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CONTINUITY OF HOMOMORPHISMS AND
DERIVATIONS ON NORMED ALGEBRAS

WHICH ARE TENSOR PRODUCTS
OF ALGEBRAS WITH INVOLUTION

A. RODRÍGUEZ-PALACIOS AND M.V. VELASCO

ABSTRACT. We prove that, if A is a normed ∗-algebra
of the form B ⊗ C for some central simple finite-dimensional
algebra B with involution different from ±IB and some al-
gebra C with involution and a unit, then homomorphisms
from A to normed algebras and derivations from A to normed
A-bimodules are continuous whenever they are continuous on
the hermitian part of A. When A is associative, some addi-
tional information is given.

1. Introduction. The aim of this paper is to study the automatic
continuity of some homomorphisms and derivations with “arbitrary
range” and whose domains are normed ∗-algebras over K (= R or C)
of the type B⊗C. Here B⊗C stands for the algebraic tensor product of
algebras B and C, each of them endowed with a (linear) involution. Our
achievements in this line are collected in two independent results of the
same flavor, namely Theorems 3 and 5, and are derived from Theorem 2,
which is the main result in this paper. In the last quoted theorem we
show that, if A is a normed ∗-algebra of the form B⊗C for some central
simple finite-dimensional algebra B with involution different from ±IB ,
and some algebra C with involution and a unit, then two algebra norms
on A making the tensor involution continuous are equivalent whenever
they are equivalent on the hermitian part of A. As a consequence, if
n ≥ 2, if C is an algebra over K with involution and a unit, if Mn(C)
denotes the algebra of all n × n matrices with entries in C, and if we
endow Mn(C) with the standard involution (consisting in transposing
a given matrix and applying the involution of C to each entry), then
two algebra norms on Mn(C) making its involution continuous are
equivalent whenever they are equivalent on the hermitian part of
Mn(C). The fact just reviewed can be reformulated as follows. If
A is a normed ∗-algebra over K which, algebraically regarded, is of
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the form Mn(C) for some n ≥ 2 and some algebra C with involution
and a unit, then homomorphisms (respectively, derivations) from A
to arbitrary normed algebras (respectively, normed A-bimodules) are
continuous whenever they are continuous on the hermitian part of
A. If, in addition, the algebra C above is associative, then the
norms of continuous homomorphisms and derivations on A are “almost
determined” by the norms of their restrictions to the hermitian part
of A (see assertion (iii) in Corollary 4). An extension of this result to
more general tensor algebras is shown in Theorem 5. Results of the
same flavor were obtained in [5]. There it was shown that if A is a
∗-simple (associative) Banach algebra with an involution and a unit,
then homomorphisms from A to normed algebras and derivations from
A to normal A-modules are continuous whenever they are continuous
on the hermitian part of A.

2. The results. Throughout this paper, K will denote either the
field R of real numbers or the field C of complex numbers. Let X
and Y be normed spaces over K and, as usual, let X ⊗ Y denote the
algebraic tensor product of X and Y . The projective tensor norm ‖ ·‖π

on X ⊗ Y is defined by

‖a‖π := inf
{ n∑

j=1

‖xj‖‖yj‖ : a =
n∑

j=1

xj ⊗ yj

}
,

for every a ∈ X ⊗ Y . Sometimes it will be convenient to denote ‖ · ‖π

by ‖ · ‖X ⊗ ‖ · ‖Y where ‖ · ‖X (respectively, ‖ · ‖Y ) is the norm of X
(respectively, of Y ).

If B and C are (nonassociative) algebras over K, then B ⊗ C will
be considered, without notice, as an algebra over K under the product
determined on elementary tensors by

(b1 ⊗ c1)(b2 ⊗ c2) := b1b2 ⊗ c1c2.

Moreover, when B and C are normed algebras, the projective norm on
B ⊗ C becomes an algebra norm.

An involution on an algebra B over a field F is an F-linear involutive
mapping ∗ : B → B satisfying (b1b2)∗ = b∗2b

∗
1 for all b1, b2 in B.

If B and C are algebras with involution over F, then B ⊗ C will
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be regarded without notice as an algebra with involution, namely,
the tensor involution, which is determined on elementary tensors by
(b1 ⊗ c1)∗ := b∗ ⊗ c∗ for all b in B and c in C.

We recall that an algebra B over a field F is called central (over
F) if the F-multiples of the identity operator on B are the unique
linear mappings f : B → B satisfying f(b1b2) = b1f(b2) = f(b1)b2
for all b1, b2 in B. It is well-known and easy to see that every
finite-dimensional simple algebra over an algebraically closed field F
is automatically central over F.

In [4, Theorem 1.4], it is shown that, if B and C are algebras over K,
if B is finite-dimensional and central simple, and if C has a unit, then
every algebra norm on B⊗C is equivalent to the projective tensor norm
of suitable algebra norms on the factors. A non difficult consequence of
this result is the following lemma, which will be crucial in our approach.

Lemma 1 [4, Corollary 2.1]. Let B and C be algebras with involution
over K. Assume that B is finite-dimensional and central simple and
that C has a unit. Then every algebra norm on the tensor product B⊗C
making the tensor involution continuous is equivalent to the projective
tensor norm of suitable algebra norms on the factors, making their
involutions continuous.

Let B be an algebra with involution ∗. We consider the hermitian
part H(B, ∗) and the skew-hermitian part S(B, ∗) of B given by

H(B, ∗) := {c ∈ C : c∗ = c} and S(C, ∗) = {c ∈ C : c∗ = −c}.
On the other hand, IB will denote the identity of B.

Theorem 2. Let B and C be algebras with involution over K. As-
sume that B is finite-dimensional and central simple, that the involution
of B is different from ±IB and that C has a unit. Let ‖ · ‖ and ·‖ · ‖′
be algebra norms on B ⊗ C making the tensor involution continuous.
Then ‖ · ‖ and ‖ · ‖′ are equivalent if (and only if ) they are equivalent
on the hermitian part of B ⊗ C.

Proof. Put A := B ⊗ C. Let ‖ · ‖ and ‖ · ‖′ be algebra norms on
A which are equivalent on H(A, ∗). By the finite dimensionality of B
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and the above lemma, we can assume that ‖ · ‖ = ‖ · ‖B ⊗ ‖ · ‖C and
‖ · ‖′ = ‖ · ‖B ⊗ ‖ · ‖′C for suitable algebra norms ‖ · ‖B , ‖ · ‖C and
‖ · ‖′C which make continuous the respective involutions. Moreover, it
is not restrictive to assume that the involution of B (respectively, of C)
is actually an isometry for the norm ‖ · ‖B (respectively, for both the
norms ‖ · ‖C and ‖ · ‖′C).
Since the involution of B is not ±IB, we can fix u ∈ H(B, ∗) such

that ‖u‖B = 1 and v ∈ S(B, ∗) with ‖v‖B = 1. Then, for every b in
S(B, ∗) we have

1 =
1
2
‖(u+ b) + (u+ b)∗‖B ≤ ‖u+ b‖B.

Therefore ‖u+S(B, ∗)‖B = 1 and hence, by the Hahn-Banach theorem,
there exists a linear function f on B vanishing on S(B, ∗) and satisfying
f(u) = ‖f‖B = 1. Consider the mapping F : B → B given by
F (b) := f(b)u for every b in B. It follows from the equality ‖F‖B = 1
that

‖F ⊗ IC‖ = ‖F‖B‖IC‖C = 1.

Now, let h be in H(C, ∗) and s in S(C, ∗). Then we have

‖h‖C = ‖u⊗ h‖ = ‖(F ⊗ IC)(u⊗ h+ v ⊗ s)‖ ≤ ‖u⊗ h+ v ⊗ s‖.

A similar argument shows that ‖s‖C ≤ ‖u⊗ h+ v ⊗ s‖. Therefore,

‖h+ s‖C ≤ ‖h‖C + ‖s‖C ≤ 2‖u⊗ h+ v ⊗ s‖.

Let k > 0 be such that ‖ · ‖ ≤ k‖ · ‖′ on H(A, ∗). Since u ⊗ h + v ⊗ s
lies in H(A, ∗), we obtain

‖u⊗ h+ v ⊗ s‖ ≤ k‖u⊗ h+ v ⊗ s‖′ ≤ 2kmax{‖h‖′C , ‖s‖′C}.

But
‖h‖′C =

1
2
‖(h+ s) + (h+ s)∗‖′C ≤ ‖h+ s‖′C

and, similarly ‖s‖′C ≤ ‖h+ s‖′C , so that max{‖h‖′C , ‖s‖′C} ≤ ‖h+ s‖′C .
It follows

‖h+ s‖C ≤ 4k‖h+ s‖′C .
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By symmetry, there exists k′ > 0 such that

‖h+ s‖′C ≤ 4k′‖h+ s‖C .

Since C = H(C, ∗) + S(C, ∗), this proves the equivalence of ‖ · ‖C and
‖ · ‖′C on C and, consequently, the equivalence of ‖ · ‖ and ‖ · ‖′ in A.

Given an algebra A over K, an A-bimodule is a vector space (say
X) over K together with two bilinear mappings (a, x) → ax and
(a, x) → xa from A × X to X. Since we are dealing with general
nonassociative algebras, no rules of good behavior of the above bilinear
mappings are required (see for instance [3, Section II.5]). If A is a
normed algebra, if X is a normed space and also an A-bimodule, and if
the inequalities ‖ax‖ ≤ ‖a‖‖x‖ and ‖xa‖ ≤ ‖x‖‖a‖ hold for every a in
A and x in X, then we say that X is a normed A-bimodule. Given an
algebra A and an A-bimodule X, a derivation from A to X is a linear
map δ : A→ X such that

δ(ab) = δ(a)b+ aδ(b),

for all a, b in A.

By a normed ∗-algebra over K we mean a normed algebra over K,
endowed with a continuous involution.

Theorem 3. Let A be a normed ∗-algebra over K which, algebraically
regarded, is of the form B⊗C for some central simple finite-dimensional
algebra B with involution different from ±IB and some algebra C with
involution and a unit. Then we have

(i) Homomorphisms from A to arbitrary normed algebras over K are
continuous whenever they are continuous on H(A, ∗).
(ii) Derivations from A to arbitrary normed A-bimodules over K are

continuous whenever they are continuous on H(A, ∗).

Proof. (i) Let ϕ be a homomorphism from A to a normed algebra
such that ϕ′H(A,∗) is continuous. Consider the algebra norm ‖ · ‖′ on
A given by

‖a‖′ := max{‖a‖, ‖ϕ(a)‖, ‖ϕ(a∗)‖}.
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It follows from the ‖ · ‖-continuity of ∗ that ∗ is also ‖ · ‖′-continuous.
On the other hand, the continuity of ϕ′H(A,∗) leads to the equivalence
of ‖ · ‖ and ‖ · ‖′ on H(A, ∗). Therefore, by Theorem 2, we have that
‖ · ‖ and ‖ · ‖′ are equivalent on A, which proves the continuity of ϕ.
(ii) Given a derivation δ from A to a normed A-bimodule, we can

consider the algebra norm ‖ · ‖′ on A given by

‖a‖′ := max{‖a‖+ ‖δ(a)‖, ‖a∗‖+ ‖δ(a∗)‖},

and argue as above to obtain the continuity of δ.

For an algebra C over K, and a natural number n, we denote by
Mn(C) the algebra over K of all n × n matrices with entries in C.
When C has an involution, Mn(C) will be provided with the so-called
standard involution, namely, the one consisting in transposing a given
matrix and applying the involution of C to each entry.

Corollary 4. Let A be a normed ∗-algebra over K which, alge-
braically regarded, is of the form Mn(C) for some algebra C with invo-
lution and a unit and some n ≥ 2. Then we have

(i) Homomorphisms from A to arbitrary normed algebras are con-
tinuous whenever they are continuous on the hermitian part of A.

(ii) Derivations from A to arbitrary normed A-bimodules are contin-
uous whenever they are continuous on the hermitian part of A.

(iii) If, in addition, C is associative, then there exists a positive
constant K (only depending on A) such that, for every continuous
homomorphism ϕ from A to a normed algebra, and for every continuous
derivation δ from A to a normed A-bimodule, we have

‖ϕ‖ ≤ K‖ϕ′H(A,∗)‖3 and ‖δ‖ ≤ K‖δ′H(A,∗)‖.

Proof. Under the identification Mn(C) ∼= Mn(K) ⊗ C, the involu-
tion of Mn(C) is nothing but the tensor involution of the transpose
involution on Mn(K) and the given involution on C. Since Mn(K) is
central simple and the transpose involution onMn(K) is different from
±IMn(K) for n ≥ 2, assertions (i) and (ii) follow from Theorem 3.
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To prove (iii), we begin by pointing out that, by Lemma 1, the normed
∗-algebra Â, obtained by completing A, is algebraically of the form
Mn(Ĉ), where Ĉ is an algebra with involution and a unit. Then,
since continuous homomorphisms (respectively, derivations) from A
to normed algebras (respectively, to normed A-bimodules) can be ex-
tended to continuous homomorphisms (respectively, derivations) from
Â to complete normed algebras (respectively, to complete normed
Â-bimodules) we can and will assume that A is complete. On the
other hand, since n ≥ 2, we can apply [4, Proposition 5.1] to obtain
that A is (algebraically) generated by its hermitian part. Now assume
that C is associative. Then it is folklore that A = (H(A, ∗))3 (see for
instance [2, p. 602]). Let U := {h1h2h3 : h1, h2, h3 ∈ BH} where BH

denotes the closed unit ball of H(A, ∗), and let D be the closed convex
hull of U . By keeping in mind that U is balanced, from the equality
A = (H(A, ∗))3 it easily follows that A = ∪n∈NnD. The complete-
ness of A and the Baire category theorem give that the interior of D is
not empty. Actually, since D is convex and symmetric, we obtain that
εBA ⊆ C for some ε > 0, where BA denotes the closed unit ball of A.
Consequently, if ϕ is a continuous homomorphism from A to a normed
algebra we have

ε‖ϕ‖ = ε sup
a∈BA

{‖ϕ(a)‖} ≤ sup
b∈D

{‖ϕ(b)‖}

= sup
c∈U

{‖ϕ(c)‖} ≤ ‖ϕ′H(A,∗)‖3.

Similarly, for a derivation δ from A to a normed A-bimodule we obtain,
by applying the derivation rule, that

ε‖δ‖ = ε sup
a∈BA

{‖δ(a)‖} ≤ sup
b∈D

{‖δ(b)‖} = sup
c∈U

{‖δ(c)‖} ≤ 3‖δ′H(A,∗)‖.

This proves the existence of a positive constant K such that

‖ϕ‖ ≤ K‖ϕ′H(A,∗)‖3 and ‖δ‖ ≤ K‖δ′H(A,∗)‖,

as desired.

The last part of the proof of assertion (iii) in the above theorem
is strongly inspired by an argument in Theorem 1.6.2 of [1] (see also
Proposition 5.3 of [2]).
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The concluding result in this paper will be an extension of the above
corollary as well as a variant of Theorem 3. Actually we will prove
that, when in Theorem 3 the algebra B is associative and its hermitian
part has degree ≥ 2 over its center, then that theorem remains true if
the centrality of B is avoided and the simplicity of B is relaxed to the
∗-simplicity. Moreover, for such an algebra B, the assumption that its
involution is different from ±IB becomes superfluous.
Let A be an algebra. If a natural number n exists such that the

dimensions of all one-generated subalgebras of A are less than or equal
to n, then we define the degree of A as the smallest such n. Otherwise,
we say that A is of infinite degree. By a ∗-simple algebra we mean an
algebra A with involution ∗, nonzero product, and without ∗-invariant
(two sided) ideals different from {0} and A. Given an algebra A with
involution ∗, the self-adjoint part of A, H(A, ∗), will be considered
without notice as an algebra under the product

a.b =
1
2
(ab+ ba).

The center Z(A) of an algebra A is defined as the set of all elements in
A which commute with every element of A and associate with each two
elements of A. The next theorem improves [4, Theorem 5.3] in several
directions.

Theorem 5. Let A be a normed ∗-algebra over K which, algebraically
regarded, is of the form B ⊗ C for some ∗-simple finite-dimensional
associative algebra B whose hermitian part H(B, ∗) is of degree ≥ 2
over its center, and some algebra C with involution and a unit. Then
we have

(i) Homomorphisms from A to arbitrary normed algebras are con-
tinuous whenever they are continuous on H(A, ∗).
(ii) Derivations from A to arbitrary normed algebras are continuous

whenever they are continuous on H(A, ∗).
(iii) If, in addition, C is associative, then there exists a positive

constant K (only depending on A) such that, for every continuous
homomorphism ϕ from A to a normed algebra, and for every continuous
derivation δ from A to a normed A-bimodule, we have

‖ϕ‖ ≤ K‖ϕ′H(A,∗)‖3 and ‖δ‖ ≤ K‖δ′H(A,∗)‖.
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Proof. First assume that K = C. By [4, Lemma 3.4], there exist
n ≥ 2 and a complex composition associative algebra D such that
B = Mn(D) and ∗ is the standard involution relative to the Cayley
involution on D. Therefore,

A = B ⊗ C =Mn(D)⊗ C =Mn(C)⊗D ⊗ C =Mn(D ⊗ C)

with involution equal to the standard involution onMn(D⊗C) relative
to a suitable involution on D⊗C. The proof in this case concludes by
applying Corollary 4.

To prove the theorem in the case K = R, we being by considering
the ∗-center Z(B, ∗) of B defined by the equality
Z(B, ∗) := Z(B) ∩ H(B, ∗). It is well known (see for instance [3])
that the assumptions on B imply that Z(B, ∗) = Z(H(B, ∗)) is a field
isomoprhic to R or C and that B can be regarded as a ∗-simple algebra
over Z(B, ∗).
Now assume that K = R and Z(B, ∗) = C. Then B is the

realification ER of a complex finite dimensional ∗-simple associative
algebra E. As in the first paragraph of the proof, there exist n ≥ 2 and
a complex composition associative algebra D such that B = (Mn(D))R
and ∗ is the standard involution relative to the Cayley involution on
D. Now

A = B ⊗ C = (Mn(D))R ⊗ C =Mn(DR)⊗ C

=Mn(R)⊗DR ⊗ C =Mn(DR ⊗ C),

with involution equal to the standard involution on Mn(DR ⊗ C)
relative to a suitable involution onDR⊗C. Again Corollary 4 concludes
the proof in this case.

To study the remaining case, namely that K = R and Z(B, ∗) = R,
we introduce some terminology and facts. For every real vector space
X we denote by XC its complexification, XC = C⊗X and, by σX , the
conjugate-linear involutive operator on XC determined on elementary
tensors by

σX(α⊗ x) = ᾱ⊗ x.

If X and Y are real vector spaces, and if ϕ : X → Y is a linear map,
then ϕC := IC ⊗ ϕ is a complex-linear map from XC to YC. If X is
a real normed space, then XC will be regarded as a complex normed
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space relative to the projective tensor norm of the absolute value of C
and the norm of X. In this regard, σX becomes an isometry. Now let
X and Y be real normed spaces and ϕ : X → Y a linear map. If ϕ is
continuous, then ϕC is also continuous and satisfies ‖ϕC‖ = ‖ϕ‖. If W
is any σX -invariant subspace of XC, if we put

W σX := {w ∈W : σX(w) = w} ⊆ X,

and if ϕ′W σ
X
is continuous, then (ϕC)′W is continuous and we have

‖(ϕC)′W ‖ ≤ 2‖ϕ′W σX ‖.

Indeed, for w ∈ W , we have that x := [(w + σX(w))/2],
y := [(w − σX(w))/(2i)] are elements of W σX , so that

‖ϕC(w)‖ = ‖ϕC(x+ iy)‖
= ‖ϕ(x) + iϕ(y)‖
≤ ‖ϕ′W ′

X
‖(‖x‖+ ‖y‖)

≤ 2‖ϕ′W σX ‖‖w‖.
If X,Y, Z are real normed spaces and if f : X ×Y → Z is a continuous
bilinear map, then the complex-bilinear mapping fC : XC × YC → ZC

which extends f is also continuous with ‖fC‖ = ‖f‖. This allows us
to see complexifications of real normed algebras (respectively, normed
bimodules) as complex normed algebras (respectively, complex normed
bimodules).

Now assume that K = R and that Z(B, ∗) = R. Let ϕ be a
homomorphism from A to a normed algebra E such that ϕ′H(A,∗) is
continuous. Then AC := C ⊗ A is a normed ∗-algebra relative to the
involution IC ⊗ ∗, and ϕC is a homomorphism from AC to EC whose
restriction to the hermitian part of AC is continuous (indeed, H(AC, ∗)
is a σA invariant subspace of AC and H(A, ∗) = (H(AC, ∗))σA). Since
the complex algebras BC and CC are algebras with involution in a
natural manner, and BC is finite-dimensional and ∗-simple ([3, p. 208]),
and CC has a unit, and AC = BC ⊗ CC (algebraically), by the first
paragraph of the proof (when AC, BC and CC replace A,B and C,
respectively) we conclude that ϕC is continuous on AC and

‖ϕC‖ ≤ KC‖(ϕC)′H(AC,∗)‖3,



CONTINUITY OF HOMOMORPHISMS 1055

where KC is a positive constant only depending on A. Therefore, ϕ is
continuous and

‖ϕ‖ ≤ ‖ϕC‖ ≤ KC‖(ϕC)′H(AC,∗)‖3 ≤ 8KC‖ϕ′H(A,∗)‖3.

The case of derivations from A to normed A-bimodules is handled in a
similar way.

The assumption in the above theorem that the degree of H(B, ∗)
over its center is ≥ 2 cannot be relaxed. Indeed, it is easy to find
suitable normed ∗-algebras C over K with a unit and such that there
exist discontinuous homomorphisms (respectively, derivations) from C
to certain normed algebras (respectively normed C-bimodules) and
therefore, by taking B = K with involution the identity, assertions
(i) and (ii) in the theorem fail. On the other hand, we can take B
equal to the realification of C with involution the conjugation, and
C = R with involution the identity, to realize that assertion (iii) in the
theorem fails (see for instance [5, Remark 2.5]). In these examples, all
assumptions in the theorem are fulfilled except the one concerning the
degree of H(B, ∗) over its center.
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