1977.

11. R.E. Megginson, An introduction to Banach space theory, Grad. Texts in
Math., vol. 183, Springer-Verlag, New York, 1998.

12. B. Randrianantoanina, 1-complemented subspaces of spaces with 1-uncondi-
tional bases, Canad. J. Math. 49 (1997), 1242 1264.

13. , Contractive projections and isometries in sequence spaces, Rocky
Mountain J. Math. 28 (1998), 323 340.

14. , One-complemented subspaces of real sequence spaces, Results Math.
33 (1998), 139 154.

15. , Contractive projections in Orlicz sequence spaces, Abstr. Appl. Anal.
2004 (2004), 133 146.

16. , Norm one projections in Banach spaces, Taiwanese J. Math. 5 (2001),
35 95.

17. L. Tzafriri, Remarks on contractive projections in Lp-spaces, Israel J. Math.
7 (1969), 9 15.

Mathematics Institute, University of Warwick, Coventry CV4 7AL,

United Kingdom

E-mail address: lemmens@maths.warwick.ac.uk

Mathematical Institute, Leiden University, P.O. Box 9512, 2300RA Lei-

den, The Netherlands

E-mail address: vangaans@math.leidenuniv.nl


