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BELLMAN FUNCTIONS AND MRA WAVELETS

JANINE WITTWER

ABSTRACT. In this paper, we discuss how far the method
of Bellman functions can be generalized from use with Haar
functions to use with general MRA wavelets.

1. Introduction. The method of Bellman functions is a very
powerful method in harmonic analysis which has been used to prove a
lot of interesting results, see [3 7] for just a few. In its original form, it
is intimately connected with the Haar function system, as it is used to
estimate sums involving Haar coefficients. A natural question arises:
Can the method be generalized to work with coefficients of general
multi-resolution-analysis wavelets? This paper strives to answer this
question. The answer is yes, but the Bellman function will be much
more difficult to find in this general case.

The method itself, namely the proof of the result given the Bellman
function, generalizes with only one change: The inequality conditions
we need the Bellman function to satisfy are summed versions of the
conditions in the Haar wavelet case. The big difference comes in the
application of the method, namely when we are looking for the Bellman
function. In the Haar case, the scaling sequence has only positive terms.
In general, the terms can be negative. This means that we cannot use
the Cauchy-Schwarz inequality to define the domain of the Bellman
function, and it also makes the usual differential inequality difficult to
work with for general wavelets.

In this paper, we will first present a simple Bellman proof of the
bound of the discrete square function, which is based on the Haar
function system. We then discuss which aspects of a Haar-based proof
need to be adjusted when we are working with wavelets. To illustrate
the Bellman method when used with wavelets, we then give a Bellman
proof of the bound of the wavelet square function.
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2. Notation. In this paper, I, J,M and N denote dyadic intervals,
i.e., intervals of the form [k2i, (k+1)2i) where k and i are integers. The
halves of a dyadic interval I are again dyadic intervals and are denoted
by Il (left half) and Ir (right half). The set of all dyadic intervals
will be denoted by D. Let φ be a scaling function with corresponding
wavelet ψ.

For I = [k2i, (k + 1)2i), let

φI(x) = φi,k = φ

(
x− 2ik

2i

)
1
2i

ψI = ψi,k = ψ

(
x− 2ik

2i

)
1
2i
.

The simplest example of a scaling function is H(x) = χ[0,1)(x).
The corresponding wavelet is the well-known Haar wavelet, h(x) =
(1/2)H[1/2,1)(x) − (1/2)H[0,1/2)(x).

Every MRA wavelet has a scaling sequence αk, for which

φ(x) =
∑
k

αkφ−1,k(x),

and a corresponding sequence for the wavelet for which

ψ(x) =
∑
k

γkφ−1,k(x).

In this paper we will work only with wavelets that have real scaling
sequences. For these, γk = (−1)1−kα1−k. In the case of the Haar
wavelet, the scaling sequence is α0 = 1/2, α1 = 1/2, αi = 0 for all
i �= 0, 1.

Scaling sequences α satisfy the following properties, see, for example,
[1, 2]:

(1)
∑

k αk = 1

(2)
∑

k(αk)
2 = 1/2

(3)
∑

k(−1)1−kα1−k =
∑
k γk = 0.

(4) The scaling sequence is orthogonal to even translates of itself, i.e.,∑
k αkαk+2s = 0 for s > 0 an integer.
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(5)
∑

k odd αk =
∑

k even αk = 1/2.

Note. I am normalizing my scaling function and its dilates in L1,
rather than in L2 which might be more customary.

We will use the following notation:

xI = xi,k = 〈f, φi,k〉 = 〈f, φI〉
and

yI = yi,k = 〈f, ψi,k〉 = 〈f, ψI〉.

We will switch between these two styles of subscripts depending on
what is more intuitive in a given situation.

By the scaling equalities, we have

xI = xi,k =
∑
s

αs−2kxi−1,s =
∑

J:|J|=|I|/2
αJ,IxJ

and

yI = yi,k =
∑
s

γs−2kxi−1,s,=
∑

J:|J|=|I|/2
γJ,IxJ ,

where αs−2k = αJ,I for

I = [k2i, (k + 1)2i),
J = [s2i−1, (s+ 1)2i−1)

and similarly for γJ,I .

For g ∈ L2(dx), we define the wavelet square function as follows:

Sψg(x) =
( ∑
I∈D:x∈I

〈g, ψI〉2
)1/2

.

Then
‖Sψg(x)‖2

L2 =
∑
I∈D

〈g, ψI〉2|I|.
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In the case where ψ(x) = h(x), the Haar wavelet, we get the dyadic
square function which is used frequently in harmonic analysis:

Sdg(x) =
( ∑
I∈D:x∈I

〈g, hI〉2
)1/2

.

3. A traditional Bellman function proof. We will prove the
following theorem using the method of Bellman functions.

Theorem 3.1.
‖Sdg‖L2 ≤ ‖g‖L2 .

Note that this is well known and follows from Bessel’s inequality. We
present this result here only for the purpose of illustration.

Proof. By the scaling equality, we can write

‖Sdg‖2
L2 =

1
4

∑
I∈D

〈g,HIr
−HIl

〉2|I|.

We will prove

1
4

1
|J |

∑
I⊆J

(〈g,HIr
〉 − 〈g,HIl

〉)2 |I| ≤ 〈g2, HJ 〉 =
1
|J |

∫
J

g2(x) dx

for any dyadic interval J . Then the desired result will follow by letting
|J | → ∞.

To simplify some of the formulas, we will use the following notation:
gI = 〈g,HI〉 and GI = 〈g2, HI〉.

Let B(x, u) = u− x2 in the domain x2 ≤ u. This is what we refer to
as the Bellman function of the problem. It satisfies the following two
crucial properties:

(1) u ≥ B(x, u) ≥ 0.

(2) B(x, u) ≥ 1/4(x− − x+)2 + (B(x−, u−) +B(x+, u+))/2 for
(x−, u−), (x+, u+) and (x, u) in the domain such that

(x−, u−) + (x+, u+)
2

= (x, u).
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The second inequality is actually an equality. However, as inequality
is sufficient for the proof, and we can not in general expect to have
equality, we shall write it as an inequality in order to make it more like
the general case.

The very existence of a function with these properties implies the
bound, as we will now see.

Let x− = gJl
, x+ = gJr

, x = gJ and u− = GJl
, u+ = GJr

and
u = GJ . These pairs (x−, u−), (x+, u+) and (x, u) are all in the
domain of B, since by the Cauchy-Schwarz inequality, (1/|I| ∫

I
g)2 ≤

1/|I| ∫
I
g2 for any interval I. Furthermore, for these variables, we

have ((x−, u−) + (x+, u+))/2 = (x, u). Thus we can apply the two
inequalities to B(gJ , GJ) :

GJ ≥ B(gJ , GJ) ≥ 1
4

(gJl
− gJr

)2 +
B(gJl

, GJl
) +B(gJr

, GJr
)

2

Apply the second inequality again, this time to B(gJl
, GJl

), with
x− = gJll

, x+ = gJlr
and x = gJl

, u− = GJll
, u+ = GJlr

and u = GJl

and similarly to B(gJr
, GJr

). Then

GJ ≥ 1
4

(gJl
− gJr

)2 +
B(gJl

, GJl
) +B(gJr

, GJr
)

2

≥ 1
4

(gJl
− gJr

)2 +
1
8

(
g(Jl)r

− g(Jl)l

)2 +
1
8

(
g(Jr)l

− g(Jr)r

)2

+
B(g(Jl)l

, G(Jl)l
) +B(g(Jl)r

, G(Jl)r
)

4

+
B(g(Jr)l

, G(Jr)l
) +B(g(Jr)r

, G(Jr)r
)

4
.

Repeat this procedure n times, each time applying the inequal-
ity to the B’s on the right, expressing B(gM , GM ) in terms of
B(gMl

, GMl
), B(gMr

, GMr
) and (gMl

− gMr
)2.

We get

GJ ≥ 1
4

∑
I⊆J,|I|≥2−n|J|

(gIl
− gIr

)2
|I|
|J |

+
∑

K⊆J,|K|=2−n−1|J|
B(gK , GK)

(
1
2

)n+1

.
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The |I|/|J | stems from the factors 1/2 that we get with each repetition.

Since B(gK , GK) is always positive, we can simply omit the second
sum without changing the inequality, i.e.,

1
|J |

∫
J

g2(x) dx = GJ ≥ 1
4

∑
I⊆J

|I|/|J|≥2−n

(gIl
− gIr

)2
|I|
|J | .

Multiplying both sides by |J | and letting n→ ∞ establishes
∫
J

g2(x) dx ≥ 1
4

∑
I⊆J

(gIl
− gIr

)2 |I|.

Since this is true for any dyadic interval J , it follows that
∫
R

g2(x) dx ≥ 1
4

∑
I dyadic

(gIl
− gIr

)2 |I| = ‖Sdg‖2
L2 .

4. The extended Bellman function method. In this section
we will investigate how the conditions for the Bellman function need
to change in the general wavelet case. A Bellman function can have
any number of variables, but in this discussion, we will use a Bellman
function of one variable for simplicity.

In the Haar wavelet situation, where xI = (xIl
+ xIr

)/2, we require
our Bellman function to satisfy a condition of the form

B(xI) ≥ term for sum +
1
2

(B(xIl
) +B(xIr

)),

where the “term for sum” depends on the summand of the quantity to
be estimated.

For general wavelets, xI =
∑
J:|J|=|I|/2 αJ,IxJ . Therefore, a possible

guess at a generalization to other wavelets might be to require the
condition

B(xI) ≥ term for sum +
∑

J:|J|=|I|/2
αJ,IB(xJ).
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However, even in a simple situation, such as estimating the norm of
the wavelet square function, such a Bellman function can fail to exist,
as we will show in the following example.

In the case of the wavelet square function, the above condition would
be

B(xI , uI) ≥
( ∑
J:|J|=|I|/2

γJ,IxJ

)2

+
∑

J:|J|=|I|/2
αJ,IB(xJ , uJ).

Writing this in integer subscript notation, we see that we would need
to find B satisfying

B(xi,k, ui,k) −
∑
s

αs−2kB(xi−1,s, ui−1,s)

≥
( ∑

s

(−1)1−(s−2k)α1−(s−2k)xi−1,s

)2

.

But say the wavelet is the sine wavelet (see, for example [1]), whose
scaling sequence is αn = sin(πn/2)/(πn/2). Then α4 = 0, but
α−3 = c �= 0. Let xi−1,4 = a > 0, xi−1,s = 0, s �= 4. Then xi,0 = 0, and

B(xi,0) −
∑
s

αsB(xi−1,s) = B(0) −
∑
s

αsB(0) = 0,

since
∑
s αs = 1. Thus the left-hand side is 0, but the right-hand side,

(
∑
s(−1)1−sα1−sxi−1,s)2 = (ac)2, is positive. Thus, our naive guess

for the Bellman inequality fails, since even in the case of a wavelet as
simple as the sine wavelet, the condition can not be satisfied. However,
a small modification will solve this problem.

Consider the summed version of the previous condition,
∑

|I|=2i

B(xI) ≥
∑

|I|=2i

∑
J:|J|=|I|/2

αJ,IB(xJ ) +
∑

|I|=2i

term in sum.

The double sum can be simplified

∑
|I|=2i

∑
J:|J|=|I|/2

αJ,IB(xJ ) =
∑

J:|J|=2i−1

1
2
B(xJ ),
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since∑
k

∑
s

αs−2kB(xi−1,s) =
∑
s

B(xi−1,s)
∑
k

αs−2k =
∑
s

1
2
B(xi−1,s).

In the last equality, we used property 5 of scaling sequences.

Thus the convexity condition of Bellman function method now reads∑
|I|=2i

B(xI) ≥ 1
2

∑
J:|J|=|I|/2

B(xJ) +
∑

|I|=2i

term in sum.

which looks remarkably like the condition in the Haar wavelet case. We
will see that this condition can be fulfilled and is the right one to work
with.

The conditions for the bounds of the Bellman function become the
summed versions of those in the Haar function case as well. Again it is
easy to see that it not possible to use the original version. Terms like
uI = 〈g2, φI〉 no longer need to be positive, and so a condition like

0 ≤ B(xI , uI) ≤ CuI ,

as we had in the discrete square function case, becomes meaningless.
The condition

0 ≤
∑

J:|J|=2i

B(xJ , uJ) ≤ C
∑

J:|J|=2i

uJ ,

however does make sense. This follows from the following claim.

Claim. For continuous, compactly supported scaling functions φ,∑
k

φ(2−ix− k) = 1.

Proof. We can see this by using the scaling inequality in two different
ways:∑
k

φ(x− k) =
∑
k

∑
s

αsφ−1,s(x− k) = 2
∑
k

∑
s

αsφ(2x− (2k + s))

= 2
∑
s,k

αs−2kφ(2x− s) =
∑
s

φ(2x− s)2
∑
k

αs−2k

=
∑
s

φ(2x− s),

by property 5 of scaling sequences.
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Note that the interchange of sums is justified because φ is compactly
supported, and thus all sums are finite.

By induction,

∑
k

φ(2−ix− k) =
∑
k

φ(x− k)

for all i ∈ Z. Thus, letting
∑
k φ(x − k) = F (x), we have F (x) =

F (2−ix). Since F is continuous, F (x) = limi→∞ F (x/2i) = F (0).
Thus, the sum is indeed constant.

To show that F (0) = 1, observe that by the scaling equality∑
s φ(s/2i) =

∑
k 2αk

∑
s φ((s/2i−1) − k) =

∑
k 2αk

∑
s φ(s/2i−1) =

2
∑
s φ(s/2i−1).

By induction,
∑
s φ(s/2i) = 2i

∑
s φ(s) for i ≥ 0.

But limi→∞
∑

s 2−iφ(s/2i) =
∫
φ(x) dx = 1 (Riemann sum), so∑

s φ(s) = 1.

Thus, for any positive function f ,

∑
k

〈f, φI〉 =
1
|I|

∫
f ≥ 0,

and thus a condition like

0 ≤
∑

J:|J|=2i

B(xJ ) ≤ C
∑

J:|J|=2i

〈f, φJ〉

is meaningful. It is also the natural condition to ask for in light of the
fact that the difference inequality must also be summed.

In the conventional Bellman function method, we often can trans-
late the difference inequality into a differential condition, which helps
greatly in finding the Bellman function. The following shows that we
can still do this in the wavelet case. A word of warning, however: Since
the α’s are not all positive, this condition may be too complicated to
be useful in most cases.

For clarity of exposition, we show how to convert the inequality for
B(x) a function of one variable only, but the same can be done for a
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function of any number of variables. In that case, B′′ is replaced by
D2B, the matrix of second partial derivatives.

We will use Taylor’s theorem with second degree remainder. ξk,s is a
point between xi−1,s and xi,k.

∑
k

(
B(xi,k) −

∑
s

αs−2kB(xi−1,s)
)

= −
∑
k

∑
s

αs−2k(B(xi−1,s) −B(xi,k))

= −
∑
s,k

αs−2k(B′(xi,k)(xi−1,s − xi,k) +B′′(ξk,s)(xi−1,s − xi,k)2)

= −
∑
s,k

αs−2kB
′′(ξk,s)(xi−1,s − xi,k)2

where the last equality follows because∑
s

αs−2k(xi−1,s − xi,k) = 0

by the definition of the xi−1,s.

Thus, in terms of the interval subscript, the Bellman inequality can
be expressed as

−
∑

|I|=2i

∑
J:|J|=|I|/2

αJ,IB
′′(ξJ,I)(xJ − xI)2 ≤

∑
|I|=2i

term in sum.

If the α’s are simple enough, this may be a useful condition. In the
Haar wavelet case, where αJ,I = 1/2 for J � I and 0 otherwise, this
condition is much easier to work with than the difference inequality.

5. An example of the extended Bellman function method:
Estimating the unweighted wavelet square function. We will
apply the Bellman function method to a simple estimate: Bounding
the wavelet square function.

Theorem 5.1. ∑
I

〈f, ψI〉2|I| ≤
∫
f2(x) dx

for ψ a continuous, compactly supported MRI wavelet, f ∈ L2.
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Proof. Let uJ = 〈f2, φJ〉 and xJ = 〈f, φJ〉 where φ is the scaling
function corresponding to the wavelet ψ.

Note that neither of these variables is necessarily positive. However,∑
J:|J|=2n uJ = 〈f2,

∑
J:|J|=2n φJ 〉 = 〈f2, 1/|J |〉 = 2−n

∫
f2 ≥ 0 by the

preceding section.

Lemma 5.2. Assume there exists B = B(x, u) such that

0 ≤
∑

I:|I|=2n

B(xI , uI) ≤
∑

I:|I|=2n

uI

and

∑
I:|I|=2n

B(xI , uI) ≥
∑

J:|J|=2n−1

1
2
B(xJ , uJ )+

∑
I:|I|=2n

( ∑
J:|J|=2n−1

γJ,IxJ

)2

for all n ∈ Z.

Then

∑
I∈D

〈f, ψI〉2|I| =
∑
I∈D

( ∑
J:|J|=|I|/2

γJ,IxJ

)2

|I| ≤
∫
f2(x) dx.

Proof. Fix n.
∑

I:|I|=2n

uI ≥
∑

I:|I|=2n

B(xI , uI)

≥
∑

J:|J|=2n−1

1
2
B(xJ , uJ ) +

∑
I:|I|=2n

( ∑
J:|J|=2n−1

γJ,IxJ

)2

≥
∑

K:|K|=2n−2

1
22
B(xK , uK)

+
1
2

∑
J:|J|=2n−1

( ∑
K:|K|=2n−2

γK,JxK

)2

+
∑

I:|I|=2n

( ∑
J:|J|=2n−1

γJ,IxJ

)2

.
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After l applications of the inequality, the right-hand side is

∑
M :|M |=2n−l

|M |
2n

B(xM , uM )

+
∑

M :2n−l<|M |≤2n

|M |
2n

( ∑
N :|N|=|M |/2

γN,MxN

)2

≥
∑

M :2n−l<|M |≤2n

|M |
2n

( ∑
N :|N|=|M |/2

γN,MxN

)2

where the last inequality follows from the positivity of

∑
M :|M |=2n−l

B(xM , uM ).

Let l → ∞. Then we have

∑
I:|I|=2n

uI |I| ≥
∑

M :|M |≤2n

|M |
( ∑
N :|N|=|M |/2

γN,MxN

)2

.

Recall that ∑
I:|I|=2n

uI |I| =
∫
f2,

and

∑
M :|M |≤2n

|M |
( ∑
N :|N|=|M |/2

γN,MxN

)2

=
∑

M :|M |≤2n

|M |〈f, ψM 〉2.

Thus, taking limits as n→ ∞, we have proven that

∑
M∈D

〈f, ψM 〉2|M | ≤
∫
f2(x) dx.

By this lemma, what we now need to do to prove the theorem is to
find a Bellman function which satisfies the inequalities. A good starting
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point is the Bellman function that proved the analogous result for Haar
functions, B(x, u) = u − x2. The challenge in the wavelet case is to
prove that this Bellman function indeed satisfies the inequalities we
need. As it will turn out, we will be able to show that this function
not only satisfies the needed inequalities, but that equality is attained
in the second one.

Claim.

B(x, u) = u− x2

satisfies the inequalities of Lemma 5.2.

First, show that

0 ≤
∑

J:|J|=2n

uJ − xJ
2 ≤

∑
J:|J|=2n

uJ .

The upper bound is obvious.

As mentioned above,
∑

J:|J|=2n uJ = 2−n
∫
f2, so to prove the lower

bound, we need to show
∑
J:|J|=2n〈f, φJ〉2 ≤ 2−n

∫
f2. (A fact which

we get for free in the Haar function case, because we can simply use
the Cauchy-Schwarz inequality there.) This is true since the φJ form
an orthogonal set for each n with ‖φJ‖2

2 = 1/|J |.
What remains to be proven is that

∑
I:|I|=2n

B(xI , uI)−
∑

J:|J|=2n−1

1
2
B(xJ , uJ) ≥

∑
I:|I|=2n

( ∑
J:|J|=2n−1

γJ,IxJ

)2

.

Note that, as the function is linear in u, it will cancel out of the left-
hand side. Thus, what we need to prove is

−
∑

I:|I|=2n

(xI)2 +
∑

J:|J|=2n−1

1
2

(xJ )2 ≥
∑

I:|I|=2n

( ∑
J:|J|=2n−1

γJ,IxJ

)2

,

which follows from
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Lemma 5.3.

∑
J:|J|=2n−1

1
2

(xJ)2 −
∑

I:|I|=2n

( ∑
J:|J|=2n−1

αJ,IxJ

)2

−
∑

I:|I|=2n

( ∑
J:|J|=2n−1

γJ,IxJ

)2

= 0.

Proof. We will look at the coefficients of the various combinations of
x’s.

Recall that

γJ,I = γs−2k = (−1)1−s+2kα1−s+2k,

for I = [k2i, (k + 1)2i) and J = [s2i−1, (s+ 1)2i−1).

For the purpose of this proof, we will switch to integer subscripts for
the scaling and wavelet sequences. Thus we need to prove

∑
s

1
2

(xi−1,s)2 −
∑
k

( ∑
s

αs−2kxi−1,s

)2

−
∑
k

( ∑
s

(−1)1−s+2kα1−s+2kxi−1,s

)2

= 0.

(1) The coefficients for (xi−1,l)2 for fixed l are

1
2
−

∑
k

(αl−2k)2 −
∑
k

(α1−l+2k)2 =
(

1
2
−

∑
k

(αk)2
)

= 0.

(2) Coefficients of xi−1,lxi−1,r where l − r is odd.

2
(
−

∑
k

αl−2kαr−2k −
∑
k

(−1)1−l+2kα1−l+2k(−1)1−r+2kα1−r+2k

)

= 2
(
−

∑
k

αl−2kαr−2k +
∑
k

α1−l+2kα1−r+2k

)

= 2
(
−

∑
σ

α2σα2σ+r−l +
∑
σ

α2σ+r−lα2σ

)
= 0
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where the last step is a change of variables in both sums. If r is
odd (and thus l even), we let σ = (l − 2k)/2 in the first sum and
σ = (1 − r + 2k)/2 in the second sum, and the other way around if l is
the odd one.

(3) Coefficients of xlxr where l − r is even, r �= l.

2
(
−

∑
k

αl−2kαr−2k −
∑
k

(−1)1−l+2kα1−l+2k(−1)1−r+2kα1−r+2k

)

= 2
(
−

∑
k

αl−2kαr−2k −
∑
k

α1−l+2kα1−r+2k

)

= 2
(
−

∑
σ

α2σα2σ+l−r −
∑
σ

α2σ+l−r−1α2σ−1

)
= 0

where the terms are 0 because they add up to
∑
k αkαk+l−r, i.e., an

inner product of the scaling sequence with an even translate of itself.
The changes of variables from k to σ need a bit of care; if l, r are even,
then we let σ = (r − 2k)/2 in the first sum and σ = (2 − l + 2k)/2 in
the second sum. If l, r are odd, then σ = (1 + r − 2k)/2 in the first
sum and σ = (1 − l + 2k)/2 in the second sum.

Thus we have established our second Bellman condition, and thus the
estimate holds.
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