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REMARKS ON SPACES OF
REAL RATIONAL FUNCTIONS

YASUHIKO KAMIYAMA

ABSTRACT. Let RRatk(CP n) denote the space of basepoint-
preserving conjugation-equivariant holomorphic maps of de-
gree k from S2 to CP n. A map f : S2 → CP n is said
to be full if its image does not lie in any proper projec-
tive subspace of CP n. Let RFk(CP n) denote the subspace
of RRatk(CP n) consisting of full maps. We first determine
H∗(RRatk(CP n);Z/p) for all primes p. Then we prove that
the inclusion RFk(CP n) ↪→RRatk(CP n) and a natural map
αk,n : RFk(CP n) → SO(k)/SO(k − n) are homotopy equiv-
alences up to dimensions k − n and n − 1, respectively.

1. Introduction. Let Ratk(CPn) denote the space of based
holomorphic maps of degree k from the Riemannian sphere S2 = C∪∞
to the complex projective space CPn. The basepoint condition we
assume is that f(∞) = [1, . . . , 1]. Such holomorphic maps are given by
rational functions:

Ratk(CPn) = {(p0(z), . . . , pn(z)) : each pi(z) is a monic polynomial

(1.1)

over C of degree k and such that there are no
roots common to all pi(z)}.

There is an inclusion Ratk(CPn) ↪→Ω2
kCPn � Ω2S2n+1. Segal [9]

proved that the inclusion is a homotopy equivalence up to dimen-
sion k(2n − 1). (Throughout this paper, to say that a map f : X → Y
is a homotopy equivalence up to dimension d is intended to mean
that f induces isomorphisms in homotopy groups in dimensions less
than d, and an epimorphism in dimension d.) Later, the stable ho-
motopy type of Ratk(CPn) was described in [3] as follows. Let
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Ω2S2n+1 �
s

∨
1≤q

Dq(S2n−1) be Snaith’s stable splitting of Ω2S2n+1. Then

(1.2) Ratk(CPn)�
s

k∨
q=1

Dq(S2n−1).

In particular, the induced homomorphism H∗(Ratk(CPn);Z) → H∗
(Ω2S2n+1;Z) is injective.

A map f : S2 → CPn is said to be full if its image does not lie in
any proper projective subspace of CPn. If f is given by a rational
function in (1.1), then f is full if and only if the polynomials pi(z),
0 ≤ i ≤ n, are linearly independent in C[z]. Let Fk(CPn) be the
subspace of Ratk(CPn) consisting of full maps. Particular examples
are: Fk(CPn) = ∅ when k < n; and Fn(CPn) ∼= Cn × GL(n,C).
The space Fk(CPn) has a certain significance in connection with
harmonic maps. In fact, it is known how to construct harmonic maps
S2 → CPn out of full holomorphic maps. Motivated by this, Crawford
studied the topology of Fk(CPn) in [6]. He proved that the inclusion
Fk(CPn) ↪→Ratk(CPn) is a homotopy equivalence up to dimension
2(k − n) + 1. Moreover, H∗(Fk(CP 2);Z/p) was determined for all
primes p. The result shows that the inclusion Fk(CP 2) ↪→Ratk(CP 2)
has a nontrivial kernel in homology in dimensions above the range of
stability.

We denote by RRatk(CPn) the subspace of Ratk(CPn) of maps
which commute with complex conjugation. An element (p0(z), . . . ,
pn(z)) ∈ Ratk(CPn) belongs to RRatk(CPn) if and only if each pi(z)
has real coefficients. Hence, in particular, RRat1(CPn) ∼= R×(Rn)∗ �
Sn−1. Next we set RFk(CPn) = RRatk(CPn) ∩ Fk(CPn).

The purpose of this paper is to study the topology of RRatk(CPn)
and RFk(CPn). There are inclusions

(1.3) ik : RRatk(CPn) ↪→ΩSn × Ω2S2n+1

(compare Lemma 2.1) and

(1.4) jk : RFk(CPn) ↪→RRatk(CPn).

Brockett and Segal ([2, 9]) showed that

(1.5) RRatk(CP 1) ∼=
k∐

i=0

C|k−2i| × Ratmin(i,k−i)(CP 1).
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But the homology of RRatk(CPn) is not known for n ≥ 2. On the
other hand, about RFk(CPn), we have the following:

Example 1.6. (i) For 1 ≤ k, RFk(CP 1) = RRatk(CP 1).

(ii) For k < n, RFk(CPn) = ∅.

(iii) RFn(CPn) ∼= Rn × GL(n,R). Hence, RFn(CPn) � O(n).

In fact, (i) and (ii) are clear. We prove (iii) in Section 3.

Now we state our results. We first determine H∗(RRatk(CPn);Z/p)
for all primes p. Since the topological type of RRatk(CP 1) is known
in (1.5), we assume n ≥ 2. Recall that H∗(ΩSn;Z/p) ∼= Z/p [un−1].
As usual, we set w(un−1) = 1, where w denotes the weight. On the
other hand, we define the weight of an element of H∗(Ω2S2n+1;Z/p)
to be twice the usual one. In particular, for the generator ι2n−1 ∈
H2n−1(Ω2S2n+1;Z/p), we set w(Qd

1(ι2n−1)) = 2pd.

Theorem A. Let n ≥ 2. Then, as a vector space, H∗(RRatk(CPn);
Z/p) is isomorphic to the subspace of H∗(ΩSn×Ω2S2n+1;Z/p) spanned
by monomials of weight ≤ k.

Remark. When n = 1, let us understand ΩSn × Ω2S2n+1 in The-
orem A as {0, 1, 2, . . . } × Ω2S3, where {0, 1, 2, . . . } is a discrete set
with w(j) = j. (Here w denotes the weight.) Then (1.5) implies that
Theorem A remains valid for n = 1.

Theorem A implies that ik∗ : H∗(RRatk(CPn);Z) → H∗(ΩSn ×
Ω2S2n+1;Z) is injective, as in the inclusion Ratk(CPn) ↪→Ω2S2n+1.
(Compare (1.2).) We have the following analogue of Segal’s theorem.

Corollary B. The inclusion ik in (1.3) satisfies the following prop-
erties :

(i) For n ≥ 2, ik induces isomorphisms in homology groups in
dimensions ≤ (k + 1)(n − 1) − 1.

(ii) For n ≥ 3, ik is a homotopy equivalence up to dimension
(k + 1)(n − 1) − 1.
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Remark. Recall that the stable homotopy type of Ratk(CPn) is de-
scribed in (1.2) in terms of stable summands in Ω2S2n+1. Similarly, it is
possible to prove a stable homotopy equivalence between RRatk(CPn)
and the collection of stable summands in ΩSn×Ω2S2n+1 of weight ≤ k.
In a subsequent paper [7], we shall prove this.

The following theorem asserts the stability of the map jk in (1.4).

Theorem C. The inclusion jk is a homotopy equivalence up to
dimension k − n.

The following theorem is more useful than Theorem C when k ≤
2n − 1.

Theorem D. Let SO(k)/SO(k − n) be the Stiefel manifold of or-
thonormal n-frames in Rk. (When k = n, we understand this as O(n).)
Then there is a map αk,n : RFk(CPn) → SO(k)/SO(k − n) so that
αk,n is a homotopy equivalence up to dimension n − 1.

In particular, when k = n + 1, we have the following:

Corollary E. We set SO = ∪1≤nSO(n) and let ι(n + 1) : SO(n +
1) ↪→SO be the inclusion. Then ι(n+1)◦αn+1,n : RFn+1(CPn) → SO
is a homotopy equivalence up to dimension n − 1.

It is possible to determine H∗(RFk(CP 2);Z/p) by a similar argument
to the calculations of H∗(Fk(CP 2);Z/p) in [6]. But the results are
rather complicated. Hence we omit them.

This paper is organized as follows. In Section 2 we prove Theorem A
and Corollary B. Theorem A is proved by considering the spectral
sequence of the Vassiliev type. In Section 3 we prove Theorems C,
D and Corollary E. The proofs are mostly general position argument.

2. Proofs of Theorem A and Corollary B. Let MapT
k (CP 1,CPn)

denote the space of continuous basepoint preserving conjugation-
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equivariant maps of degree k from CP 1 to CPn. There is an inclusion

RRatk(CPn) ↪→MapT
k (CP 1,CPn).

It is easy to prove the following lemma, compare [7].

Lemma 2.1. For n ≥ 1, there is a homotopy equivalence

MapT
k (CP 1,CPn) � ΩSn × Ω2S2n+1.

Here, when n = 1, we understand ΩSn as Z so that Z is parametrized
by the degree of maps RP 1 → RP 1 which are restrictions of elements
of MapT

k (CP 1,CP 1) to the real line. Moreover, under the inclusion
RRatk(CP 1) ↪→MapT

k (CP 1,CP 1), the connected component indexed
by i, 0 ≤ i ≤ k, in (1.5) is mapped to (k − 2i) × Ω2S3 ∈ Z × Ω2S3.

Theorem A is proved as follows. First, by constructing homology
classes explicitly, we find a lower bound for the modp homology of
RRatk(CPn). (Compare Proposition 2.2.) Next, considering a ge-
ometrical resolution of a resultant, we construct a spectral sequence
of the Vassiliev type. The spectral sequence converges to the modp
homology of RRatk(CPn) and the E1-term coincides with the lower
bound. Hence, the spectral sequence collapses at the E1-term and the
lower bound is actually an upper bound. (Compare Proposition 2.3.)

Proposition 2.2. Let Lk be the subspace of H∗(ΩSn×Ω2S2n+1;Z/p)
spanned by monomials of weight ≤ k. Then every element of Lk is in
the image of ik∗, where ik is defined in (1.3). Hence, these elements
are a lower bound for H∗(RRatk(CPn);Z/p).

Proof. We recall the structure of H∗(ΩSn × Ω2S2n+1;Z/p). First,

H∗(ΩSn;Z/p) ∼= Z/p [un−1] .

Next, there is a (torsion free) generator ι2n−1 ∈ H2n−1(Ω2S2n+1;Z/p)∼=
Z/p, and the following hold. (Compare [4].)

(i) For p = 2,

H∗(Ω2S2n+1;Z/2) ∼= Z/2[ι2n−1, Q1(ι2n−1), . . . , Q1 · · ·Q1(ι2n−1), . . . ].
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(ii) For an odd prime p,

H∗(Ω2S2n+1;Z/p) ∼=
∧

(ι2n−1, Q1(ι2n−1), . . . , Q1 · · ·Q1(ι2n−1), . . . )

⊗ Z/p[βQ1(ι2n−1), . . . , βQ1 · · ·Q1(ι2n−1), . . . ].

In (i) and (ii), Q1 is the first Dyer-Lashof operation (it takes a class
of dimension d to a class of dimension dp + p − 1) and β is the modp
Bockstein operation.

We construct the following three maps:

(1) The inclusion ηq : Ratq(CPn) ↪→RRat2q(CPn),

(2) Loop sum ∗ : RRatk1(CPn)×RRatk2(CPn) → RRatk1+k2(CPn),

and

(3) Stabilization map s : RRatk(CPn) ↪→RRatk+1(CPn).

One can construct the maps (2) and (3) in the same way as in
[1]. On the other hand, the map (1) is constructed as follows: We
fix a homeomorphism h : C

∼=→ H+, where H+ denotes the open
upper half-plane. For (p0(z), . . . , pn(z)) ∈ Ratq(CPn), we write
pj(z) =

∏q
s=1(z − αs,j). Then we set

ηq(p0(z), . . . , pn(z))

=
( q∏

s=1

z − h(αs,0))(z − h(αs,0)), . . . ,

q∏
s=1

(z − h(αs,n))(z − hαs,n))
)

.

Now let α ∈ Lk. We write α = ui
n−1⊗ξ, where ξ ∈ H∗(Ω2S2n+1;Z/p).

The fact that RRat1(CPn) ∼= R × (Rn)∗ � Sn−1 shows that there is
an element vn−1 ∈ Hn−1(RRat1(CPn);Z/p) so that

i1∗(vn−1) = un−1.

Let w be the usual weight on H∗(Ω2S2n+1;Z/p). Then, from (1.2), we
have ξ ∈ H∗(Ratw(ξ)(CPn);Z/p), hence

ηw(ξ)∗(ξ) ∈ H∗(RRat2w(ξ)(CPn);Z/p),

where the inclusion ηw(ξ) is defined in (1). Using the loop sum in (2),
we have

vi
n−1 ∗ ηw(ξ)∗(ξ) ∈ H∗(RRatw(α)(CPn);Z/p),
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where w is the weight in Theorem A, i.e., w(α) = i + 2w(ξ). Since
w(α) ≤ k, using the stabilization map in (3), we can regard this as
an element of H∗(RRatk(CPn);Z/p). This completes the proof of
Proposition 2.2.

Proposition 2.3. The lower bound of Proposition 2.2 is actually an
upper bound.

Proof. We prove the proposition along the lines of [10, p. 151]. For a
locally compact space X, let X denote the one-point compactification
of X, X = X ∪ {∞}, and let H∗(X;Z) be the Borel-Moore homology
group H∗(X;Z) = H̃∗(X;Z).

We regard Rk(n+1) as the space consisting of all (n + 1)-tuples
(p0(z), . . . , pn(z)) of monic polynomials over R of degree k. Let Σn

k

be the complement of RRatk(CPn) in Rk(n+1). Thus

Σn
k = {(p0(z), . . . , pn(z)) ∈ Rk(n+1) : p0(α) = · · · = pn(α) = 0

for some α ∈ C}.
From the Alexander duality, there is a natural isomorphism

H̃∗(RRatk(CPn);Z) ∼= Hk(n+1)−1−∗(Σn
k ;Z)

and so we study H∗(Σn
k ;Z).

Let I : C → Ck be the Veronese embedding I(z) = (z, z2, . . . , zk).
Let f = (p0(z), . . . , pn(z)) ∈ Σn

k , and suppose that p0(z), . . . , pn(z)
have at least i distinct common real roots r1, . . . , ri and j distinct com-
mon roots ζ1, . . . , ζj in H+ (hence ζ1, . . . , ζj are common roots in H−
since polynomials are real). We denote by Δ(f, {r1, . . . , ri, ζ1, . . . , ζj})
⊂ Ck the open simplex in Ck with vertices

{I(r1), . . . , I(ri), I(ζ1), . . . , I(ζj)}.
(Note that since i+2j ≤ k, the points {I(r1), . . . , I(ri), I(ζ1), . . . , I(ζj)}
are in general position.) Define a geometrical resolution Σ̃n

k of Σn
k by

Σ̃n
k =

⋃
f∈Σn

k ;{r1,... ,ri,ζ1,... ,ζj}
{f} × Δ(f, {r1, . . . , ri, ζ1, . . . , ζj})

⊂ Σn
k × Ck.
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The first projection defines an open proper map π : Σ̃n
k → Σn

k , and
this induces a map between the one-point compactification spaces
π : Σ̃n

k → Σn
k . It is known [10] that the map π is a homotopy

equivalence. Define subspaces Fs ⊂ Σ̃n
k by

Fs =

⎧⎪⎪⎨
⎪⎪⎩

{∞} ∪
⋃

f∈Σn
k ;{r1,... ,ri,ζ1,... ,ζj},i+2j≤s

{f}

×Δ(f, {r1, . . . , ri, ζ1, . . . , ζj}) if s ≥ 1
{∞} if s = 0.

There is an increasing filtration

F0 = {∞} ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fk = Σ̃n
k � Σn

k ,

and this induces a spectral sequence

E1
s,t = Hs+t(Fs − Fs−1;Z) =⇒ Hs+t(Σ̃n

k ;Z) ∼= Hs+t(Σn
k ;Z).

Fs−Fs−1 has connected components indexed by nonnegative integers
(i, j) with i + 2j = s. The connected component indexed by (i, j)
is a fibered product of the following two fiber bundles: They have a
common base Ci(R) × Cj(H+) ∼= Ri × Cj(C), where Cr(X) denotes
the configuration space of unordered r-tuples of distinct points in X.

(i) The first bundle has the (i + j − 1)-dimensional open simplex as
a fiber.

(ii) The second bundle is an affine R(k−s)(n+1)-bundle. The fiber
over a collection {r1, . . . , ri, ζ1, . . . , ζj} ∈ Ci(R) × Cj(H+) consists of
(p0(z), . . . , pn(z)) having common roots {r1, . . . , ri, ζ1, . . . , ζj , ζ1, . . . ,
ζj}. By the Thom and Poincaré isomorphisms,

E1
s,t =

{⊕
i+2j=s H(k−s)(n+1)+i+j−t−1(Cj(C);±Z) 1 ≤ s ≤ k

0 otherwise,

where ±Z denotes the local system locally isomorphic to Z but changes
the orientation over the loops defining odd permutations. For 1 ≤ s ≤
k, we can rewrite this as

[s/2]⊕
j=1

H̃k(n+1)−sn−t−1(Dj(S1);Z)
⊕

H̃k(n+1)−sn−t−1(S0;Z).
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Recall that Dj(S2n−1) � Σ2j(n−1)Dj(S1), compare [5]. Hence, this is
equivalent to

[s/2]⊕
j=1

H̃k(n+1)−sn−t−1+2j(n−1)(Dj(S2n−1);Z)
⊕

H̃k(n+1)−sn−t−1(S0;Z).

Let 1 ≤ ∗. From the Alexander duality, we have

dim H∗(RRatk(CPn);Z/p)

≤
k∑

s=2

[s/2]∑
j=1

dim H∗(Σ(s−2j)(n−1)Dj(S2n−1);Z/p)

+
k∑

s=1

dim H∗(Ss(n−1);Z/p).

Identifying H∗(Σ(s−2j)(n−1)Dj(S2n−1);Z/p) with

us−2j
n−1 ⊗ H̃∗(Dj(S2n−1);Z/p)

and

H∗(Ss(n−1);Z/p)

with us
n−1, we see that H∗(RRatk(CPn);Z/p) is at most as big as

Lk. This completes the proof of Proposition 2.3, and, consequently, of
Theorem A.

Proof of Corollary B. Theorem A implies that among elements of
H∗(ΩSn×Ω2S2n+1;Z/p) which are not contained in Im ik∗, the element
of least degree is uk+1

n−1. Hence, (i) follows. Since RRatk(CPn) and
ΩSn × Ω2S2n+1 are simply connected for n ≥ 3, (ii) follows from the
Whitehead theorem.

3. Proofs of Theorems C, D and Corollary E. For (p0(z), . . . ,
pn(z)) ∈ RRatk(CPn), we set q0(z) = p0(z) and qi(z) = pi(z) − p0(z)
for 1 ≤ i ≤ n. Then RRatk(CPn) is identified with the space of
(n+1)-tuples of polynomials (q0(z), q1(z), . . . , qn(z)) which satisfy the
following conditions (i) and (ii):
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(i) Each qi(z), 0 ≤ i ≤ n, has the form

q0(z) = zn + a0,1z
n−1 + · · · + a0,n

and

qi(z) = ai,1z
n−1 + · · · + ai,n, 1 ≤ i ≤ n,

where ai,j ∈ R.

(ii) There are no roots common to all qi(z) for 0 ≤ i ≤ n.

Proof of Theorem C. We set Ak,n = RRatk(CPn) − RFk(CPn).
We claim that the codimension of Ak,n in RRatk(CPn) is k − n +
1. Here the codimension means as usual the minimum value of
dim TfRRatk(CPn) − dim TfAk,n for f ∈ Ak,n, where Tf denotes the
tangent space at the point f . In fact, let f = (q0(z), q1(z), . . . , qn(z)) ∈
Ak,n. Generically we may assume that qn(z) is a linear combination of
q1(z), . . . , qn−1(z). Then dim TfAk,n = kn + n − 1. Hence the codi-
mension is k − n + 1. Now Theorem C follows from general position
argument.

Proof of Theorem D. Let Vn(Rk) be the Stiefel manifold of, not
necessarily orthonormal, n-frames in Rk. We consider Vn(Rk) as an
open set of the set of n × k matrices. We identify Rk × Vn(Rk) with
the space of (n+1)-tuples of polynomials (q0(z), q1(z), . . . , qn(z)) which
satisfy the above condition (i) and the following condition (iii):

(iii) The polynomials q1(z), . . . , qn(z) are linearly independent.

(More precisely, considering the coefficients of polynomials, we regard
q0(z) ∈ Rk and (q1(z), . . . , qn(z)) as an n × k matrix.) We set Bk,n =
Rk × Vn(Rk)−RFk(CPn). We claim that the codimension of Bk,n in
Rk ×Vn(Rk) is n. In fact, let f = (q0(z), q1(z), . . . , qn(z)) ∈ Bk,n, and
let ξ ∈ C be a common root of q0(z), q1(z), . . . , qn(z). If ξ is a root of a
real polynomial, then so is ξ. Since we need to calculate the maximum
value of dimTfBk,n for f ∈ Bk,n, we may assume that ξ ∈ R. Then
dim TfBk,n = (k − 1)(n + 1) + 1. Hence, the codimension is n.

Now the general position argument shows that the inclusion

RFk(CPn) ↪→Rk × Vn(Rk)
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is a homotopy equivalence up to dimension n − 1. Let αk,n :
RFk(CPn) → SO(k)/SO(k − n) be the composition of the inclusion
with a homotopy equivalence Vn(Rk) � SO(k)/SO(k − n). Then αk,n

satisfies the assertion of Theorem D.

Proof of Example 1.6 (iii). In the proof of Theorem D, when k = n,
the conditions (i) and (iii) imply the condition (ii). Hence RFn(CPn) ∼=
Rn × Vn(Rn).

Proof of Corollary E. Recall that ι(n + 1) : SO(n + 1) ↪→SO is
a homotopy equivalence up to dimension n (see, for example, [8,
Corollary 3.17]). Then the result follows from Theorem D for k = n+1.

REFERENCES

1. C.P. Boyer and B.M. Mann, Monopoles, non-linear σ models, and two-fold
loop spaces, Comm. Math. Phys. 115 (1988), 571 594.

2. R.I. Brockett, Some geometric questions in the theory of linear systems, IEEE
Trans. Automat. Control 21 (1976), 449 455.

3. F.R. Cohen, R.L. Cohen, B.M. Mann and R.J. Milgram, The topology of
rational functions and divisors of surfaces, Acta Math. 166 (1991), 163 221.

4. F.R. Cohen, T.J. Lada and J.P. May, The homology of iterated loop spaces,
Lecture Notes in Math., vol. 533, Springer, Berlin, 1976.

5. F.R. Cohen, M.E. Mahowald and R.J. Milgram, The stable decomposition
for the double loop space of a sphere, in Algebraic and geometric topology (R.J.
Milgram, ed.), Proc. Sympos. Pure Math., vol. 32, part 2, Amer. Math. Soc.,
Providence, RI, 1978, pp. 225 228.

6. T.A. Crawford, Full holomorphic maps from the Riemann sphere to complex
projective spaces, J. Differential Geom. 38 (1993), 161 189.

7. Y. Kamiyama, Spaces of real polynomials with common roots, Geom. Topol.
Monogr., to appear.

8. M. Mimura and H. Toda, Topology of lie groups, I, II, Transl. Math. Monogr.,
vol. 91, Amer. Math. Soc., Providence, RI, 1991.

9. G.B. Segal, The topology of spaces of rational functions, Acta Math. 143
(1979), 39 72.

10. V.A. Vassiliev, Complements of discriminants of smooth maps: Topology and
applications, rev. ed., Transl. Math. Monogr., vol. 98, Amer. Math. Soc., Providence,
RI, 1994.

Department of Mathematics, University of the Ryukyus, Nishihara-Cho,
Okinawa 903-0213, Japan
E-mail address: kamiyama@sci.u-ryukyu.ac.jp


