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THE STORY OF A TOPOLOGICAL GAME

GARY GRUENHAGE

ABSTRACT. In the author’s dissertation, he introduced
a simple topological game. Seemingly minor variations of
this game have over the years seen various uses, including
the characterization of Corson and Eberlein compacta, and
characterizing when certain function spaces with the compact-
open topology are Baire. This article is primarily a survey of
this game and its applications. Some new results are included,
and a number of open problems are stated.

1. Introduction. Let X be a topological space, and x ∈ X. The
following four games will be discussed in this paper:

(1) GO,P (X,x): In the nth round, Player O chooses an open neigh-
borhood On of x, and Player P chooses a point pn ∈ ∩i≤nOi. O wins
if the sequence {pn}n∈ω converges to x.

(2) GK,P (X): In the nth round, Player K chooses a compact subset
Kn of X, and P chooses a point pn /∈ ∪i≤nKi. K wins if the sequence
{pn}n∈ω is a closed discrete subset of X.

(3) GK,L(X): In the nth round, K chooses a compact subset Kn of
X, and L chooses a compact subset Ln of X disjoint from ∪i≤nKi. K
wins if {Ln}n∈ω is a closed discrete collection in X.

(4) Go
K,L(X): Same as (3), except that K wins if {Ln}n∈ω has a

discrete open expansion.

These four games are variations on the same theme. In fact, note
that if X is compact, then GO,P (X,x) is equivalent to the game
GK,P (X\{x}). Of course, GK,L(X) is essentially the game GK,P (X)
modified to allow P to choose compact sets instead of single points.

GO,P (X,x) was introduced in [18], where it was helpful in solving
a problem of Zenor, and studied in detail in [19], where it was used
to define and study a new convergence property. GK,P (X) was, in
effect, introduced in [20], where it was used to characterize Corson
compact spaces and strong Eberlein compact spaces, as well as the
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metalindelöf property in locally compact spaces. It was explicitly
defined in [21], where it was used to characterize Eberlein compact
spaces and metacompactness in locally compact spaces. GK,L(X)
was also introduced there and used to characterize paracompactness
in locally compact spaces. Finally, in [24], Go

K,L(X) was introduced
and used to characterize, for locally compact X, Baireness of the space
Ck(X) of continuous real-valued functions onX with the compact-open
topology.

In this article, we survey the various results related to the above
games, occasionally with proofs or outlines of proofs. A few new
results are included, and several open questions are stated. The game
GO,P (X,x) will be discussed in Section 2, GK,P (X) in Section 3, and
GK,L(X) and Go

K,L(X) in Section 4. In Section 5, we discuss a property
related to the game GK,L(X) called the Moving Off Property, which
turns out to be relevant to the problem of Baireness in function spaces.

Before proceeding, we should remark that the above definitions of
the games are as we defined them in [21], but in some other papers we
only required P ’s point or L’s set to be in (or not, or disjoint from) his
opponent’s last choice, rather than all previous choices. These games
are easily seen to be equivalent to their originals in the sense that a
player has a winning strategy in one of the above games if and only if
he has a winning strategy in the corresponding game in which the rules
say P or L need only avoid his opponent’s last move. We stick with
the definitions as given above for a more convenient characterization
of Eberlein and Corson compacts; the convenience has to do with the
fact that the games are not equivalent if one wants to talk about the
existence of certain kinds of winning strategies. This should become
clearer in Section 3.

2. The game GO,P (X,x). This game was studied in detail in
[19], where we called X a W -space if O has a winning strategy in
GO,P (X,x) for every x ∈ X. We also defined X to be a w-space if for
every x ∈ X, P fails to have a winning strategy in GO,P (X,x). Clearly,
first-countable spaces are W -spaces. A prototypical W -space which is
not first-countable is the one-point compactification of an uncountable
discrete space.
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2.1 Basic properties. Let us recall that a spaceX is a Fréchet space
(respectively, countably bi-sequential) if whenever x ∈ A (respectively,
x ∈ An, where A0 ⊃ A1 · · · ), then there is a sequence {an}n∈ω

converging to x with an ∈ A (respectively, an ∈ An) for all n. Also,
X is an α1-space, respectively, α2-space if, whenever A0, A1, . . . are
sequences converging to x ∈ X, there is a sequence S converging to
x with S ∩ An cofinite in An, respectively, S ∩ An infinite, for all n.
(The αi-spaces, i = 1, 2, 3, 4, were introduced by Arhangel’skii [1] in
his study of Fréchetness in products.)

Recall that Σ = Σα∈κXα is a Σ-product of the spaces {Xα}α∈κ if and
only if there is �x ∈ Πα∈κXα such that Σ = {�y ∈ Πα∈κXα : |{α : xα �=
yα}| ≤ ω}.

The following summarizes the main facts about W -spaces:

Theorem 2.1 (a) First-countable ⇒ W -space ⇒ Fréchet and ev-
ery countable subset is first-countable ⇒ Fréchet α1-space ⇒ w-space
Fréchet α2-space ⇒ countably bi-sequential;

(b) Separable W -spaces are first-countable;

(c) W -spaces are preserved by arbitrary subspaces, open mappings,
and Σ-products (in particular, countable products).

(d) If X is a W -space, and Y has convergence property C, where
C ∈ {countably tight, countably bi-sequential, w-space}, then X × Y
has C;

(e) X is a w-space if and only if whenever x ∈ An for all n ∈ ω,
there exist an ∈ An with an → x.

Statement (e) characterizing w-spaces is due to Sharma [42], as is
the corollary that w and Fréchet α2 are equivalent. I had shown
that w implies countably bi-sequential, but Sharma’s result makes this
obvious. The only other nonobvious implication in (a) is the second
one, which follows from (b). Why does (b) hold? Because one easily
shows that the open neighborhoods of x in the range of a winning
strategy for O, restricted to P ’s points chosen from a countable dense
set, must form a base at x.

At the time of [19], I didn’t know an example of a w-space which was
not a W -space. But Hajnal and Juhasz, see [15], observed that the
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one-point compactification T ∪ {∞} of an Aronszajn tree T (with the
interval topology) is an example: neither player has a winning strategy
in GO,P (T ∪ {∞},∞). Answering a question suggested in [19], Nyikos
[35, 37] discovered several ZFC examples of countable w-spaces which
were not first-countable. However, while some of these examples could
fail to be α1 under, say, MA(ω1), it was not immediately clear if any
were non-α1 in ZFC. This was settled by Dow [7], who showed that
in Laver’s model for the Borel conjecture, all α2-spaces are α1. There
is another model constructed by Dow and Steprans [8] in which all
countable α1-spaces are first-countable. So any countable non-first-
countable w-space constructed in ZFC must be α1 in the Laver model,
but can’t be α1 in the Dow-Steprans model.

We describe one of Nyikos’s examples, since it will be relevant also
in later sections. It starts with the well-known “Cantor tree space.”

Definition 2.2. Let T = 2<ω be the Cantor tree, and let A be
an uncountable subset of the Cantor set 2ω. The space T ∪ A, called
the “Cantor tree space over A,” has points of T isolated, and, for each
a ∈ A, the branch Ta = {a � n : n ∈ ω} is a sequence converging to a.

Now let T ∪A∪{∞} be the one-point compactification of the Cantor
tree space T ∪A, and let X(A) be the subspace T ∪{∞}. Since X(A) is
countable, but not first-countable, at {∞}, O has no winning strategy
in GO,P (X(A),∞). Nyikos showed that P also has no winning strategy
if A is a λ′-set, i.e., for any countable subset B of the Cantor set, B
is Gδ in B ∪ A. (Miller [33] also shows that the converse, i.e., that
“P has no winning strategy in GO,P (X(A),∞) implies A is a λ′-set” is
consistent with and independent of ZFC.) Since there are uncountable
λ′-sets in ZFC, this provides a ZFC example of a countable w-space
which is not a W -space. Nyikos also observed that X(2ω) is not w, but
is Fréchet and α3 (which is defined like α2, but the sequence S ∩ Sn

needs to be infinite for only infinitely many n, instead of all n).

Statement (d), and part of (c), of Theorem 2.1 shows that W -spaces
behave well with respect to products. Similar statements cannot be
made for w-spaces. Todorčević [46] constructed two monolithic Fréchet
function spaces Cp(X) and Cp(Y ) whose product is not countably
tight. Monolithic means that closures of countable subsets are second
countable, so by Theorem 2.1(a) these spaces are w-spaces.
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An earlier example of a Cp(X) which is w but not W came out of
some interesting work of Gerlits and Nagy [15]. They say a space X has
property (γ) if, given any collection U of open sets such that any finite
subset of X is contained in some member of U , there are U0, U1, . . . in
U such that X ⊂ ∪n∈ω∩i≥nUi. Also, recall that the “point-open game”
of Telgársky goes as follows: at the nth play, P chooses a point pn and
O chooses an open set On containing pn; P wins if ∪n∈ωOn = X. Now
we can state their key result:

Theorem 2.3. (a) Cp(X) is Fréchet if and only if Cp(X) is a w-
space if and only if X has property (γ);

(b) Cp(X) is a W -space if and only if the point picker has a winning
strategy in the point-open game on X.

A subset of the real line having property (γ) is called a γ-set. γ-sets
do not exist in ZFC, but spaces having property (γ) do; e.g., Galvin
showed that any Lindelöf P -space, i.e., Gδ-sets are open, has (γ). There
is a Lindelöf P space X in which Telǵarsky’s game is undetermined,
see [44]. Thus for this X, Cp(X) is a w-space but not a W -space.

Gerlits [14] later showed that “Cp(X) is a k-space” can be added to
the list of properties in Theorem 2.3 (a).

An example due to Isbell, appearing in [39], produces two countable
w-spaces whose product is not Fréchet. It is constructed from a
Hausdorff gap. The assumption 2ℵ0 < 2ℵ1 is used in [39] in describing
Isbell’s example, and it is only claimed that they are countably bi-
sequential (= Fréchet α4). Nyikos [35] noticed that the examples are w-
spaces, and that no special set-theoretic assumptions are needed. Since
this seems not to be widely known, see, e.g., [5] and [6] where weaker
examples have recently been published, we describe the example here
(a bit differently than it was described in [39]). Recall that a collection
{(A0

α, A
1
α)}α<ω1 of pairs of infinite subsets of ω is a Hausdorff gap if

(a) A0
α ⊂∗ A0

β ⊂∗ A1
β ⊂∗ A1

α for all α < β < ω1;

(b) There is no C such that A0
α ⊂∗ C ⊂∗ A1

α for all α < ω1.

(Recall A ⊂∗ B means |A\B| < ω.)
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Example 2.4. Let {(A0
α, A

1
α)}α<ω1 be a Hausdorff gap. Let

I0 = {A ⊂ ω : |A ∩A0
α| < ω for all α < ω1},

I1 = {A ⊂ ω : |A ∩ (ω\A1
α)| < ω for all α < ω1}.

Let Xe be the space ω ∪ {∞} with ω isolated and complements of the
ideal Ie forming the neighborhood base at ∞. Then Xe is a w-space,
i.e., Fréchet α2, for each e < 2, but X0 ×X1 is not Fréchet.

The verification of the above example is straightforward. The proof of
non-Fréchetness of the product follows standard form by showing that
point (∞,∞) is a limit point of A = {(n, n)}n∈ω but is not the limit
of any convergent sequence from A. Note that X0 × X1 is α2, since
Nogura [34] showed that the αi-spaces for i ∈ {1, 2, 3} are countably
productive.

On the other hand, Nogura [34] proved that the class of w-spaces
does have the following nice product property:

Theorem 2.5. If Xn is a w-space for each n ∈ ω, then Xω is a
w-space.

In fact, Nogura proved the analogous result true for the classes of
Fréchet αi-spaces, i = 1, 2, 3. The analogue is not true, at least
consistently, for all Fréchet spaces: I gave a counterexample under MA
in [22]. But I do not know of any ZFC example. Except for the case
n = 1 answered by the Isbell example, I also do not know the answer
in ZFC to:

Question 2.6. Is there, for each positive integer n, a w-space X
such that Xn is a w-space but Xn+1 is not a w-space (equivalently, not
Fréchet)?

Tamano [43] used the method of my example above to obtain, under
MA, a (compact) Fréchet space X such that Xn is Fréchet but Xn+1 is
not. But these are not w-spaces, since there cannot be compact exam-
ples for the above question (Arhangel’skii [1] proved that the product



THE STORY OF A TOPOLOGICAL GAME 1891

of a Fréchet α3-space and a compact Fréchet space is Fréchet). How-
ever, Szeptycki, see [25], recently constructed (noncompact) examples
under CH.

2.2 Two variations. One natural variation of the gameGO,P (X,x))
is to allow P to choose a finite set of points instead of just one point.
Let us denote this variation by Gfin

O,P (X,x)). We noted in [19] that this
game is equivalent for player O, since, given a winning strategy for O
for the usual game, O can consider what his move would be for each of
P ’s finitely many points, and intersect these moves for his response.

However, this variation is not equivalent for Player P . Reznichenko
and Sipacheva [40] call a space Fréchet-Urysohn for finite sets, or FUf

for short, at the point x if, whenever F is a collection of finite sets
such that every neighborhood of x contains a member of F , there are
Fn ∈ F , n ∈ ω, such that ∪n∈ωFn is a sequence converging to x. If
X is not FUf at x, witnessed by F , then P is assured of winning in
Gfin

O,P (X,x)) by always choosing sets in F . That shows one direction
of the following result of Szeptycki and I [25]:

Theorem 2.7. A space X is FUf at x if and only if P has no
winning strategy in Gfin

O,P (X,x).

Combining this with Proposition 2.1 (a), we see that the games
Gfin

O,P (X,x) and GO,P (X,x) are inequivalent for P if and only if there
is a Frechét α2-space which is not FUf . There are many consistent
examples of this, see [25], e.g., under CH, or under the assumption
that there is a λ′-set of reals which is not a γ-set. The latter example
has the form X(A) of Nyikos above. It turns out that P has a winning
strategy in Gfin

O,P (X(A),∞) if and only if A is a γ-set, see [25] or [33].
But this won’t yield a ZFC example, since Miller [33] showed that
every λ′-set is γ in the standard model of MAσ−centered(ω1).

However, a simple modification of the Hausdorff gap space of Exam-
ple 2.4 does yield a ZFC example:

Example 2.8 [26]. There is a countable space X = ω ∪ {∞} such
that P has no winning strategy in GO,P (X,∞), but P has a winning
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strategy in Gfin
O,P (X,∞), even if restricted to choosing only two points

at each turn. (In other words, X is Fréchet α2, but, in the terminology
of [25], not FU2.)

Proof. Let X0 and X1 be the w-spaces of Example 2.4 built from
a Hausdorff gap. Let Y 1 be the space X1 using a disjoint copy ω′

of ω, and let X be the space obtained by identifying the points ∞ of
X0 and Y 1. Note that X is also a “gap space” by the Hausdorff gap
{(A0

α ∪ (ω \A1
α)′, A1

α ∪ (ω \A0
α)′)}α<ω1 in ω ∪ω′. (Here C ′ denotes the

copy in ω′ of a subset C of ω.) So X is Fréchet α2.

Then the same argument that shows that X0 × X1 is not Fréchet
shows that P wins in Gfin

O,P (X,∞) by choosing in the nth round any
legal doubleton of the form {n, n′}. For example, if not, then C ∪ C ′

would be convergent for some infinite C ⊂ ω. C ′ convergent implies
C ∩ (ω \ A1

α) is infinite for some α. But then C is not convergent, a
contradiction.

We also considered in [19] the modification Gc
O,P (X,x) in which

O wins if P ’s chosen points merely cluster at the point x. It was
not difficult to show that, for Player O, this game is equivalent to
the original. For Player P , the situation is different. For one thing,
the statement “P has no winning strategy in Gc

O,P (X,x)” does not
necessarily imply that X is Fréchet at x. However, Hrušák [28] showed
that it is consistent with ZFC that even in Fréchet spaces the two
games are not equivalent for Player P . If I is a subbase for a proper
ideal on ω, let X(I) be the space ω∪{∞}, where ω is the set of isolated
points and neighborhoods of ∞ are complements of finite unions from
I.

Theorem 2.9. If a < ra or ra = c, then there is an almost-disjoint
family A of subsets of ω such that X(A) is a Fréchet space in which P
has a winning strategy in the convergence game GO,P (X,∞), but not
in the clustering game Gc

O,P (X,∞).

Recall that a is the least cardinal of an infinite, maximal almost-
disjoint family of subsets of ω, and r is the least cardinal of a family
R of infinite subsets of ω such that, for any subset X of ω, either X
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or ω\X almost contains a member of R. Hrušák’s proof of the above
theorem uses a result of LaFlamme [30], who showed that for a proper
ideal I on ω, P has a winning strategy in the game Gc

O,P (X(I),∞) if
and only if I is not “+-Ramsey”, where I is +-Ramsey if and only if
every tree T ⊂ ω<ω where for each node σ, {n ∈ ω : σ�〈n〉} is not in
I, has a branch whose range is not in I. Hrušák shows that, under the
assumptions stated in the theorem above, there is a MAD family on
ω such that the ideal generated by A is +-Ramsey, and that if there
is such a MAD family, then there is a corresponding almost-disjoint
family A′ so that the space X(A′) is a Fréchet space in which P has a
winning strategy in the game GO,P (X,∞).

It is apparently not known if there is a ZFC example like this:

Question 2.10 [28]. Is there in ZFC a MAD family A of subsets
of ω such that the corresponding ideal is + -Ramsey?

If so, there would be a ZFC example as in Theorem 2.9. We don’t
know the answer to this MAD family question, but we do have a
positive answer to Hrušák’s more general question whether there is
a space in ZFC of the form Y = ω ∪ {∞} in which the two games are
inequivalent.

Example 2.11. There is, in ZFC, an almost-disjoint family A on ω
such that X(A) is a Fréchet space in which P has a winning strategy
in the game GO,P (Y,∞), but P does not have a winning strategy in
the game Gc

O,P (Y,∞).

Proof. Instead of ω, we define the almost-disjoint family on the
rationals in [0, 1], which we denote by Q. Let {Dα}α<c index all dense
subsets of Q. Let B = {xα : α < c} be any subset of [0, 1]\Q which
has cardinality c but does not contain any perfect set, e.g., one can
take B to be a Bernstein set. At step α, choose a sequence Sα in
Dα which converges to xα. For convenience, if x ∈ [0, 1], we also
use Sx to denote Sα, if x = xα, and we let Sx = ∅ if x /∈ B. Let
A = {Sα}α<c = {Sx : x ∈ B}.

Claim 1. X(A) is Fréchet.
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Suppose ∞ is a limit point of C ⊂ Q. Then C cannot be covered
by finitely many members of A. Let L be the set of limit points of C.
If L is finite, then S = C\ ∪y∈L Sy has finite intersection with every
member of A, hence converges to ∞. If L is infinite, let y be a limit
point of L. Then one can construct a sequence S ⊂ C converging to y
in the real line but disjoint from Sy. Again, S converges to ∞.

Claim 2. P has a winning strategy in GO,P (X(A),∞).

Clearly P can make sure his chosen points are dense, which wins for
him by the construction of A.

It remains to prove the following claim.

Claim 3. P has no winning strategy in Gc
O,P (X(A),∞).

By way of contradiction, suppose P has a winning strategy Ψ. Then
for each complete play of the game with P using Ψ, the set of limit
points of P ’s chosen points must be a finite subset of B. Let S be
all finite initial segments of plays of the game with P using Ψ. If s′

extends s, we denote this by s′ ⊃ s. For each s ∈ S, let Ps denote
the set of limit points of P ’s points for all complete plays of the game
starting with s.

Suppose there exists s0 ∈ S such that ∩s⊃s0Ps �= ∅. In this case,
O can defeat Ψ as follows. Let x ∈ ∩s⊃s0Ps. O begins by playing the
moves of s0. Then he plays the complement of Sx. At the nth play
after that, there will be a finite extension of the play so far such that
one of P ’s points will lie within 1/2n of x. At the end of the game, P ’s
points will include a sequence converging to x but missing Sx, so P has
lost, a contradiction.

It follows that, given any s ∈ S, the set of closures of the Pt’s for t ⊃ s
does not have the finite intersection property. So one can construct a
finitely branching tree T ⊂ S such that

(a) For each s ∈ T , if Fs is the set of immediate successors of s in T ,
then ∩t∈Fs

Pt = ∅;

(b) If s is at the nth level of T , then at some stage in each play t ∈ Fs,
P has chosen a point qt within 1/2n of the set Ps.
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Each branch of T is a play of the game with P using Ψ, and hence
the set of rationals representing P ’s choices along a branch has only
finitely many limit points, all in B. The set L of all limit points for
all the branches of T is easily seen to be analytic. (We thank Howard
Becker for pointing this out to the author.)

So we have our final contradiction once we prove that L is uncountable
(hence must contain a Cantor set, hence a point not in B). Suppose
L = {xn : n < ω}. There is t0 ∈ F∅ with x0 /∈ Pt0 . Then find t1 ∈ Ft0

with x1 /∈ Pt1 . And so on. This defines a branch b of T . By condition
(b), some limit point of P ’s choices in b is in ∩n<ωPtn

. But any limit
point is xn for some n, which is not in Ptn

, a contradiction.

A variation of the clustering game Gc
O,P (X,x) was considered by

Bouziad [3]; the difference in Bouziad’s game is that O wins if P ’s
points merely cluster somewhere, in X. A space was defined to be a
G-space if O had a winning strategy at every point. Recall that X is
a q-space if, for each x ∈ X, there are neighborhoods Un, n ∈ ω, of x
such that {xn : n ∈ ω} has a cluster point whenever xn ∈ Un for all n.
Bouziad’s G-spaces generalize q-spaces in the same way that W -spaces
generalize first-countability. Later, Garcia-Ferreira, González-Silva and
Tomita [12, 13] studied the version of Bouziad’s game with “cluster
point” replaced by “p-limit point” for some p ∈ ω∗.

2.3 Continuously perfectly normal spaces. Let me finish this
section by mentioning our original motivation for consideringW -spaces.
It came from a problem of Zenor [48], who defined a space X to be
continuously perfectly normal (CPN) if there is a continuous function
φ : X × 2X → [0, 1], where 2X is the space of closed subsets of X
with the Vietoris topology, such that, for any x ∈ X and closed set
H, φ(x,H) = 0 if and only if x ∈ H. He asked if there was a
nonmetrizable CPN -space. He had proven that CPN -spaces must
be Fréchet. I discovered they must be W -spaces, which led me to the
following example. Let X = (ω×ω1)∪{∞}, where the points of ω×ω1

are isolated, and a basic neighborhood of ∞ has the form

B(n, F ) = {∞} ∪ {(m,α) ∈ X : m > n and α �∈ F},

where n ∈ ω and F is a finite subset of ω1. It is not hard to show
X is a non-first-countable W -space. It turns out X is also CPN [18].
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Except for a modification in which the space is made first-countable
by blowing up the nonisolated point to [0, 1], this X remains the only
known example of a non-metrizable CPN -space.

3. The game GK,P (X). Recall that in this game, at the nth play K
chooses a compact Kn ⊂ X, and P chooses a point pn ∈ X\∪i≤nKi; K
wins if the pn’s are closed discrete in X. If X is locally compact, note
that this game is essentially equivalent to GO,P (X ∪ {∞},∞), where
X ∪ {∞} is the one-point compactification of X.

3.1 Covering properties. This game played on a locally compact
space X turns out to be related to covering properties of X. Recall
that X is metacompact (respectively, σ-metacompact, metalindelöf ) if
every open cover of X has a point-finite (respectively, σ-point-finite,
point-countable) open refinement.

In [20], we proved that for locally compact spaces of countable
tightness, K has a winning strategy in GK,P (X) if and only if X is
metalindelöf. The countable tightness assumption is not necessary for
the “if” direction, but we don’t know if it is necessary for the “only if”
direction.

Question 3.1. Let X be locally compact. If K has a winning
strategy in GK,P (X), must X be metalindelöf?

The original proof of the metalindelöf result is, in retrospect, tailor-
made for elementary submodels. We outline an elementary submodel
style proof below, and also include a new special case where the
tightness assumption is replaced by a “locally small” assumption.

Theorem 3.2. Let X be locally compact and either countably tight
or locally of cardinality not greater than ℵ1. Then K has a winning
strategy in GK,P (X) if and only if X is metalindelöf.

Proof. If X is metalindelöf, then there is a point-countable cover
U of X by open sets with compact closures. K wins by looking at
the countably many members of U containing P ’s chosen point at
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each round and choosing an increasing sequence of compact sets that
eventually cover every one of these members of U . It is easy to check
that this wins for K.

Now suppose K has a winning strategy σ, and let U be a cover of
X by open sets with compact closures (of cardinality ≤ ω1 if X is
locally of cardinality ≤ ω1). Let M be an elementary submodel (of
some sufficiently large H(θ)) with X,U , σ ∈M .

Claim 1. M ∩X ⊂ ∪(M ∩ U).

Proof of Claim 1. Suppose p ∈M ∩X\ ∪ (M ∩ U). Let p ∈ Up ∈ U .
Suppose F = {x0, x1, . . . , xn} ⊂ Up ∩ (M ∩X). Then σ(F ) is compact
and in M so there exists a finite U0 ⊂ U in M covering σ(F ). Since M
also contains a finite subset of U covering ∪U0, we have p �∈ ∪U0. So
there exists xn+1 ∈ Up ∩ (M ∩X)\∪U0. It follows that if K uses the
strategy σ, P can always choose a point in Up ∩ (M ∩X). But then K
loses the game, a contradiction which completes the proof of Claim 1.

Since there is an M with U ⊂M , the next claim completes the proof
of the theorem.

Claim 2. There is a point-countable open refinement VM of M ∩ U
covering ∪(M ∩ U).

Proof of Claim 2. This is obvious if |M | = ω. Suppose |M | = κ and
Claim 2 is true whenever |M | < κ. Let {Mα : α < κ} be a continuous
increasing sequence of elementary submodels of cardinality less than κ
whose union is M . Let Xα = Mα ∩X and Uα = Mα ∩ U . Note that
for limit α, Xα = ∪β<αXβ and Uα = ∪β<αUβ. If the closure of each U
in U has cardinality ≤ ω1, and U ∈Mα, we may assume U ⊂Mα+ω1 .

For each U ∈ Uα+1\Uα, U ∩ Xα is compact and in Mα+1, and by
Claim 1 a subset of ∪Uα, so there is an open set S(U) ∈ Mα+1

with U ∩ Xα ⊂ S(U) ⊂ S(U) ⊂ ∪Uα. Let U ′ = U\S(U), and let
U∗(α) = ∪{U ′ : U ∈ Uα+1\Uα}. Note that U∗(α) covers ∪Uα+1\ ∪ Uα

and that {U∗(α) : α < κ} covers ∪(M ∩ U).
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Subclaim. {U∗(α) : α < κ} is point-countable. Suppose not; then we
can find a point p, and Uδ ∈ Uαδ

for δ < ω1, such that p ∈ ∩δ<ω1U
′
δ.

Without loss of generality, we may assume that δ < δ′ ⇒ αδ < αδ′ . Let
γ = sup{αδ : δ < ω1}. Since U ′

δ ∈Mαδ
, the set {Uδ ∩Xγ : δ < ω1} has

the finite intersection property, so there exists y ∈ ∩{U δ : δ < ω1}∩Xγ .
If X has countable tightness, then y ∈ Xγ = ∪δ<ω1Xαδ

. If X is locally
of cardinality ≤ ω1, then |U0| ≤ ω1, and hence y ∈ U0 ⊂ Mγ ∩ X =
Xγ = ∪δ<ω1Xαδ

. In either case, y ∈ Xαδ
for some δ < ω1. But

δ′ > δ ⇒ U
′
δ ∩Xαδ

= ∅, a contradiction.

Now to finish the proof of Claim 2 and the proposition, for α < κ,
let Vα be the assumed point-countable open refinement of Uα, let

Vp
α = {V ∩ U∗(α) : V ∈ Vα},

and let VM = ∪α<κV ′
α. It is easy to check that VM is a point-countable

open refinement of M ∩ U covering ∪(M ∩ U).

Corollary 3.3. Assume CH. Let X be locally compact and locally
of cardinality not greater than c. Then K has a winning strategy in
GK,P (X) if and only if X is metalindelöf.

A similar kind of argument is used to show the following; but note
that a countable tightness assumption is not needed here:

Theorem 3.4. Suppose X is locally compact. Then X is metacom-
pact if and only if K has a winning strategy in GK,P (X) which depends
only on P ’s last move, i.e., a stationary winning strategy, and X is
σ-metacompact if and only if K has a winning strategy in GK,P (X)
depending only on P ’s last move and what round it is, i.e., a Markov
winning strategy.

Theorem 3.5. Suppose X is a locally compact scattered space. Then
X is metacompact if and only if K has a winning strategy in GK,P (X).

Regarding the question of omitting the countable tightness assump-
tion in Theorem 3.2, it may be useful to note a connection with a prop-
erty studied in [2]. A cover U of X is said to be finite-in-countable
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if, for any infinite A ⊂ X, there is some finite F ⊂ A such that
{U ∈ U : F ⊂ U} is countable.

Lemma 3.6. Suppose X has a finite-in-countable cover U by open
sets with compact closures. Then K has a winning strategy in GK,P (X).

Proof. Clearly K can devise a strategy such that, for any finite subset
F of P ’s chosen points, if UF = {U ∈ U : F ⊂ U} is countable, then
for any U ∈ UF , Kn ⊃ U for all sufficiently large n. Suppose the set C
of P ’s chosen points do not form a discrete set. Let x be a limit point
of C, with x ∈ U ∈ U . Then U ∩C is infinite, so contains a finite set F
with UF countable. But then P cannot choose a point in U after some
finite stage, a contradiction.

Hence it follows that if a space satisfies the hypotheses of Lemma 3.6,
and has countable tightness or is locally of cardinality ≤ ω1, then it is
metalindelöf. But again we don’t know if the countably tight or locally
small assumption is necessary. A natural place to look for a possible
counterexample is ω∗:

Question 3.7. Let O be an open non-metalindelöf subset of ω∗.
Could K have a winning strategy in GK,P (O)? Could O have a finite-
in-countable cover by compact open sets?

3.2 Corson and Eberlein compacts. A space X is Eberlein
compact (EC) if it is homeomorphic to a weakly compact subset
of a Banach space. However, the following well-known embedding
characterizations are handier for our discussion of EC’s and related
classes.

Definition 3.8. A compact X is

(a) Corson compact if and only if for some κ, X embeds in

{�x ∈ Rκ : xα = 0 for all but countably many α ∈ κ};

(b) Eberlein compact if and only if for some κ, X embeds in

{�x ∈ Rκ : ∀ ε > 0, |xα| ≥ ε for only finitely many α ∈ κ};
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(c) strong Eberlein compact if and only if for some κ, X embeds in

{�x ∈ Rκ : xα = 0 for all but finitely many α ∈ κ}.

Note that, by Theorem 2.1 (c), all of these classes of spaces are W -
spaces. It is also the case that strong EC’s are exactly the scattered
EC’s. A prototypical example of a nonmetrizable (strong) EC is the
one-point compactification of an uncountable discrete space. See [47]
for a nice survey of EC’s and some related classes from a topological
point of view.

The following characterizations of Corson and (strong) Eberlein com-
pact spaces appear in [20, 21].

Theorem 3.9. Let X be a compact space and Δ the diagonal in X2.
Then:

(a) X is Corson compact if and only if K has a winning strategy in
GK,P (X2\Δ) if and only if X2\Δ is metalindelöf if and only if X2 is
hereditarily metalindelöf;

(b) X is Eberlein compact if and only if K has a winning strategy
in GK,P (X2\Δ) depending only on P ’s last move and the number of
the move if and only if X2\Δ is σ-metacompact if and only if X2 is
hereditarily σ-metacompact.

(c) If X is compact scattered, then X is strong Eberlein compact if and
only if K has a winning strategy in GO,P (X, p) for every p ∈ X, i.e.,
X is a W -space as defined in Section 2, if and only if X is hereditarily
metacompact.

Note that, for X compact, X2\Δ is locally compact. So the covering
property equivalences vis-a-vis the game follow from the results of the
previous subsection. Regarding part (c), of course there is also an off-
diagonal characterization of strong Eberlein compact, but the W -space
characterization is simpler and hence more useful.

Thus we have in the above theorem both covering property and game
characterizations of various classes of compacta. These classes have
been extensively studied in the literature and there are many other
characterizations as well. But there do seem to be occasions when
the game characterizations are perhaps the most convenient; e.g., see
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Example 3.9 in [20] and Theorem 4.6 in [27]. As an illustration, we
outline a short proof of the following fact, due to Efimov and Certanov
[9] and, independently, Rudin.

Theorem 3.10. A Corson compact linearly ordered space X must
be metrizable.

Outline of proof. By Theorem 3.8 (b), K has a winning strategy
in GK,P (X2\Δ). K also has a winning strategy in the game in
which P is allowed to choose a finite set of points in each round.
Let l be the least point and m the maximum point of X. Now
suppose K has played K0,K1, . . . ,Kn, and let Un = X2\ ∪i≤n Ki.
Then Un is an open superset of the diagonal, and it is easy to use
compactness of X to see that P can find a finite sequence of points
l = xn,0 < xn,1 < · · · < xn,kn

= m such that for each i < kn, either
the point (xn,i, xn,i+1) is in Un or the corresponding open interval from
xn,i to xn,i+1 is empty. P chooses in round n all points (xn,i, xn,i+1)
that are in Un. We suppose K has used a winning strategy. Then it
is not difficult to use the fact that all limit points in X2 of P ’s chosen
points are on the diagonal to show that the set of all open intervals
with endpoints in the set {xn,i : n ∈ ω, i ≤ kn} is a countable base for
X; see Theorem 4.5 in [20] for the details.

There are several other classes of compacta related to the ones we
have been discussing. For example, X is uniform Eberlein compact
(UEC) if and only if it is homeomorphic to a weakly compact subset of
a Hilbert space. UEC’s also have an embedding characterization as in
3.8: they are exactly those compact spaces such that, for some function
N : R → N and for some κ, X embeds in {�x ∈ Rκ : ∀ ε > 0, |xα| ≥
ε for at most N(ε)−many α ∈ κ}. Another class is the class of Gul’ko
compact spaces, which are those compacta X such that Cp(X) is a
Lindelöf Σ-space, i.e., a continuous image of a perfect pre-image of a
separable metric space. I do not know of game characterizations of
these classes.

Question 3.11. Are there useful game characterizations of other
classes of compacta, e.g., uniform Eberlein compacta or Gul’ko com-
pacta?
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Possibly relevant is an off-diagonal covering property of Gul’ko com-
pacta given in [23]; it was recently proven to be an equivalence by
Garcia, Oncina and Orihuela [11].

Before moving on to the next game, we should mention that Nyikos’s
article [36] contains, among other things, a nice survey of many of the
results of this section and the preceding one that were known at the
time, and includes some related ideas and results not mentioned here.

4. The games GK,L(X) and Go
K,L(X). GK,L(X) was introduced

by the author in [21] and independently by McCoy and Ntantu in [32]
where it was denoted Γ1(X). It is defined just like GK,P (X), except
that P , who is renamed L, chooses compact sets instead of points, i.e.,
L’s nth play is a compact set Ln missing all of K’s previous moves
K0,K1, . . . ,Kn. K wins if and only if {Li}i∈ω is a discrete collection.
Go

K,L(X) is the same as GK,L(X), except that K wins if and only if
{Li}i∈ω has a discrete open expansion.

Since this makes it harder for K to win vis-a-vis GK,P (X), the
property “K has a winning strategy” is stronger for this game. It
is easy to see that K has a winning strategy in any locally compact
σ-compact space: K simply chooses at the nth play the nth set in an
increasing sequence of compact sets whose interiors cover the space. It
is nearly as easy to see that K wins if X is a topological sum of locally
compact σ-compact spaces, i.e., whenever X is locally compact and
paracompact. The next theorem shows we have an equivalence:

Theorem 4.1. Let X be a locally compact space. Then the following
are equivalent:

(a) K has a winning strategy in GK,L(X);

(b) K has a winning strategy in Go
K,L(X);

(c) X is paracompact.

Proof. That (c) implies (b) is easy, as indicated above. That (b)
implies (a) follows because it is easier for K to win in GK,L(X) than
in Go

K,L(X).
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It remains to prove (a) implies (c). This proof is in the same spirit as
the proof of Theorem 3.2, but is a bit simpler. We give an elementary
submodel version of our original proof in [21].

Let U be a cover of X by open sets with compact closures. Let σ be
a winning strategy for K. We may assume the domain of σ is the set of
all finite sequences of compact subsets of X. Let M be an elementary
submodel containing σ,X,U , . . . , . It suffices to prove the following:

Claim. M ∩ U has a locally finite refinement covering ∪(M ∩ U).

The proof of the claim is by induction on |M |. If M is countable,
then ∪(M ∩ U) is σ-compact (noting that U ∈ M ∩ U implies there
is a finite subset of M ∩ U which covers U), so the claim holds in
this case. Now suppose |M | = κ and the result is claim whenever
|M | < κ. Let {Mα : α < κ} be a continuous increasing sequence of
elementary submodels of cardinality less than κ whose union is M . Let
Uα = Mα ∩ U . If each ∪Uα is clopen, then it is easy to construct a
locally finite refinement of M ∩U from locally finite refinements of the
Uα’s. So there exists δ < κ and a point p ∈ ∪Uα\(∪Uα). Let N be a
compact neighborhood of P . Suppose L0, L1, . . . , Ln is a sequence of
legitimate moves of L with K using the winning strategy σ, with each
Li ∈ Mδ. We obtain a contradiction to σ being a winning strategy
by showing that L has a legitimate response Ln+1 ∈ Mδ such that
Ln+1 ∩N �= ∅.

To this end, for i ≤ n + 1, let Ki = σ(L0, L1, . . . , Li−1). Then
Ki ∈Mδ for each i, and so some finite subcollection V of Mδ∩U covers
∪i≤n+1Ki. The point p cannot be in ∪V, so there is some U ∈ Uδ with
N ∩ [U\∪V] �= ∅. Then letting Ln+1 = U\ ∪ V does the trick.

In locally compact spaces, the games GK,L(X) and Go
K,L(X) are

equivalent for Player L as well as K, a fact we apparently did not
notice when writing [24]. For, if L has a winning strategy in GK,L(X),
he can construct one in Go

K,L(X) essentially by selecting compact
neighborhoods of the sets Ln given to him by a winning strategy in
GK,L(X). Why introduce Go

K,L(X) at all? Because it seems to be the
more natural one for attacking the following problem:
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Question 4.2. For what (completely regular) spaces X is Ck(X) a
Baire space?

Here, Ck(X) is the space of continuous real-valued functions on X
with the compact-open topology. The following lemma, which except
for a minor reformulation is due to McCoy and Ntantu [32], shows
the connection. Recall that Baire spaces have the following game
characterization: Players Empty and Nonempty successively choose
nonempty open subsets sets of their opponent’s previous move. Empty
wins if the intersection of the chosen open sets is Empty, otherwise
Nonempty wins. Then a space is Baire if and only if Empty has no
winning strategy. If Nonempty has a winning strategy, the space is
said to be Choquet or weakly α-favorable. The latter term is the more
classical one; however, we will follow Kechris [29] and use the former.
We also follow [29] by calling the game the Choquet game.

Lemma 4.3. (a) If Ck(X) is Choquet, then K has a winning strategy
in Go

K,L(X);

(b) If Ck(X) is Baire, then L has no winning strategy in Go
K,L(X).

Proof. We prove (b), (a) being similar. Suppose L has a winning
strategy in Go

K,L(X). We show that Ck(X) fails to be Baire by showing
that Empty has a winning strategy in the Choquet game on Ck(X).

Without loss of generality, in the nth round, Nonempty chooses a
basic open set of the form B(Kn, fn, εn) = {g ∈ Ck(X) : ∀x ∈
Kn(|g(x) − fn(x)| < εn}, where Kn is compact. Let Ln be L’s
response to Kn in Go

K,L(X) using a winning strategy. Then Empty
plays B(Kn, fn, εn} ∩ B(Ln, cn, 1/2). If φ ∈ Ck(X) is in all chosen
sets, then φ(Ln) ⊂ (n − 1/2, n + 1/2) for all n. It easily follows that
{Ln : n ∈ ω} has a discrete open expansion, a contradiction. Hence
this strategy is winning for Empty.

We do not know if the converse of either (a) or (b) of the above lemma
holds:

Question 4.4. Is it true that for any completely regular space X,
Ck(X) is Baire if and only if L has no winning strategy in Go

K,L(X)?
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That Ck(X) is Choquet if and only if K has a winning strategy in
Go

K,L(X)?

The answer to Question 4.4 is positive for locally compact spaces.
For Baire, this was done by Ma and myself in [24]. For normal X, the
Choquet case was done earlier by McCoy and Ntantu. However, they
didn’t have Theorem 4.1 in hand, which yields the following stronger
result, essentially due to Ma [31].

Theorem 4.5. Let X be locally compact. Then the following are
equivalent:

(a) Ck(X) is Choquet;

(b) Ck(X) is a product of completely metrizable spaces;

(c) K has a winning strategy in GK,L(X);

(d) X is paracompact.

Proof. That (b) implies (a) is well known [29]. That (a) implies (c)
is part of Lemma 4.3 and (c) implies (d) is Theorem 4.1. But (d) plus
locally compact implies X is the topological sum of locally compact,
σ-compact spaces, which in turn implies that Ck(X) is the product of
spaces of the form Ck(Y ), where Y is locally compact and σ-compact.
But such Ck(Y ) are completely metrizable [32].

We also give in [24] an internal, nongame-theory characterization of
L having no winning strategy in Go

K,L(X) by defining a property we call
the Moving Off Property (MOP for short), and showing that “X has
the MOP” is equivalent to “L has no winning strategy in Go

K,L(X).”

Definition. A collection L of nonempty compact subsets of X is
said to move off the compact sets if, for every compact subset K of X,
there is some L ∈ L with K ∩ L = ∅. The space X is said to have the
MOP if and only if every collection L which moves off the compact sets
contains an infinite subcollection which has a discrete open expansion.
A useful equivalence, proved in [24], is: X has the MOP if and only if,
for every sequence L0,L1, . . . , of moving off collections in X, one can
choose Li ∈ Li such that {Li}i∈ω has a discrete open expansion.
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Here, then, is the main theorem of [24], except that the equivalence
of (c) was not mentioned there:

Theorem 4.6. Let X be a locally compact space. Then the following
are equivalent:

(a) Ck(X) is a Baire space;

(b) L has no winning strategy in Go
K,L(X);

(c) L has no winning strategy in GK,L(X);

(d) X has the moving off property.

Remarks on the proof. We already have seen (a)⇒(b) for any space,
and (b) ⇐⇒ (c) for locally compact spaces is easy and was already
noted. That (c)⇒(d) is also easy: if there is a moving off collection L
of compact sets which witnesses failure of the moving off property, then
all L has to do to win in choose sets in L. So (d)⇒(a) is the meat of
the theorem. The proof, which we will not repeat here, goes back and
forth between the game GK,L(X) and the Choquet game on Ck(X).

The above result was stated in [24] for q-spaces, a common generaliza-
tion of local compactness and first-countability. However, the theorem
for q-spaces is not fundamentally more general, as McCoy and Ntantu
[32] had shown that for a q-space, Ck(X) Baire implies X is locally
compact (see also Lemma 5.1). Recently, Nyikos [38] showed that the
statement “the subspace of Ck(X) consisting of the functions which
vanish at infinity is Fréchet” can be added to the list of equivalences in
Theorem 4.6.

The conditions (b) and (d) of Theorem 4.6 are equivalent for all spaces
[24]. Thus, the question of whether or not the MOP characterizes
Baireness of Ck(X) is equivalent to Question 4.4.

Question 4.7. Is “exactly those (completely regular) spacesX which
have the MOP” an answer to Question 4.2, i.e., is Ck(X) Baire if and
only if X has the MOP?
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For this question, requiring that the sequence {Ln}n∈ω of compact
sets (in the game or in the MOP ) have discrete open expansions,
instead of just being discrete, is important, since there are spaces in
which these differ.

Example 4.8. There is a completely regular space X such that L
has a winning strategy in Go

K,L(X) but not in GK,L(X) (in fact, K has
a winning strategy in GK,L(X)).

Proof. Let Z be the space ω1 + 1 with all α < ω1 isolated, and ω1

retaining its usual order-theoretic neighborhoods. Let

X = {(α, β) ∈ (ω + 1)× Z : α �= ω or β �= ω1}.

For α < ω1, let Hα = (ω + 1) × {α}. Observe that any sequence
{Ln}n∈ω of disjoint compact sets such that each Hα meets only finitely
many of them is discrete. It is easy for K to use this to devise a winning
strategy in GK,L(X). However, L can always choose a set of the form
(n, ω1), n < ω. No infinite collection of such points has a discrete open
expansion. Thus L has a winning strategy in Go

K,L(X).

Of course, by Lemma 4.3, if X is as above, then Ck(X) is not Baire.

5. What spaces have the MOP? Suppose one really wants to
know if Ck(X) is Baire for a certain locally compact space X. By
Theorem 4.6, it reduces to determining if L has a winning strategy in
GK,L(X), or equivalently, if X has the MOP . This certainly seems less
daunting than dealing with Ck(X) directly. Still, it is often not clear
what spaces, even locally compact ones, have the MOP . The following
result from [24] (this was essentially done in [32] as well) gives some
useful necessary, but far from sufficient, conditions. (See the paragraph
immediately preceding subsection 2.3 for the definition of q-space.)

Lemma 5.1. Suppose a regular space X has the MOP . Then:

(a) Every closed pseudocompact subspace of X is compact;

(b) If X is a q-space, then X must be locally compact.
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So, for example, (a) implies the space of countable ordinals does not
have the MOP , while (b) together with Theorems 4.5 and 4.6 show
that the metrizable spaces having the MOP are exactly the locally
compact ones.

That it can be difficult to tell if a locally compact space has the MOP
is shown in Ma’s study [31] of these properties for Cantor tree spaces
over a subset A of 2ω (see Definition 2.2).

Theorem 5.2. The following are equivalent:

(a) Ck(T ∪A) is a Baire space;

(b) A is a γ-set.

Todorčević, see [10], showed that it is consistent for there to be
two γ-sets A0 and A1 whose topological sum is not a γ-set. Since
Ck(X0⊕X1) ∼= Ck(X0)×Ck(X1), Ma obtained the following corollary.

Corollary 5.3. There are, consistently, two locally compact spaces
having the MOP whose topological sum does not, and two function
spaces with the compact-open topology which are Baire but whose prod-
uct is not.

But we don’t know about ZFC examples.

Question 5.4. Are there examples in ZFC of two Baire function
spaces whose product is not Baire? Of two (locally compact) spaces
having the MOP whose topological sum does not?

The Cantor tree spaces are special cases of spaces ψ(A) = ω∪A built
from an almost-disjoint family A of subsets of ω, where ω is the set of
isolated points, A the set of nonisolated points, with each set A ∈ A
essentially being a sequence of points of ω which limit to the point A.
So it may be interesting to answer the following:

Question 5.5. For what almost-disjoint families A of subsets of ω
does ψ(A) have the MOP? What if ω is replaced by a larger cardinal?
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The Cantor tree spaces are also special cases of trees with the interval
topology, i.e., a basic neighborhood of a node t of the tree T is, for any
s < t, the interval {u ∈ T : s < u ≤ t}.

Question 5.6. What trees with the interval topology have the
MOP?

The following result, which is new, answers this question for Aron-
szajn trees.

Theorem 5.7. Every Aronszajn tree with the interval topology has
the MOP .

Proof. Suppose T is Aronszajn and L is a moving off collection of
nonempty compact sets which does not contain an infinite discrete
subcollection.

Fact 1. If F is an uncountable collection of finite antichains of T ,
then there are Fn ∈ F such that ∪n∈ωFn is an antichain. The poset of
finite antichains is well known to be ccc, e.g., see Lemma 9.2 of [45]. By
the Erdös-Rado theorem ω1 → (ω, ω1)2, any uncountable subcollection
of a ccc poset has an infinite pairwise-compatible subset. Applying this
to F proves Fact 1.

In the sequel, if L is a compact set, we let m(L) denote the (finite)
set of T -minimal elements of L. And we let Tα denote the set of all
nodes of T of level < α.

Fact 2. There is a δ < ω1 such that, for every L ∈ L, L ∩ Tδ �= ∅.
If not, we can easily find an uncountable disjoint subcollection L′ of
L. By Fact 1, there are Ln ∈ L such that ∪{m(Ln) : n ∈ ω} is an
antichain. Then {Ln : n ∈ ω} is discrete, a contradiction.

Fact 3. If F is a moving off collection of finite sets, there are
arbitrarily large δ < ω1 such that, to every F ∈ F , one can assign
{Fn : n ∈ ω} ⊂ F satisfying:



1910 G. GRUENHAGE

(a) For each n ∈ ω, Fn ∩ Tδ = F ∩ Tδ;

(b) Fn ∩ Fm\Tδ = ∅ if n �= m;

(c) ∪n∈ω(m(Fn)\Tδ) is an antichain.

To see this, let M be a countable elementary submodel containing T
and F . We claim that δ = M ∩ ω1 works. Take F ∈ F . If F ⊂ Tδ, we
can simply let Fn = F for every n. If on the other hand, F\Tδ �= ∅,
then a standard elementary submodel argument gives that, for each
α > δ, there is Fα ∈ F such that Fα∩Tδ = F∩Tδ and (Fα\Tδ)∩Tβ = ∅.
Then one obtains Fact 3 by passing to an uncountable subcollection
such that the Fα\Tδ’s are disjoint and applying Fact 1.

Now let’s complete the proof of the theorem. Let δ satisfy the
conditions of Facts 2 and 3. Let {tαn}n∈ω index the αth level of T .
Let Uα

n be the compact open set {t ∈ T : ∃i ≤ n(t ≤ tαi )}. Now use the
fact that L moves off to find disjoint Ln ∈ L such that Ln ∩ Uδ

n = ∅.
Then apply Fact 3 to {m(L) : L ∈ L} to find Li

n ∈ L, i ∈ ω, satisfying:

(a) For each n ∈ ω, m(Li
n ∩ Tδ = Ln ∩ Tδ;

(b) Li
n ∩ Lj

n\Tδ = ∅ if i �= j;

(c) ∪i∈ω(m(Li
n)\Tδ) is an antichain.

Find ν > δ such that ∪n,i<ωL
i
n ⊂ Tν . It is not difficult to use

conditions (b) and (c) to construct n0 < n1 < · · · and ik, k ∈ ω, such
that Lik

nk
∩ (Uν

k ∪∪i<kL
ik
nk

) = ∅. Then {Lik
nk

: k ∈ ω} is discrete.

Suppose in the statement of the MOP we had merely required the
Ln’s to be discrete instead of having a discrete open expansion. This
property was called the weak moving off property (WMOP) by Bouziad
[4]. He points out that any pseudocompact noncompact space in which
all countable subsets are discrete is a space satisfying WMOP but
not MOP . Example 4.8 is another example of this. It is easy to
see, however, that WMOP is equivalent to MOP for either normal
or locally compact spaces and could have been added to the list of
equivalences in Theorem 4.6. Bouziad usesMOP andWMOP to study
Prohorov spaces and coincidence of certain hyperspace topologies.
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We are nowhere near figuring out which nonlocally compact spaces
have the MOP or WMOP . Bouziad showed that any Fréchet fan, i.e.,
the quotient space obtained by identifying the limits of the topological
sum of convergent sequences, has the MOP . Granado [16] showed
more generally that the WMOP property is always preserved by closed
images, and hence any closed normal image of a space with the MOP
also has the MOP . Granado and I [17] also recently characterized the
MOP , equivalently, WMOP , in ordered spaces as follows:

Proposition 5.8. Let X be an ordered space, and let LC(X) be the
open subspace consisting of the points of locally compactness. Let I
be the partition of LC(X) into maximal convex sets. Then X has the
MOP if and only if the following holds:

(a) If x ∈ X and (x,→) has countable coinitiality, then [x, y] is
compact for some y > x; similarly, if (←, x) has countable cofinality,
then [y, x] is compact for some y < x;

(b) For each I ∈ I and x ∈ I, if the interval (x, sup I) is not
paracompact, then [y, sup I] is compact for some y ∈ I; the analogous
statement holds for (inf I, x).

We were able to use this characterization to characterize the Baire
property of Ck(X) for ordered spaces X:

Corollary 5.9. (a) If X is an ordered space, then Ck(X) is Baire
if and only if Ck(X) is Choquet if and only if X has the MOP ;

(b) If X is a locally compact ordered space, then Ck(X) is Baire if
and only if Ck(X) is Choquet if and only if X is paracompact.

REFERENCES
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41. D. Shakmatov, αi-properties in Fréchet-Urysohn topological groups, Topology
Proc. 15 (1990), 143 183.

42. P.L. Sharma, Some characterizations of W -spaces and w-spaces, Proc. Amer.
Math. Soc. 83 (1981), 793 801.

43. K. Tamano, Products of compact Frchet spaces, Proc. Japan Acad. Math.
Sci. 62 (1986), 304 307.
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