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ON THE NUMBER OF BLOWING-UP SOLUTIONS
TO A NONLINEAR ELLIPTIC EQUATION

WITH CRITICAL GROWTH

ANNA MARIA MICHELETTI, ANGELA PISTOIA AND DANIELA VISETTI

ABSTRACT. In this paper we estimate the number of
solutions to{−Δw + V (x)w = n(n − 2)w(n+2)/(n−2)−ε in Rn

w > 0 in Rn

w ∈ D1,2(Rn)

which blow up at a suitable critical point of the potential V
as the parameter ε goes to zero.

1. Introduction. Let us consider the problem

(1)

⎧⎨⎩
−Δw + V (x)w = n(n− 2)w(n+2)/(n−2)−ε in Rn

w > 0 in Rn

w ∈ D1,2(Rn)

where V : Rn → R satisfies suitable conditions, n ≥ 3 and ε > 0 is
a positive parameter. Here D1,2(Rn) is defined as the completion of
C∞

0 (Rn) with respect to the norm ‖u‖1,2 = (
∫
Rn |∇u|2)1/2. It is a

Hilbert space equipped with the inner product (u, v)1,2 =
∫
Rn ∇u ·∇v.

We refer the reader to the pioneering paper [3] on the critical Sobolev
exponent.

In the critical case, i.e., ε = 0, when V ≡ 0 on Rn it is well known
(see [1, 4, 15]) that problem (1) has the family of solutions

Uδ,y(x) = δ−(n−2)/2 U

(
x− y

δ

)
, x ∈ Rn,
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where δ > 0, y ∈ Rn and

U(x) =
1

(1 + |x|2)(n−2)/2
.

In [2] the authors consider the case when V is not identically equal
to zero and they prove the existence of a solution to (1), provided V
satisfies some suitable conditions. The slightly subcritical case was
firstly considered by Ding and Ni in [5], where the authors prove the
existence of ground states solutions to (1), provided V belongs to a
suitable class of potentials. Successively in [14, 16] it has been shown
that the ground states solutions blow up at a global minimum point of
the potential V . More recently in [12] and in [10] the authors consider
a different class of potentials V , and they construct positive and sign
changing solutions blowing up at one or more suitable critical points
of V. Papers [10, 12] deal with both the slightly subcritical case and
the slightly supercritical case, i.e., ε < 0. In particular, in [12], the
following existence result has been proved. Let V satisfy the following
assumptions.

(i) V ∈ Ln/2(Rn) ∩ L∞(Rn),

(ii) V ∈ C2(Rn) and ∂V /∂xi, ∂
2V /(∂xi∂xj) ∈ L∞(Rn), for any

i,= 1, 2, . . . , n,

(iii) V (x) > 0 for any x ∈ Rn,

(iv) ‖V ‖Ln/2(Rn) ≤ μ0, see Lemma 2.1.

Theorem 1.1. Let n ≥ 7. Let y0 be a “stable” critical point of the
function V . Then there exists a family of solutions uε to (1) blowing up
at the point y0 as ε goes to zero. More precisely there exist yε ∈ Rn and
δε > 0 with yε → y0 and δε → 0 such that uε − Uδε,yε

→ 0 in D1,2(Rn)
as ε goes to zero.

At this stage a natural question arises: how many solutions blowing
up at y0 do there exist?

In this paper we give an answer by following some ideas introduced
by Grossi in [8]. In [8] the author studies the nonlinear Schrödinger
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equation

(2)
{− ε2Δw +W (x)w = wp in Rn

w > 0 in Rn

where W : Rn → R satisfies suitable conditions and p ∈ (1, (n + 2)/
(n− 2)), and he establishes the exact number of single-peak solutions
concentrating at a suitable critical point of the potential W as ε goes
to zero. We would like to point out that, even if problems (2) and (1)
have very different features, the results we get are very similar to the
ones obtained in [8].

Let us mention our main results. Let y0 be a fixed critical point of
V . We assume the following assumption on V in a neighborhood of y0.

(Vy0)
There exist hi : Rn → R C1−functions and Ri : B(0, ρ) → R

and αi ≥ 1 for i = 1, . . . , n, such that

(i) ∂V /∂xi(y0 + z) = hi(z) +Ri(z) for z ∈ B(0, ρ),

(ii) |Ri(z)| ≤ C|z|βi for z ∈ B(0, ρ) with βi > αi,

(iii) hi(tz) = tαihi(z) for any z ∈ Rn and t > 0,

(iv) hi(z) = 0 if and only if z = 0.

Moreover, assume

(3) α := max{αi | i = 1, . . . , n} < n− 4.

Therefore we can introduce the function Hy0 : Rn → Rn:

(4) (Hy0(y))i :=
∫
Rn

hi(x+ y)U2(x) dx for i = 1, . . . , n.

First of all we prove the following nonexistence result, see also
Example 3.3.

Theorem 1.2. If Hy0(y) 
= 0 for any y ∈ Rn, then there is no
solution to (1) blowing up and concentrating at y0.

Secondly we prove the following multiplicity result.
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Let us introduce the set

(5) Zy0 :=
{
y ∈ RN | y is a stable zero of Hy0

}
.

We need also to assume the following technical condition.

(6) α := min {αi | i = 1, . . . , n} < n− 5.

Theorem 1.3. If #Zy0 < ∞, then there exists ε0 > 0 such that
for any ε ∈ (0, ε0) the number of the solutions of (1) blowing up and
concentrating at y0 is greater than or equal to #Zy0 .

Finally we prove a uniqueness result, see also Examples 4.1 and 4.2.
We need to assume the following further assumption on V :

(v) x · ∇V (x) ∈ L∞(Rn).

Theorem 1.4. Let 0 be a regular value of Hy0 , i.e., det JacHy0(y) 
=
0 for any y ∈ Rn such that Hy0(y) = 0. Then the number of solutions
of (1) blowing up and concentrating at y0 is equal to #Zy0 .

We would like to quote the fact that computations in the critical case
are more technical and delicate than in the subcritical one, because of
both the decay of solutions, see Lemma 2.3, and the presence of the
concentration parameter, see Lemma 3.5.

Finally let us make some comments about the supercritical case, i.e.,
ε < 0. In [12] it was proved that if y0 is a “stable” critical point of the
function V with V (y0) < 0, then there exists a family of solutions uε

to (1) blowing up at y0 as ε goes to 0. Also in this case one can ask
how many solutions are generated by y0. A partial answer was given
in [11], where the authors consider a radial potential V with V (0) < 0.
They construct infinitely many solutions blowing up at the origin as ε
goes to zero, which resemble a super-position of spikes centered at the
origin with different rates of concentration.

The paper is organized as follows. In Section 2 we recall the Liapunov-
Schmidt procedure as performed in [12] and we prove a key result,
see Lemma 2.3, about the decay of solutions. In Section 3 we prove
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Theorem 1.2 and Theorem 1.3. In Section 4 we prove Theorem 1.4. In
the Appendix we prove a technical result, see Lemma 3.5.

2. Preliminary remarks. First of all we rewrite problem (1) in a
different way, see [12], namely

(7)
{
u = i∗[fε(u) − δ2 Vδ,y u]
u ∈ X.

Here i∗ : L(2n)/(n+2)(Rn) → D1,2(Rn) is the adjoint operator of the
immersion i : D1,2(Rn) ↪→ L(2n)/(n−2)(Rn), i.e.,

i∗(u) = v ⇐⇒ (v, ϕ)1,2 =
∫
Rn

u(x)ϕ(x) dx, ∀ϕ ∈ D1,2(Rn).

Moreover fε(s) = n(n − 2)(s+)(n+2)/(n−2)−ε, Vδ,y(x) = V (δx + y) for
some δ > 0, y ∈ Rn.

The Banach space X = Ls(Rn) ∩ D1,2(Rn) is equipped with the
norm ‖u‖X = max{‖u‖Ls(Rn), ‖u‖1,2}. It is easy to verify that u(x)
is a solution of (7) if and only if w(z) = δ−2/(p−1−ε)u((z − y)/δ),
p = (n+ 2)/(n− 2), is a solution of (1).

We also point out the following result, see Lemma 2.3 and Lemma
2.4 of [12].

Lemma 2.1. There exists a μ0 > 0 such that if ‖V ‖Ln/2(Rn) ≤ μ0,
then the operator −Δ + V is coercive, i.e., there exists a δ > 0 such
that ∫

Rn

(|∇u|2 + V (x)u2) dx ≥ δ‖u‖2
1,2, ∀u ∈ D1,2(Rn).

In particular, if u ∈ D1,2(Rn) is a nontrivial solution of (7), then
u(x) > 0 for all x ∈ Rn.

In order to solve (7) we use a well-known Ljapunov-Schmidt proce-
dure, see, for example, [12]. More precisely, we look for a solution to
(7) of the form uε

δ,y(x) = U(x) + φε
δ,y(x), where the lower order term

φε
δ,y belongs to the space K⊥ defined as follows:

K = span {ψ0, ψ1, . . . , ψn}
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and

K⊥ = {u ∈ X | (u, ϕ)1,2 = 0 ∀ϕ ∈ K} .

Here the functions

ψ0(x) := x · ∇U(x) +
n− 2

2
U(x) =

n− 2
2

1 − |x|2
(1 + |x|2)n/2

and

ψi(x) :=
∂U

∂xi
= − (n− 2)

xi

(1 + |x|2)n/2
, i = 1, . . . , n,

are the solutions of the linearized problem, see [13, Lemma 4.2],

−Δϕ = n(n+ 2)U4/(n−2)ϕ in Rn, ϕ ∈ D1,2(Rn).

We introduce the projections Π : X → K and Π⊥ : X → K⊥.
Therefore (7) turns out to be equivalent to the following system{

Π⊥ {
U + φ− i∗

[
fε(U + φ) − δ2 Vδ,y(U + φ)

]}
= 0

Π
{
U + φ− i∗

[
fε(U + φ) − δ2 Vδ,y(U + φ)

]}
= 0.

The following proposition allows us to solve the first equation in
system (8) and to reduce problem (7) to a finite dimensional one, see
[12, Proposition 3.1 and Lemma 1.15].

Proposition 2.2. Let n ≥ 7 and s ∈ (n/(n− 4), 2n/(n− 2)). There
exist ε0 > 0 and δ0 > 0 such that for any ε ∈ (0, ε0), δ ∈ (0, δ0) and for
any y ∈ Rn there exists a unique φε

δ,y ∈ K⊥ such that∥∥φε
δ,y

∥∥
X

≤ C(δ2 + ε)

and

Π⊥ {
U + φε

δ,y − i∗
[
fε(U + φε

δ,y) − δ2 Vδ,y(U + φε
δ,y)

]}
= 0.

Moreover the map (δ, y) → φε
δ,y is uniformly continuous.
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According to Proposition 2.2, there exist real numbers ci(ε, δ, y) such
that uε

δ,y = U + φε
δ,y is a solution to

(9) uε
δ,y − i∗

[
fε(uε

δ,y) − δ2 Vδ,yu
ε
δ,y

]
=

n∑
i=0

ci(εδ, y)ψi.

It is clear that, in order to solve the second equation in system (8),
we need to find for ε small enough a parameter δε and a point yε such
that ci(ε, δε, yε) = 0 for any i = 0, 1, . . . , n.

At this aim the next result plays a crucial role in our analysis.

Lemma 2.3. Let uε
δ,y ∈ X be the solution to (9). For any compact

set K in Rn, there exist C > 0, δ0 > 0 and ε0 > 0 such that, for any
y ∈ K, δ ∈ (0, δ0) and ε ∈ (0, ε0)∣∣uε

δ,y(x)
∣∣ ≤ CU(x), ∀x ∈ Rn.

Proof.

Step 1. For any G ⊂ Rn compact, there exist C(G) > 0, δ0 > 0 and
ε0 > 0 such that for any y ∈ K, δ ∈ (0, δ0) and ε ∈ (0, ε0)∣∣uε

δ,y(x)
∣∣ ≤ C(G), ∀x ∈ G.

By contradiction we assume that there exist δm → 0, εm → 0, ym → y0
and xm → x0 such that

∣∣uεm

δm,ym
(xm)

∣∣ → ∞. We write for simplicity
um = uεm

δm,ym
and we have that um solves the equation

−Δum + δ2mVδm,ym
(x)um = n(n− 2)

(
u+

m

)(4/(n−2))−εm um

−
n∑

i=0

ci(εm, δm, ym)Δψi.

Since um → U in D1,2(Rn), we get that for any η > 0 there exist R > 0
and m0 > 0 such that, for m ≥ m0,∫

B(xm,4R)

(
u+

m

)((4/(n−2))−εm)n/2 ≤ η.
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By Remark 2.4 we have that∥∥∥∥ n∑
i=0

ci(εm, δm, ym)Δψi

∥∥∥∥
L∞(Rn)

−→ 0 as m→ ∞.

By the first claim of Lemma 2.5, we obtain (u+
m)(4/(n−2))−εm ∈

Lq/2(B(xm, 2R)) with q/2 = (2∗)2/(2(2∗ − 2 − εm)) > n/2.

Thus,∥∥∥(
u+

m

)(4/(n−2))−εm

∥∥∥
L(q/2)(B(xm,2R))

≤ c ‖um‖L2∗ (B(xm,4R)) ,

where c depends only on R−1 and n.

By the second claim of Lemma 2.5, we obtain

|um(xm)| ≤ sup
B(xm,R)

|um(x)| ≤ Cm

( ∫
B(xm,2R)

(1 + |um|2)
)1/2

.

By Remark 2.4 and the fact that um → U in D1,2(Rn) we get that the
sequences {(∫

B(xm,2R)
(1 + |um|2))1/2} Cm are bounded. This gives a

contradiction.

Step 2. There exist R > 0, C > 0, δ0 > 0 and ε0 > 0 such that, for
any y ∈ K, δ ∈ (0, δ0) and ε ∈ (0, ε0)∣∣uε

δ,y(x)
∣∣ ≤ CU(x), ∀x ∈ Rn, |x| ≥ R.

Let wε
δ,y ∈ D1,2(Rn) be the Kelvin transform of uε

δ,y, see, for example,
[6]:

wε
δ,y(x) =

1
|x|n−2

uε
δ,y

(
x

|x|2
)
.

We want to prove that there exist r > 0, C > 0, δ0 > 0 and ε0 > 0
such that for any y ∈ K, δ ∈ (0, δ0) and ε ∈ (0, ε0)

|wε
δ,y(x)| ≤ C, ∀x ∈ Rn, |x| ≤ r.

We recall that wε
δ,y satisfies the equation

−Δwε
δ,y + aε

δ,y(x)wε
δ,y = bεδ,y(x)wε

δ,y + cεδ,y(x),
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where

aε
δ,y(x) =

δ2

|x|4 Vδ,y

(
x

|x|2
)
,

bεδ,y(x) = n(n− 2)
1

|x|ε(n−2)
(w+)(4/(n−2))−ε,

cεδ,y(x) = − 1
|x|n+2

n∑
i=0

ci(ε, δ, y)Δψi

(
x

|x|2
)
.

It is possible to see that (1/(|x|n+2))Δψi(x/|x|2) ∈ L∞(B(0, 1)) and
therefore by Remark 2.4 we have that ‖cεδ,y‖L∞(B(0,1)) tends to zero for
ε → 0 and δ → 0 uniformly with respect to y ∈ K. Moreover, since
uε

δ,y(x) → U(x) in X for ε → 0 and δ → 0, we can prove that for any
η > 0 there exist 0 < r0 < 1, δ0 > 0 and ε0 > 0 such that for any
y ∈ K, δ ∈ (0, δ0) and ε ∈ (0, ε0)

‖bεδ,y‖L(n/2)(B(0,4r0)) < η.

Since uε
δ,y(x) → U(x) in X for ε → 0 and δ → 0, it is possible to see

that wε
δ,y(x) → U(x) in X for ε → 0 and δ → 0. At this point by the

first claim of Lemma 2.5 there exists a constant C3 such that, for any
y ∈ K, δ ∈ (0, δ0) and ε ∈ (0, ε0)

‖wε
δ,y‖L((2∗)2/2)(B(0,2r0)) ≤ C3.

Then we can verify that

bεδ,y ∈ L(n+1)/2(B(0, 2r0)),

and there exists a constant C4 such that, for any y ∈ K, δ ∈ (0, δ0) and
ε ∈ (0, ε0)∥∥bεδ,y∥∥

L((n+1)/2)(B(0,2r0)) ≤ C4‖wε
δ,y

+‖qε

L((2∗)2/2)(B(0,2r0)) ,

with qε = (2(n+ 1)/(n− 2))−ε((n+ 1)/2). Concluding, since wε
δ,y(x) →

U(x) in X for ε → 0 and δ → 0, there exists a constant C5 such that,
for any y ∈ K, δ ∈ (0, δ0) and ε ∈ (0, ε0)

(10)
∥∥bεδ,y∥∥

L((n+1)/2)(B(0,2r0)) ≤ C5.
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Now we can apply the second claim of Lemma 2.5 and, by (10), there
exists a constant C6 such that, for any y ∈ K, δ ∈ (0, δ0) and ε ∈ (0, ε0)

sup
B(0,r0)

|wε
δ,y(x)| ≤ C6.

So we get the claim.

Remark 2.4. The constants ci(ε, δ, y) in equation (9) tend to 0 for
ε → 0 and δ → 0 uniformly with respect to y in compact sets of Rn,
see Lemma 3.2 and Lemma 3.3 of [12].

For the sake of completeness, we recall the following well-known
result, see [6, 7, 9, 15].

Lemma 2.5. Let w ∈ H1(Ω) be a solution of equation

(11) −Δw + a(x)w = b(x)w + c(x)

where c ∈ L∞(Ω), a, b ∈ Ln/2(Ω) and a(x) ≥ 0. There exists ε0 > 0,
depending only on n, such that if

‖b‖L(n/2)(B(Q,2r)) < ε0

for any Q ∈ Rn, then

(12) ‖u‖L((2∗)2/2)(B(Q,r)) ≤ C1‖u‖L2∗ (B(Q,2r)),

where C1 depends on n, ‖c‖L∞(Ω), r and is a bounded function of
‖c‖L∞(Ω).

Furthermore, if b ∈ Lq/2(B(Q, 2r)) with q > n, then

(13) sup
B(Q,r)

|w(x)| ≤ C2

( ∫
B(Q,2r)

(1 + |w|2)
)1/2

,

where C2 depends on n, ‖b‖Lq/2(Ω), ‖c‖L∞(Ω), r−1 and is a bounded
function of ‖b‖Lq/2(Ω) and ‖c‖L∞(Ω).
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3. A lower bound on the number of solutions. In this section
we estimate the number of solutions to the second equation in system
(8). More precisely, we estimate, for ε small enough, the numbers of
points yε and the corresponding parameters δε such that ci(ε, δε, yε) = 0
for any i = 0, 1, . . . , n, see (9).

Let us fix a critical point y0 of V , and let us set

(14) δ2 = δ2(ε) = d0ε+ d̃ε2, with d̃ ∈
[
η,

1
η

]
for some η ∈ (0, 1),

and

(15) y = y0 + δỹ, with ỹ ∈ K for some compact set K in Rn.

Here
d0 = − a0

V (y0)
> 0

and

a0 := n(n− 2)

∫
Rn(logU)Upψ0∫

Rn Uψ0
< 0.

It is useful to point out that, with these choices, φε
δ,y = φε

d̃,ỹ
, see

Proposition 2.2.

Let us make the following expansion.

Lemma 3.1. Assume (Vy0) with α < n − 4, see (3). Then there
holds

(16)
(
uε

δ,y − i∗
[
fε

(
uε

δ,y

) − δ2 Vδ,y(x)uε
δ,y

]
,
∂uε

δ,y

∂xi

)
1,2

= − 1
2

(d0ε)(3+αi)/2 (Hy0(ỹ))i + o
(
ε(3+αi)/2

)
.

Proof. It is easy to see that, for any y ∈ Rn,(
uε

δ,y − i∗
[
fε

(
uε

δ,y

) − δ2 Vδ,y(x)uε
δ,y

]
,
∂uε

δ,y

∂xi

)
1,2

= − δ3

2

∫
Rn

∂V

∂zi

∣∣∣∣
δx+y

(
uε

δ,y

)2
dx.
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By the hypotheses on the potential V , we obtain∫
Rn

∂V

∂zi

∣∣∣∣
y0+δ(x+ỹ)

(
uε

δ,y

)2
dx

=
∫

B(−ỹ,(ρ/δ))

δαihi(x+ ỹ)
(
uε

δ,y

)2
dx

+
∫

B(−ỹ,(ρ/δ))

Ri(δ(x+ ỹ))
(
uε

δ,y

)2
dx

+
∫
Rn\B(−ỹ,(ρ/δ))

∂V

∂zi

∣∣∣∣
y0+δ(x+ỹ)

(
uε

δ,y

)2
dx

= I1 + I2 + I3.

Now we can write

I1 = δαi

∫
Rn

hi(x+ ỹ)(U(x))2 dx

− δαi

∫
Rn\B(−ỹ,(ρ/δ))

hi(x+ ỹ)(U(x))2 dx

+ δαi

∫
B(−ỹ,(ρ/δ))

hi(x+ ỹ)
[
2Uφε

δ,y +
(
φε

δ,y

)2
]
dx.

Since α < n− 4, we have that∫
Rn\B(−ỹ,(ρ/δ))

hi(x+ ỹ)(U(x))2 ≤
∫
Rn\B(−ỹ,(ρ/δ))

|x+ ỹ|αi(U(x))2

= o(1).

By Lemma 2.3, choosing γ > 0 small enough, we have because α < n−4
that∫

B(−ỹ,(ρ/δ))

hi(x+ ỹ)
[
2Uφε

δ,y +
(
φε

δ,y

)2
]
dx

≤
∫
Rn

|x+ ỹ|αi(U(x))2−γ |φ|γ

≤ ‖φ‖γ
Ls

[ ∫
Rn

(|x+ ỹ|αi(U(x))2−γ
)s/(s−γ)

]s−(γ/s)

= o(1).



BLOWING-UP SOLUTIONS 303

As regards the second integral, since α < n− 4, we have

I2 =
∫

B(−ỹ,(ρ/δ))

Ri(δ(x+ ỹ))
(
uε

δ,y

)2
dx

≤ Cδβi

∫
B(−ỹ,(ρ/δ))

|x+ ỹ|βi (U(x))2 dx

= o(δαi).

Eventually

I3 ≤ C‖∇V ‖L∞(Rn)

∫
Rn\B(−ỹ,(r/δ))

(U(x))2 dx = O(δn−4),

and this completes the proof.

By the previous result we deduce the following necessary condition.

Proposition 3.2. Assume that (Vy0) with α < n − 4, see (3). Let
εk, d̃k and ỹk be sequences such that εk → 0, d̃k → d̃ > 0 and ỹk → ỹ.
If uk := U + φεk

d̃k,ỹk
is a solution of (7), then Hy0(ỹ) = 0.

Proof. If uk is a solution of (7), by Lemma 3.1 we have

(17) − 1
2

(d0εk)(3+αi)/2

∫
Rn

hi(x+ ỹk)(U(x))2 dx+ o
(
ε
(3+αi)/2
k

)
= 0.

Since hi is of class C1 and homogeneous of degree αi and α < n− 4,∣∣∣∣ ∫
Rn

[hi(x+ ỹk) − hi(x+ ỹ)] (U(x))2 dx
∣∣∣∣

≤
∫
Rn

|∇hi(x+ ỹk + θ(ỹ − ỹk))| |ỹ − ỹk| (U(x))2 dx

≤ C |ỹ − ỹk|
∫
Rn

|x+ ỹk + θ(ỹ − ỹk)|αi−1 (U(x))2 dx

= O(|ỹ − ỹk|)

for k → ∞. By (17), we can conclude that
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∫
Rn

hi(x+ ỹ)(U(x))2 dx+O(|ỹ − ỹk|) + o(1) = 0,

which completes the proof.

Proof of Theorem 1.2. It follows from Proposition 3.2.

The following nonexistence result holds, see also [8, Proposition 6.3].

Example 3.3. Let V (x+y0) ∼ V (y0)+x3
1−x1x2x3+x3

3+
∑n

i=4 aix
ki
i

for |x| small enough, where ai ∈ R \ {0} and ki ∈ N. Then there is no
solution to (1) blowing up and concentrating at y0.

Proof. It holds

(Hy0(y))1 = 3Ay2
1 + 3B −Ay2y3,

(Hy0(y))2 = −Ay1y3

(Hy0(y))3 = 3Ay2
3 + 3B −Ay1y2,

where A :=
∫
Rn U

2(x) dx and B :=
∫
Rn x

2
1U

2(x) dx, so that equation
Hy0(y) = 0 does not have any solutions. Therefore, the claim follows
from Theorem 1.2.

In the following we will prove the converse of Proposition 3.2.

Definition 3.4. We say that y is a stable zero of Hy0 if y is an
isolated zero of Hy0 and there exists a neighborhood N of y such that
deg (Hy0 , N, 0) 
= 0.

Lemma 3.5. Assume that (Vy0) with α < n− 5, see (6).

Then there holds

(18)
(
uε

δ,y − i∗
[
fε

(
uε

δ,y

) − δ2 Vδ,y(x)uε
δ,y

]
, ψ0

)
1,2

= ε2
[
d̃ V (y0)

∫
Rn

Uψ0 +A+Bψ(ỹ)
]

+ o
(
ε2

)
,
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where

A = n(n−2)
∫
Rn

(logU)2 Upψ0 − 2n(n+ 2)
n− 2

∫
Rn

Up−2φ2
0 ψ0

+ n(n−2)
∫
Rn

(1 + p logU)Up−1φ0 ψ0 + d0V (y0)
∫
Rn

φ0 ψ0,

ψ(ỹ) =
d2
0

2

n∑
i,j=1

∂2V

∂xi∂xj
(y0)

∫
Rn

(xi + ỹi)(xj + ỹj)Uψ0

and B = 1 if α > 1 and B = 0 if α = 1.

Proof. See Appendix.

Proposition 3.6. Assume that (Vy0) with α < n − 4, see (3) and
α < n − 5, see (6). Let ỹ ∈ Zy0 , see (5). Then there exists ε0 > 0
such that, for any ε ∈ (0, ε0) there exist ỹε and d̃ε, with ỹε → ỹ and
d̃ε → d̃ > 0, such that uε := U + φε

d̃ε,ỹε
is a solution of (7).

Proof. Using (14) and (15), the problem reduces to find for ε small
enough d̃ ∈ R and ỹ ∈ Rn such that the constants ci(ε, δ, y) for
i = 0, 1, . . . , n in (9) are zero, i.e.,

G0
ε(d̃, ỹ) =

1
ε2

(
uε

δ,y − i∗
[
fε

(
uε

δ,y

) − δ2 Vδ,y(x)uε
δ,y

]
, ψ0

)
1,2

= 0,

Gi
ε(d̃, ỹ)

= − 2
(d0ε)(3+αi)/2

(
uε

δ,y − i∗
[
fε

(
uε

δ,y

) − δ2 Vδ,y(x)uε
δ,y

]
,
∂uε

δ,y

∂xi

)
1,2

= 0,

for i = 1, 2, . . . , n. By Lemmas 3.5 and 3.1, we have that

G0
ε(d̃, ỹ) =

(
d̃ V (y0)

∫
Rn

Uψ0 +A+Bψ(ỹ)
)

+ o(1),

Gi
ε(d̃, ỹ) =

∫
Rn

hi(x+ ỹ)(U(x))2 dx+ o(1).
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We apply Lemma 3.7. If ỹ0 is a stable zero of the vector field
Hy0 , see (4), then (d̃0, ỹ0) is a stable zero of the vector field G0 =
(G0

0, G
1
0, . . . , G

n
0 ), where d̃0 = −(A+Bψ(ỹ0))/(V (y0)

∫
Rn Uψ0). Using

the properties of Brouwer degree, for ε small enough there exist d̃ε and
ỹε such that

Gε(d̃ε, ỹε) =
(
G0

ε(d̃ε, ỹε), G1
ε(d̃ε, ỹε), . . . , Gn

ε (d̃ε, ỹε)
)

= 0.

We recall that
G0

ε(d̃ε, ỹε) =
1
ε2
c0(ε, δ, y)

and, for i = 1, 2, . . . , n,

Gi
ε(d̃ε, ỹε) = − 2

(d0ε)(3+αi)/2

[
ci(ε, δ, y) + o

( n∑
j=0

cj(ε, δ, y)
)]
.

Therefore ci(ε, δ, y) = 0 for all i = 0, 1, . . . , n. That proves our claim.

Proof of Theorem 1.3. We use Proposition 3.6, so it remains only
to prove that two different stable zeros ỹ1

0 , ỹ2
0 generate two different

solutions. Let uε,1
δε1 ,yε1

, uε,2
δε2 ,yε2

be the solutions of (7) generated
respectively by ỹ1

0 and ỹ2
0 . For i = 1, 2, let

wε,i
δεi

,yεi
(z) = δ−2/(p−1−ε)

εi
uε,i

δεi
,yεi

(
z − yεi

δεi

)
be the corresponding solutions of (1), where δ2εi

= εd0 + d̃εi
ε2, yεi

=
y0 + δεi

ỹεi
and ỹεi

→ ỹi
0. It holds

ε1/(p−1−ε)
(
d0 + d̃ε1ε

)1/(p−1−ε)

wε,1
δε1 ,yε1

(yε1) = uε,1
δε1 ,yε1

(0) → U(0),

ε1/(p−1−ε)
(
d0 + d̃ε2ε

)1/(p−1−ε)

wε,2
δε2 ,yε1

(yε1)

= uε,2
δε2 ,yε2

(ỹε1 − ỹε2) → U(ỹ1
0 − ỹ2

0) 
= U(0),
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because by standard regularity theory uε,i
δεi

,yεi
→ U uniformly on

compact sets of Rn. Finally, we deduce that, for ε small enough,
wε,1

δε1 ,yε1
(yε1) 
= wε,2

δε2 ,yε2
(yε1), which implies, using again the standard

regularity theory, that wε,1
δε1 ,yε1


= wε,2
δε2 ,yε2

. That proves our claim.

Lemma 3.7. Let ỹ0 be a stable zero of the vector field Hy0 , γ ∈ R,
ψ : Rn → R be a continuous function and

d̃0 =
− γ − ψ(ỹ0)
V (y0)

∫
Rn Uψ0

.

Then (d̃0, ỹ0) ∈ R × Rn is a stable zero of the following vector field
G : R × Rn → R × Rn:

G(d̃, ỹ) :=
(
h(d̃) + ψ(ỹ), Hy0(ỹ)

)
,

where

h(d̃) := V (y0)d̃
∫
Rn

Uψ0 + γ.

Proof. Let H : [0, 1] × R × Rn → R × Rn be the homotopy defined
by

Ht, d̃, ỹ) =
(
h(d̃) + tψ(ỹ), Hy0(ỹ)

)
.

It is easy to check that H(t, d̃, ỹ) 
= 0 for any t ∈ [0, 1] and for any
(d̃, ỹ) ∈ ∂(I × N), where I and N are neighborhoods of d̃0 and ỹ0,
respectively. By homotopy invariance of the degree, we get

deg (G, I×N, 0) = deg (h, I, 0) ·deg (Hy0 , N, 0) = deg (Hy0 , N, 0).

4. Exact number of solutions.

Proof of Theorem 1.4. We apply Theorem 1.3, and it remains
only to prove the following uniqueness result. Let ỹ be such that
Hy0(ỹ) = 0. By contradiction, assume that for some sequence εj → 0
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there exist two different solutions w1,j and w2,j to equation (1) such
that wi,j → Uδi,j ,yi,j

in D1,2(Rn) where

(19)
δ2i,j = d0εj + d̂i,jεj where dj → 0,
yi,j = y0 + δi,j ỹ + δi,j ŷi,j where ŷi,j → 0.

We set, for i = 1, 2,

(20) ui,j(x) = (d0εj)1/(p−1−εj) wi,j

(
(d0εj)1/2 x+ y0

)
.

They are solutions to equation

(21) −Δui,j + d0εj V(d0εj)1/2,y0
(x)ui,j = u

p−εj

i,j ,

with the property ui,j(x) → U(x − ỹ) in D1,2(Rn). By (20) and by
Lemma 2.5 we deduce that, for some positive constant c,

(22) 0 ≤ ui,j(x) ≤ c
1

(1 + |x− ỹ|2)(n−2)/2
, ∀x ∈ Rn.

We set

(23) vj(x) :=
u1,j(x) − u2,j(x)
‖u1,j − u2,j‖D1,2

.

Then we have

(24) −Δvj + d0εj V(d0εj)1/2,y0
(x)vj = ρj(x)vj ,

where

(25) ρj(x) := (p− εj)

1∫
0

[t u1,j(x) + (1 − t)u2,j(x)]
p−1−εj dt.

By (22) we deduce that

(26) 0 ≤ ρj(x) ≤ c
1

(1 + |x− ỹ|2)2 , ∀x ∈ Rn.
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Up to a subsequence, we can assume that vj → v weakly in D1,2(Rn)
and almost everywhere in Rn. Moreover, by (24) we deduce that v is
a solution to

(27) −Δv(x) = pUp−1(x− ỹ)v(x), x ∈ Rn.

Then there exist real numbers γ0, γ1, . . . , γj such that

(28) v(x) =
n∑

k=1

γj
∂U

∂xk
(x− ỹ) + γ0

1 − |x− ỹ|2
(1 + |x− ỹ|2)n/2

.

First of all we verify that γ0 = 0. We multiply (21) by x · ∇ui,j +
((n− 2)/2)ui,j , and we get for i = 1, 2,

0 = (n− 1)
∫
Rn

|∇ui,j |2(x) dx

− d0εj

∫
Rn

u2
i,j(x)

(
V(d0εj)1/2,y0

(x) +
1
2
x · ∇V(d0εj)1/2,y0

(x)
)
dx

−
(
n− 2

2
− n

p+ 1 − εj

) ∫
Rn

u
p+1−εj

i,j (x) dx,

and then
(29)

0 = (n− 1)
∫
Rn

∇vj∇(u1,j + u2,j)

− d0εj

∫
Rn

vj(u1,j + u2,j)
(
V(d0εj)1/2,y0

+
1
2
x · ∇V(d0εj)1/2,y0

)
−

(
n− 2

2
− n

p+ 1 − εj

) ∫
Rn

(
u

p+1−εj

1,j − u
p+1−εj

2,j

)
:= I1 + I2 + I3.

By Hölder’s inequality and (22), we get

(30)
|I2| ≤ d0εj‖vj‖L(2n)/(n−2)‖u1,j +u2,j‖L(2n)/(n+2) (‖V +x · ∇V ‖L∞)

= o(1)

and also

(31)
|I3| =

(
n−2

2
− n

p+1 − εj

) ∫
Rn

vj(x)ρ̂j(x)

≤
(
n−2

2
− n

p+1 − εj

)
‖vj‖L(2n)/(n−2)‖ρ̂j‖L(2n)/(n+2) = o(1),



310 A.M. MICHELETTI, A. PISTOIA AND D. VISETTI

where, because of (22),

0 ≤ ρ̂j(x) = (p+ 1 − εj)
∫ 1

0

(t u1,j + (1 − t)u2,j)
p−εj dt

≤ c
1

(1 + |x− ỹ|2)(n+2)/2
.

Since vj → v weakly in D1,2 and ui,j → U(x − ỹ) strongly in D1,2, by
(28), (29), (30) and (31) we deduce

0 =
∫
Rn

∇v(x)∇U(x− ỹ) dx =
∫
Rn

v(x)Up(x− ỹ) dx

= γ0

∫
Rn

ψ0(x)Up(x) dx,

which implies γ0 = 0.

In the following we will show that, if the determinant of the Jacobian
matrix of Hy0 is different from zero, then γ1 = · · · = γn = 0.

We multiply (21) by ∂ui,j/∂xk and we get for i = 1, 2,

0 =
∫
Rn

u2
i,j(x)

∂V

∂xk

(
(d0εj)1/2x+ y0

)
dx.

Then, using also assumption (Vy0), we get

0 =
∫
Rn

vj(x)
(
u1,j(x) + u2,j(x)

) ∂V
∂xk

(
(d0εj)1/2x+ y0

)
dx

= (d0εj)αk/2

∫
{|x|≤R(d0εj)−1/2}

vj(x)
(
u1,j(x) + u2,j(x)

)
hk(x) dx

+
∫
{|x|≤R(d0εj)−1/2}

vj(x)
(
u1,j(x) + u2,j(x)

)
Rk(x) dx

+
∫
{|x|≥R(d0εj)−1/2}

vj(x)
(
u1,j(x) + u2,j(x)

)
× ∂V

∂xk

(
(d0εj)1/2x+ y0

)
dx

= (d0εj)αk/2

[
2

∫
Rn

v(x)U(x− ỹ)hk(x) dx+ o(1)
]
.



BLOWING-UP SOLUTIONS 311

Therefore, we have for any h = 1, . . . , n

0 =
∫
Rn

v(x)U(x−ỹ)hk(x) dx =
n∑

l=1

γl

∫
Rn

∂U

∂xl
(x−ỹ)U(x−ỹ)hk(x) dx,

which implies that γ1 = · · · = γn = 0.

Let us prove that a contradiction arises. We multiply (24) by vj and,
taking into account that ‖vj‖D1,2 = 1 and also that V > 0 in Rn, we
get

(32)

1 =
∫
Rn

|∇vj |2(x) dx

= − d0εj

∫
Rn

V(d0εj)1/2,y0
(x)v2

j (x) dx+
∫
Rn

ρj(x)v2
j (x) dx

≤
∫
Rn

ρj(x)v2
j (x) dx

=
∫
{|x|≤R}

ρj(x)v2
j (x) dx+

∫
{|x|≥R}

ρj(x)v2
j (x) dx,

for some R > 0. By (26) and Hölder’s inequality, we deduce that there
exists an R > 0 such that, for any j,

(33)
∫
{|x|≥R}

ρj(x)v2
j (x) dx ≤ 1

2
.

Moreover, since vj solves equation (24) and it is bounded in D1,2(Rn),
by standard regularity theory we deduce that vj → 0 uniformly on
compact sets of Rn, and so

(34) lim
j

∫
{|x|≤R}

ρj(x)v2
j (x) dx = 0.

Finally by (32), (33) and (34) a contradiction arises.

The following uniqueness result holds, see [8, Corollary 6.4].

Example 4.1. Assume that y0 is a nondegenerate critical point
of V . Then there exists exactly one solution of (1) blowing up and
concentrating at y0.
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We give also the following example.

Example 4.2. Let V (x+y0) ∼ V (y0)+ax4
1+x4

2−bx2
1x

2
2+x2

3+· · ·+x2
n

for |x| small enough, with a ∈ (0, 1) and b ∈ (6a, 6). Then there exist
exactly three solutions of (1) blowing up and concentrating at y0. In
particular, if a ∈ (0, 1/9) and b ∈ (6a, 2

√
a), there exist exactly three

solutions of (1) blowing up and concentrating at y0, which is a local
minimum point of V .

Proof. It is easy to check that

(Hy0(y))1 = 4aAy3
1 + 2B(6a− b)y1 − 2bAy1 y2

2 ,

(Hy0(y))2 = 4Ay3
2 + 2B(6 − b)y2 − 2bAy2

1 y2

(Hy0(y))i = 2Ayi if i = 3, . . . , n,

where A :=
∫
RnU

2(x) dx and B :=
∫
Rn x

2
1 U

2(x) dx. Since a < 1
and b ∈ (2a, 2), a straightforward computation shows that Zy0 =
{0, (ζ, 0), (−ζ, 0)}, where ζ and −ζ solve the equation 2aAζ2 = B(b −
2a). Finally, it is not difficult to prove that

det JacHy0(0) = 4(2A)n−2B2 b
2 − 4ab− 12a

a

= 0

and

det JacHy0

(
(±ζ, 0)

)
= 4(2A)n−2B2(6a− b)(6 − b) 
= 0.

Therefore the claim follows from Theorem 1.4.

Appendix

We recall the following result, see [12, Lemma 2.2 and Remark 2.9].

Lemma 6.1. Let s > (n/(n− 2)). If u ∈ L(2n)/(n+2)(Rn) ∩
L(ns)/(n+2s)(Rn), then i∗(u) ∈ Ls(Rn) ∩ D1,2(Rn) and

‖i∗(u)‖X ≤ C(n, s) (‖u‖L(ns)/(n+2s) + ‖u‖L(2n)/(n+2)) .
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The following technical lemmas provide useful estimates.

Lemma 6.2. There exist ε0 > 0 and a constant C > 0 such that,
for any ε ∈ (0, ε0), there hold

(35)
‖fε(U) − f0(U) + ε n(n− 2)(logU)Up‖L(2n)/(n+2)(Rn) = o(ε),

‖fε(U) − f0(U) + ε n(n− 2)(logU)Up‖L(sn)/(n+2s)(Rn) = o(ε),

for any s > 1 and

(36) ‖f ′ε(U) − f ′0(U)‖L(n/2)(Rn) ≤ Cε.

Proof. By the mean value theorem we get, for any x ∈ Rn,

fε(U)(x) − f0(U)(x) = − ε n(n− 2)(logU(x))(U(x))p

− ε n(n− 2)(logU(x))(U(x))p
[
(U(x))−θxε − 1

]
,

for some θx ∈ (0, 1). Estimate (35) follows since (logU)Up ∈ Lt(Rn)
for all t > (n/(n+ 2)) and, since |(U(x))−θxε − 1| ≤ c|x|ε1 for ε1
small enough, (logU(x))(U(x))p

[
(U(x))−θxε − 1

] ∈ Lt(Rn) for all
t > (n/(n+ 2)) + ε2 for ε2 small enough.

By the mean value theorem we get for any x ∈ Rn

f ′ε(U)(x) − f ′0(U)(x)
= − ε n(n−2)

[
Up−1−θxε(x) + (p− θxε)(logU(x))Up−1−θxε(x)

]
,

for some θx ∈ (0, 1). Estimate (35) follows since

Up−1−θxε + (logU)Up−1−θxε ∈ Lt(Rn) for all t ≥ n

2
.

Lemma 6.3. There exist ε0 > 0 and a constant C > 0 such that for
any ε ∈ (0, ε0) and for any φ ∈ D1,2(Rn)

(37) |fε(U + φ) − fε(U) − f ′ε(U)φ| ≤ C|φ|p−ε.
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Proof. It is enough to point out that there exist ε0 > 0 and a constant
C > 0 such that, for any ε ∈ (0, ε0) and for any x1, x2 ∈ R,

|fε(x1) − fε(x2) − f ′ε(x2)(x1 − x2)| ≤ C(x1 − x2)p−ε.

Lemma 6.4. Let d̃ and ỹ be fixed as in (14) and (15). Then we have

φε
δ,y = ε

(
φ0 + φ̃ε

d̃,ỹ

)
,

where φ0 ∈ K⊥ is the unique solution of

(38) −Δφ0 −f ′0(U)φ0 = −n(n−2)(logU)U (n+2)/(n−2)− d0V (y0)U.

Moreover, ∥∥∥φ̃ε
d̃,ỹ

∥∥∥
X

−→ 0 as ε goes to zero.

Proof. By Proposition 2.2 we have

Π
{
φε

δ,y − i∗
[
f ′0(U)φε

δ,y)
]}

= Π
{
i∗

[
fε(U + φε

δ,y) − f0(U) − f ′0(U)φε
δ,y

− δ2 Vδ,y(U + φε
δ,y)

]}
.

For simplicity we write φ = ε
(
φ0 + φ̃

)
instead of φε

δ,y = ε
(
φ0 + φ̃ε

d̃,ỹ

)
.

Substituting, we obtain

(39)

εΠ
{
[Id − i∗f ′0(U)]

(
φ0 + φ̃

)}
= Πi∗ [fε(U + φ) − fε(U) − f ′ε(U)φ] + Πi∗ [fε(U) − f0(U)]

+ Πi∗ {[f ′ε(U) − f ′0(U)]φ} − ε (d0 + d̃ε)Πi∗ [Vδ,y(U + φ)] .

Now by Lemma 6.1, (37) and using interpolation, we get

(40)

‖i∗ [fε(U + φ) − fε(U) − f ′ε(U)φ] ‖1,2

≤ C‖fε(U + φ) − fε(U) − f ′ε(U)φ‖L(2n)/(n+2)(Rn)

≤ C‖|φ|p−ε‖L(2n)/(n+2)(Rn) ≤ C‖φ‖p−ε
X ,
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because ((2n)/(n+ 2))(p − ε) ∈ (s, (2n)/(n− 2)) for ε small enough,
and also

(41)

‖i∗ [fε(U + φ) − fε(U) − f ′ε(U)φ] ‖Ls(Rn)

≤ C‖fε(U + φ) − fε(U) − f ′ε(U)φ‖L(sn)/(n+2s)(Rn)

≤ C‖|φ|p−ε‖L(sn)/(n+2s)(Rn) ≤ C‖φ‖p−ε
X ,

because ((sn)/(n+ 2s))(p− ε) ∈ (s, (2n)/(n− 2)). Therefore, by (40)
and (41) we deduce that

(42) ‖i∗ [fε(U + φ) − fε(U) − f ′ε(U)φ] ‖X ≤ C‖φ‖p−ε
X .

By Lemma 6.1 and (35) we get

(43)

‖i∗ [fε(U) − f0(U) + ε n(n−2)(logU)Up] ‖1,2

≤ C ‖fε(U) − f0(U) + ε n(n−2)(logU)Up‖L(2n)/(n+2)(Rn)

= o(ε),

(44)

‖i∗ [fε(U)− f0(U) + ε n(n−2)(logU)Up] ‖Ls(Rn)

≤ C ‖fε(U)− f0(U) + ε n(n−2)(logU)Up‖L(sn)/(n+2s)(Rn)

= o(ε).

Therefore, by (43) and (44) we deduce that

(45) ‖i∗ [fε(U) − f0(U) + ε n(n−2)(logU)Up]‖X = o(ε).

By Lemma 6.1 and (36) we get

(46)

‖i∗ [(f ′ε(U) −f ′0(U))φ]‖1,2 ≤ C ‖(f ′ε(U) −f ′0(U))φ‖L(2n)/(n+2)(Rn)

≤ Cε ‖φ‖L(2n)/(n−2)(Rn)

and also
(47)

‖i∗ [(f ′ε(U)− f ′0(U))φ]‖Ls(Rn) ≤ C ‖(f ′ε(U)− f ′0(U))φ‖L(sn)/(n+2s)(Rn)

≤ Cε ‖φ‖Ls(Rn).
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Therefore, by (46) and (47) we deduce that

(48) ‖i∗ [(f ′ε(U) − f ′0(U))φ]‖X ≤ Cε‖φ‖X .

Finally, by the fact that U ∈ L(2n)/(n+2)(Rn), U ∈ L(sn)/(9n+2s)(Rn)
for s > (n/(n−4)), U(x)|x|2∈ L(2n)/(n+2)(Rn), U(x)|x|2∈ L(sn)/(n+2s)

(Rn) for s > (n/(n−4)), and since

V (y0 + δ (x+ ỹ))

= V (y0) +
1
2
δ2

n∑
i,j=1

∂2V

∂xi∂xj

∣∣∣∣
y0+θδ(x+ỹ)

(x+ ỹ)i (x+ ỹ)j

with θ ∈ (0, 1), we get

(49)
∥∥∥i∗ [(

d0+ d̃ε
)
V

(
y0 + δ(x+ ỹ)

)
(U + φ) − d0V (y0)U

] ∥∥∥
X

= o(1).

Concluding, by (39), (42), (45), (48) and (49),

φ0 − i∗f ′0(U)φ0 = i∗ [n(n−2)(logU)Up − d0V (y0)U ] ,

φ̃− i∗f ′0(U)φ̃ = γε,

where γε depends on d̃, ỹ, φ, but ‖γε‖X = o(1). Here we used the fact
that

i∗ [−n(n− 2)(logU)Up − d0V (y0)U ] ∈ K⊥.

Proof of Lemma 3.5. We point out that Lemma 6.4 plays a crucial
role in the proof. By summing and subtracting, using definition of d0,
we can write(
uε

δ,y − i∗
[
fε

(
uε

δ,y

) − δ2 Vδ,yu
ε
δ,y

]
, ψ0

)
1,2

=
∫
Rn

[f0(U) − fε(U) − ε n(n− 2)(logU)Up]ψ0

−
∫
Rn

[
fε

(
U + φε

δ,y

) − fε(U) − f ′ε(U)φε
δ,y

]
ψ0

−
∫
Rn

[f ′ε(U) − f ′0(U)]φε
δ,y ψ0 +

∫
Rn

[
δ2 Vδ,y − εd0V (y0)

]
Uψ0

+ δ2
∫
Rn

Vδ,yφ
ε
δ,y ψ0 := I1 + I2 + I3 + I4 + I5.
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Let us write for simplicity in this proof φε
δ,y = φ = ε

(
φ0 + φ̃

)
.

(I) By the Taylor formula, we have

(50) I1 = ε2 n(n−2)
∫
Rn

(logU)2 Up ψ0 + o
(
ε2

)
.

(II) The integral

I2 = −n(n−2)
∫
Rn

{[
(U + φ)+

]p−ε

− Up−ε − (p− ε)Up−1−εφ

}
ψ0

can be divided into two integrals: one on the set Dε = {x ∈ Rn |
U(x)+φ(x) > 0} and the other on the complement Rn \Dε. We prove
that

∫
Dε

{[
(U + φ)+

]p−ε

− Up−ε − (p− ε)Up−1−εφ

}
ψ0

= ε2
p(p− 1)

2

∫
Rn

Up−2 φ2
0 ψ0 + o

(
ε2

)
,

×
∫
Rn\Dε

[−Up−ε − (p− ε)Up−1−εφ
]
ψ0 = o

(
ε2

)
.

As regards the second equation, since, for any x ∈ Rn \ Dε, we have
U(x) ≤ |φ(x)|, and since ψ0(x) ≤ CU(x) for some C > 0, we obtain

∣∣∣∣∣
∫
Rn\Dε

[−Up−ε − (p− ε)Up−1−εφ
]
ψ0

∣∣∣∣∣ ≤ C ′
∫
Rn

|φ(x)|p+1−ε

≤ C ′′‖φ‖p+1−ε
X

with C ′, C ′′ positive constants. This, using Lemma 6.4, completes the
evaluation, as max{s, 2} < p+ 1 − ε < 2∗ for ε sufficiently small.
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For the first equation, we evaluate∫
Dε

{
(U+φ)p−ε−Up−ε−(p− ε)Up−1−εφ

}
ψ0− ε2

p(p−1)
2

∫
Rn

Up−2φ2
0 ψ0

+
∫

Dε

{
(U + φ)p−ε − Up−ε − (p− ε)Up−1−εφ

− (p− ε)(p− 1 − ε)
2

Up−2−εφ2

}
ψ0

+
∫

Dε

{
(p− ε)(p− 1 − ε)

2
Up−2−εφ2 − ε2

p(p− 1)
2

Up−2φ2
0

}
ψ0

− ε2
p(p− 1)

2

∫
Rn\Dε

Up−2φ2
0ψ0 = A1 +A2 +A3.

Since there exists a constant C > 0 such that∣∣∣∣(1 + t)p−ε − 1 − (p− ε) t− 1
2

(p− ε)(p− 1 − ε) t2
∣∣∣∣ ≤ C|t|3,

for any t > −1, we have

|A1| =
∣∣∣∣ ∫

Dε

Up−ε

{(
1 +

φ

U

)p−ε

− 1 − (p− ε)
φ

U

− (p− ε)(p− 1 − ε)
2

(
φ

U

)2}
ψ0

∣∣∣∣
≤ C

∫
Dε

Up−ε

∣∣∣∣ φU
∣∣∣∣3 |ψ0| = C

∫
Dε

|φ|3|ψ0|
U3−p+ε

.

Choosing a constant 0 < γ < 1 and using Lemma 2.3 and the fact
that |ψ0(x)| ≤ CU(x) for any x ∈ Rn and for some constant C > 0, we
obtain

|A1| ≤ C1

∫
Rn

|φ|3
U2−p+ε

= C1

∫
Rn

|φ|2+γ |φ|1−γ

U2−p+ε

≤ C2

∫
Rn

|φ|2+γ Up−1−ε−γ ≤ C3‖φ‖2+γ
L(2n)/(n−2)(Rn) = O

(
ε2+γ

)
,
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provided that ε and γ are sufficiently small. Let us write

A2 =
1
2

∫
Dε

[(p− ε)(p− 1 − ε) − p(p− 1)]Up−2−εφ2 ψ0

+
1
2

∫
Dε

p(p− 1)
(
Up−2−ε − Up−2

)
φ2 ψ0

+
1
2

∫
Dε

p(p− 1)Up−2
(
φ2 − ε2φ2

0

)
ψ0 .

By the Taylor formula and Lemma 6.4, one immediately finds that
there exists 0 < θ < 1 such that∣∣∣∣∫

Dε

[(p− ε)(p− 1 − ε) − p(p− 1)]Up−2−εφ2 ψ0

∣∣∣∣
≤ Cε‖φ‖2

L(2n)/(n−2)(Rn) = O
(
ε3

)
,

∣∣∣∣∫
Dε

(
Up−2−ε − Up−2

)
φ2 ψ0

∣∣∣∣ = ε

∣∣∣∣∫
Dε

(− logU)Up−2−θεφ2 ψ0

∣∣∣∣
≤ Cε‖φ‖2

L(2n)/(n−2)(Rn) = O
(
ε3

)
,

∣∣∣∣∫
Dε

Up−2
(
φ2− ε2φ2

0

)
ψ0

∣∣∣∣ = ε2
∣∣∣∣∫

Dε

Up−2
(
2φ0φ̃+ φ̃2

)
ψ0

∣∣∣∣
≤ Cε2

(∥∥φ̃∥∥
L(2n)/(n−2)(Rn)

+
∥∥φ̃∥∥2

L(2n)/(n−2)(Rn)

)
= o

(
ε2

)
.

Finally,

A3 = − ε2
p(p− 1)

2

∫
Rn\Dε

Up−2φ2
0 ψ0 = o

(
ε2

)
,

because the measure of the set Rn \Dε tends to zero for ε→ 0. So

(51) I2 = − 2n(n+ 2)
n− 2

∫
Rn

Up−2φ2
0 ψ0 + o

(
ε2

)
.
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(III) By the Taylor formula we have, for some θ = θ(x, ε), 0 < θ < 1,

f ′ε(U) −f ′0(U) = n(n−2)
{
− ε Up−1(1 + p logU)

(52)

+ e
1
2
ε2 Up−1−θε logU [2+ (p− θε) logU ]

}
.

By (52) and Lemma 6.4 we conclude that

(53) I3 = ε2 n(n− 2)
∫
Rn

(1 + p logU)Up−1φ0 ψ0 + o
(
ε2

)
;

in fact, (1 + p logU)Up−1ψ0, Up−1−θε logU [2 + (p − θε) logU ]ψ0 ∈
L(2n)/(n+2)(Rn).

(IV) There holds

I4 =
∫
Rn

[
δ2 Vδ,y − εd0V (y0)

]
Uψ0

= + ε2d̃ V (y0)
∫
Rn

Uψ0 + δ2
∫
Rn

[Vδ,y(x) − V (y0)]Uψ0.

We consider for the moment the case α > 1. By assumption (Vy0) on
the potential V , the first integral gives

εd0

∫
Rn

[V (y0 + δ(x+ ỹ)) − V (y0)]Uψ0

= εδd0

∫
Rn

∇V (y0 + θδ(x+ ỹ)) · (x+ ỹ)Uψ0

= εδd0

∫
{x∈Rn|θδ|x+ỹ|<ρ}

n∑
i=1

hi(θδ(x+ ỹ))(xi + ỹi)Uψ0

+ εδd0

∫
{x∈Rn|θδ|x+ỹ|<ρ}

n∑
i=1

Ri(θδ(x+ ỹ))(xi + ỹi)Uψ0

+ εδd0

∫
{x∈Rn|θδ|x+ỹ|≥ρ}

∇V (y0 + θδ(x+ ỹ)) · (x+ ỹ)Uψ0

= B1 +B2 +B3,
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with 0 < θ < 1. There exist constants C,C ′ > 0 such that if α < n−5,

|B1| = εδd0

∣∣∣∣ ∫
{x∈Rn|θδ|x+ỹ|<ρ}

n∑
i=1

(θδ|x+ ỹ|)αi

× hi

(
x+ ỹ

|x+ ỹ|
)

(xi + ỹi)Uψ0

∣∣∣∣
≤ εδ1+α C

n∑
i=1

∫
Rn

|x+ ỹ|αi+1U |ψ0|

≤ ε(3+α)/2 C ′ = o
(
ε2

)
.

Analogously |B2| = o(ε2). We observe now that the following set
inclusions hold

(55)
{x ∈ Rn | θδ|x+ ỹ| ≥ ρ} ⊂ {x ∈ Rn | δ|x+ ỹ| ≥ ρ}

⊂ {x ∈ Rn | δ|x| ≥ ρ′}

for some ρ′ > 0. Therefore, we have

|B3| ≤ εδd0‖∇V ‖L∞(Rn)

∫
{x∈Rn|δ|x|≥ρ′}

|x+ ỹ|U |ψ0| = O
(
ε(n−2)/2

)
.

Concluding, if α > 1, we have

(56) I4 = ε2d̃ V (y0)
∫
Rn

Uψ0 + o
(
ε2

)
.

Let us consider now the case α = 1. Then, for z ∈ B(0, ρ),
it holds V (y0 + z) = V (y0) + H(z) + σ(z), where H is homoge-
nous of degree 2 and |σ(z)| ≤ c|z|γ with 2 < γ where γ :=
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min {βi + 1, αi + 1 | i = 1, . . . , n, αi 
= 1}. Then we get

εd0

∫
Rn

[V (y0 + δ(x+ ỹ)) − V (y0)]Uψ0

= εd0

∫
{x∈Rn|δ|x+ỹ|<ρ}

[V (y0 + δ(x+ ỹ)) − V (y0)]Uψ0

+ εd0

∫
{x∈Rn|δ|x+ỹ|≥ρ}

[V (y0 + δ(x+ ỹ)) − V (y0)]Uψ0

= εδ2
d0

2

n∑
i,j=1

∂2V

∂xi∂xj
(y0)

∫
{x∈Rn|δ|x+ỹ|<ρ}

(xi + ỹi)(xj + ỹj)Uψ0

+ εd0

∫
{x∈Rn|δ|x+ỹ|<ρ}

σ (δ(x+ ỹ))Uψ0

+ εd0

∫
{x∈Rn|δ|x+ỹ|≥ρ}

[V (y0 + δ(x+ ỹ)) − V (y0)]Uψ0

= D1 +D2 +D3

We have

D1 = εδ2
d0

2

n∑
i,j=1

∂2V

∂xi∂xj
(y0)

∫
Rn

(xi + ỹi)(xj + ỹj)Uψ0

− εδ2
d0

2

n∑
i,j=1

∂2V

∂xi∂xj
(y0)

∫
{x∈Rn|δ|x+ỹ|≥ρ}

(xi + ỹi)(xj + ỹj)Uψ0

= ε2
d2
0

2

n∑
i,j=1

∂2V

∂xi∂xj
(y0)

∫
Rn

(xi + ỹi)(xj + ỹj)Uψ0 + o
(
ε2

)
.

Moreover, the second term gives

|D2| ≤ εd0

∫
{x∈Rn|δ|x+ỹ|<ρ}

|δ(x+ ỹ)|γ U |ψ0| .

Now, since γ > 2, we can write γ = 2 + γ1 + γ2 with γ1, γ2 > 0 and we
obtain

|D2| ≤ εδ2+γ1 d0

∫
Rn

|x+ ỹ|2+γ1 ργ2 U |ψ0| ≤ Cε2+(γ1/2) = o
(
ε2

)
,
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provided γ1 is small enough. Finally, D3 is o(ε2), analogously to the
previous B3. Finally, if α = 1, we have

(57) I4 = ε2d̃ V (y0)
∫
Rn

Uψ0

+ ε2
d2
0

2

n∑
i,j=1

∂2V

∂xi∂xj
(y0)

∫
Rn

(xi + ỹi)(xj + ỹj)Uψ0 + o
(
ε2

)
.

(V) We have

I5 = δ2
∫
Rn

V (y0 + δ(x+ ỹ))φψ0

= δ2 V (y0)
∫
Rn

φψ0 + δ4
∫
Rn

∑
i,j

∂2V

∂xi∂xj

∣∣∣
y0+θ(x+ỹ)

(x+ ỹ)i(x+ ỹ)jφψ0

= ε2d0V (y0)
∫
Rn

φψ0 + o
(
ε2

)
.

Indeed, by Lemma 6.4,

δ2 V (y0)
∫
Rn

φψ0 = ε2d0V (y0)
∫
Rn

φ0 ψ0 + o
(
ε2

)
.

Moreover, using the inequality |φ(x)| ≤ cU(x) proved in Lemma 2.3,
given s for γ small enough, we have

(58)
∣∣∣∣ ∫

Rn

∑
i,j

∂2V

∂xi∂xj

∣∣∣
y0+θ(x+ỹ)

(x+ ỹ)i(x+ ỹ)jφψ0

∣∣∣∣
≤ c1 max

i,j

∥∥∥∥ ∂2V

∂xi∂xj

∥∥∥∥
L∞

∫
Rn

|φ‖γ U1−γ |ψ0|
(|x|2 + |ỹ|2)

≤ c2‖φ‖γ
Ls

(‖|x|2 U1−γψ0‖Ls/(s−γ) + ‖U1−γψ0‖Ls/(9s−γ)

)
= O

(
εγ

)
.

By (50), (51), (53), (56), (57) and (58) we obtain our claim.
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