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QUADRATIC RESIDUES OF CERTAIN TYPES

ALEXANDRU GICA

ABSTRACT. The main purpose of the paper is to show
that if p is a prime different from 2, 3, 5, 7, 13, 37, then there
exists a prime number q smaller than p, q ≡ 1 (mod 4), which
is a quadratic residue modulo p. Also, it is shown that if p
is a prime number which is not 2, 3, 5, 7, 17, then there exists
a prime number q ≡ 3 (mod 4), q < p, which is a quadratic
residue modulo p.

1. Introduction. In [2] it is shown that any n ∈ N, n > 3, could
be written as

n = a + b,

a, b being positive integers such that Ω(ab) is an even number. If
m ∈ N, m ≥ 2, has the standard decomposition m = pa1

1 · pa2
2 · · · par

r

then the length of m is Ω(m) =
∑n

i=1 ai. We put Ω(1) = 0. In
connection with the above quoted result, the following open problem
naturally arises.

Open problem. What numbers n can be written as n = a2 + b,
where a, b are positive integers, the length of b being an even number?

Trying to solve this problem was the starting point for the main result
of this paper.

Theorem 1. Let p be a prime number p �= 2, 3, 5, 7, 13, 37. There
exists a prime number q such that q < p, q ≡ 1 (mod 4) and (q/p) = 1.

We will prove also a similar result which has, however, an elementary
proof:
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Theorem 2. If p is a prime not equal to 2, 3, 5, 7, 17, then there
exists a quadratic residue modulo p, where q < p and q ≡ 3 (mod 4).

We have to mention that finding the properties of n′(p), the least
prime number which is quadratic residue modulo a prime p, is a classical
problem. We quote here [6] where it is shown that

n′(p) = O(pα),

where α is a fixed real number for which α > 1/4e−1/2.

2. The elementary cases. We will use below the following obvious

Lemma. If x and y are positive integers, x �= y, then x2 + y2 has a
prime factor q = 4k + 1, k ∈ N.

We will prove now the main statement of the paper

Theorem 1. Let p be a prime number not equal to 2, 3, 5, 7, 13, 37.
Then there exists a prime number q such that q < p, q ≡ 1 (mod 4)
and (q/p) = 1.

We divide the proof of the theorem in several cases, depending on the
class of p modulo 8. In this section we will treat the cases which have
elementary proofs.

1. p ≡ 1, 3 (mod 8), p > 3. In this case p = x2 + 2y2, where x and
y are positive integers, x �= y (since p > 3). According to the lemma,
there exists a prime divisor q ≡ 1 (mod 4) of the number x2 + y2. We
have that p ≡ y2 (mod q) and therefore (q/p) = (p/q) =

(
y2/q

)
= 1.

Since obviously q < p, the statement is true in this case.

2. p ≡ 7 (mod 8), p > 7. We divide this case in two subcases,
according to the class of p modulo 3.

2a. p ≡ 1 (mod 3). In this situation we know that p = x2 + 3y2,
x and y being positive integers. It is obvious that (x, y) = 1, y
is odd and x = 2t, where t is an odd number. Since p > 7, we
have y �= t, and according to the lemma there is a prime q ≡ 1
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(mod 4) which divides t2 + y2. We infer that p ≡ −y2 (mod q) and
(q/p) = (p/q) =

(−y2/q
)

= (−1/q) = 1.

2b. p ≡ 2 (mod 3). In this case (3/p) = 1 and there exists m ∈ Z
such that m2 ≡ 3 (mod p). The element p is not prime in the norm
Euclidean ring Z[

√
3] since p | m2 − 3 = (m−√

3)(m +
√

3) but p does
not divide m ± √

3. Therefore p = αβ, with α, β ∈ Z[
√

3], not units.
If α = x + y

√
3, x, y ∈ Z, one gets that x2 − 3y2 = ±p. Since p ≡ 2

(mod 3), one obtains that x2 − 3y2 = −p. Considering the positive
integers x, y such that x2 − 3y2 = −p with x minimal and tacking into
account that (|2x−3y|, |2y−x|) is also a solution of the above equation
(we multiplied x − y

√
3 with 2 +

√
3, the fundamental unit of Z[

√
3]),

we immediately get that |2x− 3y| ≥ x. If 2x− 3y ≥ x one gets x ≥ 3y,
while −p = x2−3y2 ≥ 6y2 gives a contradiction. So it must be the case
that 3y−2x ≥ x and y ≥ x. Therefore −p = x2−3y2 ≤ −2y2, y2 ≤ p/2
and further x2 = 3y2−p ≤ (3p/2)−p = p/2. The fact that the last two
inequalities are strict follows since p is odd. Therefore x, y are positive
integers such that x2 − 3y2 = −p and x2 < p/2, y2 < p/2. Since x �= y,
then, according to the lemma, there exists a prime q ≡ 1 (mod 4) such
that q divides x2 + y2. Obviously, q ≤ x2 + y2 < p/2 + p/2 = p and
p ≡ (2y)2 (mod q). We proved Theorem 1 in this case.

3. The difficult case. We will solve in this section the case p ≡ 5
(mod 8), p > 37. In [4] Schinzel shows that a positive integer n could
be written as n = x2 + y2 + z2, where x, y, z are positive integers such
that (x, y, z) = 1 if and only if

i) n �≡ 0, 4, 7 (mod 8) and

ii) n is divisible by a prime ≡ 3 (mod 4) or is not a “numerus
idoneus.”

Euler called a number n “numerus idoneus” (convenient number) if
it satisfies the following criterion:

Let m be an odd number such that m = x2+ny2, x, y ∈ Z, (x, y) = 1.
If the equation m = x2 + ny2 has only one solution with x ≥ 0, y ≥ 0,
then m is a prime number.

Gauss gave a list of 65 numbers n with this property and Weinberger
[7] showed that besides these values, there exists at most one convenient
number.
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We apply Schinzel’s result to n = p. The only possibility for p to
not be written as p = x2 + y2 + z2, with x, y, z positive integers, is to
be a “numerus idoneus.” Since p ≡ 1 (mod 4) is prime and “numerus
idoneus,” we then infer that the ideal class group of the field Q(

√−p)
has 2r elements, where r is the number of odd prime divisors of p, see
[1, Theorem 3.22, Proposition 3.11] for a proof of these results. We
have r = 1 and therefore the ideal class group of the field Q(

√−p) has
two elements. The list of the quadratic imaginary fields of discriminant
d for which h(d) = 2 is given in [3, 5]. The list of the numbers d is the
following:

− d = 15,20,24,35,40,51,52,88,91,115,123,148,187,232,235,267, 403,427.

We observe that in our case d = −4p, where p ≡ 5 (mod 8) is a prime
number. The only values of p which fit in the above list are p = 5,
p = 13, p = 37 (corresponding to d = −4p = −20,−52,−148). But
p > 37 and we arrive at a contradiction. Therefore, there exist the
positive integers x, y, z such that p = x2 + y2 + z2. Two of the above
three numbers are different; let us suppose that x �= y.

Applying the lemma we obtain that there exists a prime divisor q ≡ 1
(mod 4) of the number x2 + y2. The prime number q has the desired
properties since q < p, q ≡ 1 (mod 4), (q/p) = 1.

4. A final remark. We give now a similar result to Theorem 1 but
with an elementary proof.

Theorem 2. If p is a prime not equal to 2, 3, 5, 7, 17, then there
exists a quadratic residue modulo p, where q < p and q ≡ 3 (mod 4).

We divide the proof again into four cases.

1. p ≡ 3 (mod 8), p > 3. We have (p + 9)/4 < p and (p + 1)/4 ≥ 3.
One of the consecutive odd numbers (p + 1)/4 and (p + 9)/4 has the
form 4h + 3 ≥ 3 and has therefore a prime divisor q, q ≡ 3 (mod 4).
We have that q ≤ (p + 9)/4 < p, p ≡ −1 (mod q) or p ≡ −9 (mod q).
In both cases we have (q/p) = − (p/q) = −(−1) = 1.

2. p ≡ 5 (mod 8), p > 5. The proof follows as above considering the
numbers (p − 1)/4 and (p − 9)/4.
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3. p ≡ 7 (mod 8), p > 7. Let us consider the numbers a = (p + 1)/8,
a+1 = (p + 9)/8, a+3 = (p + 25)/8, a+6 = (p + 49)/8 < p. These four
positive integers represent all the classes modulo 4 and therefore one
of these numbers has a prime divisor q ≡ 3 (mod 4). We have p ≡ −1
(mod q) or p ≡ −9 (mod q) or p ≡ −25 (mod q) or p ≡ −49 (mod q).
In all four cases we have (p/q) = −1 and (q/p) = − (p/q) = −(−1) = 1.

4. p ≡ 1 (mod 8), p > 17. Since (23/41) = (41/23) = (18/23) =
(2/23) = 1, we can suppose that p ≥ 73. The proof follows now as in the
previous case considering the numbers (p − 1)/8, (p − 9)/8, (p − 25)/8,
(p − 49)/8 > 0.
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