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WEAKLY COMPACT COMPOSITION
OPERATORS ON VMO

JOSEPH A. CIMA AND ALEC L. MATHESON

ABSTRACT. A holomorphic map φ of the unit disk into
itself induces an operator Cφ on holomorphic or harmonic
functions by composition. The operator Cφ takes VMOA
into itself if and only if the symbol φ belongs to VMOA. A
number of necessary and sufficient conditions for Cφ to be
weakly compact on VMOA are given. In particular, Cφ is
weakly compact on VMOA if and only if Cφ(1E) ∈ VMO for
every Borel subset E of the unit circle. A hyperbolic version of
Bloch’s theorem is used to give a geometric characterization
of those φ which induce compact composition operators on
the little Bloch space B0, and this is used to prove that if Cφ

is weakly compact on VMOA, then Cφ is compact on B0.

1. Introduction. Let φ be a holomorphic function mapping the
unit disk D = {z | |z| < 1} into itself. Clearly, f ◦ φ is analytic in
the unit disk if f is, and similarly, f ◦ φ is harmonic if f is. When
restricted to various Banach spaces of analytic or harmonic functions,
the operation of composition with φ, usually denoted Cφ, has been
the object of intense study in recent years, especially the problem
of relating operator-theoretic properties of Cφ to function-theoretic
properties of φ. Certain aspects of this problem will be considered
here for Banach spaces of functions of bounded and vanishing mean
oscillation, particularly the question of which symbols yield weakly
compact operators on VMOA and the question of when a weakly
compact composition operator on VMOA will be compact.

Boundedness of composition on BMO follows easily from the fact that
any function f on the unit circle T is of bounded mean oscillation if
and only if it admits a representation

f = u+ ṽ,
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where u and v are bounded functions and ṽ denotes the harmonic
conjugate of v, together with the fact that composition commutes with
conjugation. This seems to have been first noticed by Stephenson [17]
and independently by Arazy, Fisher and Peetre [1]. On the other hand,
in order for Cφ to map VMO into itself, it is clearly necessary that φ
belong to VMOA, and it is not too difficult to prove that this is also
sufficient [3]. It should be noted that here and throughout this paper a
function f ∈ L1(T) will be freely identified with its harmonic extension
to the unit disk D. Thus,

f(a) = Paf =
∫
T

f(ζ)Pa(ζ) dm(ζ),

where m denotes normalized Lebesgue measure on T and Pa(ζ) =
(1 − |a|2)/(|a− ζ|2) is the Poisson kernel for a ∈ D.

There are a number of equivalent norms on BMO, but for the purposes
of this paper the Garsia norm will be the most useful. Let

‖f‖2
∗ = sup

a∈D
{Pa|f |2 − |Paf |2}.

If σa(z) = (a− z)/(1 − āz), then an easy calculation shows that

‖f‖2
∗ = sup

a∈D

∫
T

|f(σa(ζ)) − f(a)|2 dm(ζ),

and so ‖f‖∗ is clearly Möbius invariant. In order to distinguish
constants, BMO will be normed by ‖f‖G = |f(0)| + ‖f‖∗. It will
be important to know that a function f ∈ BMO belongs to VMO if
and only if

lim
|a|→1

{Pa|f |2 − |Paf |2} = 0,

and also if and only if f admits a representation f = u + ṽ, where u
and v are continuous on T. All of this can be found in [5] or [11].

The question of which symbols φ induce compact composition oper-
ators on BMOA has been the object of several recent investigations.
Various aspects of this problem have been studied by Bourdon, Cima
and Matheson [3], Smith [14] and Tjani [18], with the first two papers
giving (different) characterizations of compactness for composition op-
erators on BMOA and VMOA.
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The main purpose of this paper is to investigate the qeustion as
to which symbols generate weakly compact composition operators on
VMO and VMOA. According to Gantmakher’s theorem, for Banach
spaces X and Y , an operator T : X → Y is weakly compact if and
only if T ∗∗(X∗∗) ⊂ Y . Since BMO is isomorphic to the second dual of
VMO, and Cφ on BMO is the second adjoint of Cφ on VMO, it follows
that Cφ is weakly compact on VMO if and only if f ◦ φ ∈ VMO for all
f ∈ BMO, and a similar statement holds for VMOA.

The authors were unable to find a reference for the fact that the
second adjoint of Cφ acting on VMO is Cφ acting on BMO, so the
following proof is provided. If T : X → Y is any bounded operator
from the Banach space X to the Banach space Y , the second adjoint
T ∗∗ of T can be computed as follows. For each x∗∗ in the unit ball of
X∗∗, there is, by Goldstine’s theorem, [4, Theorem V.4.5], a net (xα)
in the unit ball of X which converges weak∗ to x∗∗. Then T ∗∗(x∗∗) is
the weak∗ limit of the net (T (xα)). Now every function in BMO has
a harmonic extension to the open unit disk, and the unit ball of BMO
is compact in the topology of uniform convergence on compact subsets
of D. Since the unit ball is also compact in the weak∗ topology, the
two topologies coincide. If f ∈ BMO is identified with its harmonic
extension and fr(z) = f(rz) for 0 < r < 1, then clearly fr ∈ VMO and
fr → f weak∗ as r → 1. Evidently, fr ◦ φ also converges uniformly on
compact subsets of D to f ◦ φ, and the result follows.

The question of the weak compactness of composition operators on
VMO should be compared to the analogous question for the little Bloch
space B0 of functions f analytic in the unit disk for which

(1) lim
|z|→1

(1 − |z|2)|f ′(z)| = 0.

In this case the second dual of B0 is isomorphic to the Bloch space B of
functions for which the above quantity remains bounded. The questions
of compactness and weak compactness for composition operators on B0

were answered by Madigan and Matheson [9] who showed that Cφ is
compact on B0 if and only if

(2) lim
|z|→1

1 − |z|2
1 − |φ(z)|2 |φ′(z)| = 0,

and that every weakly compact composition operator on B0 is actually
compact. It should be remarked that the second statement follows
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abstractly from the known fact that B0 is isomorphic to the Banach
space c0.

The class of functions satisfying condition (2) above has been called
the hyperbolic little Bloch class [15], denoted Bh

0 . The principal result
of this paper is the following theorem.

Theorem 1. If φ is a function which maps the unit disk into itself,
and Cφ is a weakly compact operator on VMOA, then φ ∈ Bh

0 .

Since the condition φ ∈ VMOA is needed to guarantee that Cφ map
VMOA into itself, the appropriate converse to this theorem would be
the statement that φ ∈ VMOA∩Bh

0 implies that Cφ is weakly compact
on VMOA. As of this writing this is not known to be true. On the other
hand, Smith [14] has shown that if φ is univalent, then Cφ is compact
on VMOA if and only if φ ∈ Bh

0 . Combined with the above theorem,
this shows that for univalent φ the composition operator Cφ is compact
on VMOA if it is weakly compact on VMOA.

The proof of Theorem 1 will proceed in two steps. In the next section
it will be shown that if Cφ is weakly compact on VMOA, then φ
satisfies a certain geometric condition related to Bloch’s theorem. Then
in Section 3 a hyperbolic version of Bloch’s theorem will be proved
showing that the geometric condition is equivalent to membership in
Bh

0 .

Further connections between composition operators on B and on
BMOA will be explored in Section 4. Finally a number of equivalences
with weak compactness on VMOA will be presented in the last section.
An example of an operator which is weakly compact on VMOA but not
compact will be presented along with a number of open questions.

2. A geometric condition. The pseudohyperbolic metric on the
unit disk D is given by ρ(a, b) = |(a − b)/(1 − āb)|. For a ∈ D and
0 < r < 1, let ∆(w, r) denote the pseudohyperbolic disk of center a
and radius r, so that

∆(w, r) = {z ∈ D | ρ(z, w) < r}.
If τ (z) = λ(z − a)/(1 − āz) is a Möbius transformation, then τ is an
isometry for the pseudohyperbolic metric. In particular, τ maps ∆(a, r)
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onto ∆(τ (a), r). Moreover, each pseudohyperbolic disk ∆(a, r) is also
a Euclidean disk D(c, ρ) with center

c = a
1 − r2

1 − r2|a|2
and radius

ρ = r
1 − |a|2

1 − r2|a|2 .

The pseudohyperbolic disk ∆(a, η) is an unramified disk for the
holomorphic function φ : D → D at a ∈ D if ∆(a, η) ⊂ φ(D), and there
is an open set G ⊂ D such that φ restricted to G is a homeomorphism
of G onto ∆(a, η). Let βφ(r) be the least upper bound of the numbers
η for which there is an unramified disk ∆(a, η) for φ with |a| ≥ r.
Clearly, βφ(r) is decreasing as r increases. Let βφ = limr→1 βφ(r).
Since ∆(a, 1) = D for each a ∈ D, it follows that β = 1 for the identity
function.

Proposition 1. If φ ∈ VMOA and Cφ is weakly compact on VMOA,
then Bφ = 0.

Proof. Assume that φ ∈ VMOA but βφ > 0. In order to show that Cφ
is not weakly compact it will be enough to find a function f ∈ BMOA
such that f ◦ φ /∈ VMOA. Since H∞ ⊂ BMOA, it will suffice to find a
Blaschke product b such that b ◦ φ /∈ VMOA.

The condition on βφ guarantees the existence of a sequence (an)∞n=1

in D and a positive number η < βφ such that |an| → 1 and the
pseudohyperbolic disks ∆(an, η) ⊂ φ(D) are unramified for φ. Passing
to a subsequence, if necessary it may be assumed that (an)∞n=1 is
an interpolating sequence. Let b be the Blaschke product with zeros
(an)∞n=1.

An application of Lemma 1.4 in Chapter X of [5] shows that there
exist λ, 0 < λ < η, and δ, 0 < δ < 1, such that the set {z | |b(z)| < δ}
is the union of pairwise disjoint domains Vn, with an ∈ Vn, and

Vn ⊂ ∆(an, λ)

for each n. In particular, |b(z)| ≥ δ on the boundary Γ(an, λ) of
∆(an, λ). Let f = b ◦ φ. Since the disks ∆(an, λ) are unramified
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for φ, there exist disjoint domains Gn in D such that φ restricted to
Gn is a univalent map of Gn onto ∆(an, λ) for each n. Let bn ∈ Gn be
such that φ(bn) = an. Then, evidently, |bn| → 1 as n → ∞. In order to
show that f /∈ VMOA it will be enough to find a positive lower bound
for the expressions

Pbn
|f |2 − |Pbn

f |2.
But, by construction, f(bn) = b(an) = 0, so it will suffice to find a
positive lower bound for

Pbn
|f |2 = Pbn

|b ◦ φ|2.
Let

V (z) = Pz|b ◦ φ|2

be the harmonic function in the unit disk with boundary values |b◦φ|2.
Since |b ◦ φ|2 is subharmonic in D, it follows that

V (z) ≥ |b ◦ φ(z)|2

for all z ∈ D. But |b ◦ φ| ≥ δ on ∂Gn, so V (z) ≥ δ2 on ∂Gn. By
the maximum principle Pbn

|f |2 = V (bn) ≥ δ2 for each n. Hence,
f /∈ VMOA and that completes the proof.

In order to understand the geometric condition of the preceding
section it will be useful to consider some examples from [9]. First,
the function φ(z) = 1 − (1/2)

√
1 − z maps the unit disk univalently

onto a region G which behaves at 1 like a Stolz angle of opening π/2.
An easy calculation shows that there is an η > 0 such that G contains
pseudohyperbolic disks ∆(a, η) with a real and arbitrarily close to one.
In particular βφ > 0 and so Cφ is not weakly compact on VMOA. It is
easy to show that φ /∈ Bh

0 .

Next let ψ be a univalent map of the unit disk D onto a region G ⊂ D
such that G ∩T = {1}. The region G has a cusp at 1 if

dist (w, ∂G) = o(|1 − w|)
as w → 1 in G. The cusp is nontangential if G lies inside a Stolz angle
near 1, i.e., there exist r,M > 0 such that

|1 − w| ≤ M(1 − |w|2)
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if |1 − w| < R, w ∈ G. Again it is easy to see that βψ = 0. As in [9] it
is an easy consequence of Koebe’s distortion theorem that ψ ∈ Bh

0 .

Even though the examples above are univalent, the next proposition
shows that this phenomenon is completely general.

Proposition 2. Let φ be a holomorphic mapping of the unit disk
into itself. Then φ ∈ Bh

0 if and only if βφ = 0.

This proposition will be a consequence of the following two lemmas,
the first of which appears as the first exercise in Chapter I of [5]. Let
rφ be the largest r such that {|w| < r} is an unramified disk for φ.
If φ(0) = 0 and |φ′(0)| = δ > 0, then a standard application of the
Schwarz lemma to the inverse function shows that rφ ≤ δ. Finally, let
bδ be the greatest lower bound of the rφ as φ ranges over all functions
φ with φ(0) = 0 and |φ′(0)| = δ.

Lemma 2. Let φ be a holomorphic map of the unit disk into itself
with φ(0) = 0 and |φ′(0)| = δ. If |z| < η < δ, then

|φ(z)| ≥
(
δ − η

1 − ηδ

)
|z|.

Furthermore, φ takes each value w,

|w| <
(
δ − η

1 − ηδ

)
η,

exactly once in the disk {|z| < η}.

Proof. Let g(z) = φ(z)/z, so ‖g‖∞ ≤ 1 and g(0) = φ′(0). By the
Schwarz-Pick lemma, ∣∣∣∣ g(z) − φ′(0)

1 − φ′(0)g(z)

∣∣∣∣ ≤ |z|.

Hence g(z) lies in the pseudohyperbolic disk ∆(φ′(0), |z|). This is the
Euclidean disk with diameter[ |φ′(0)| − |z|

1 − |φ′(0)| |z|
φ′(0)
|φ′(0)| ,

|φ′(0)| + |z|
1 + |φ′(0)| |z|

φ′(0)
|φ′(0)|

]
.
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In particular, since |z| < η < δ = |φ′(0)|,

|g(z)| ≥ δ − |z|
1 − δ|z| ≥

δ − η

1 − ηδ
,

or
|φ(z)| ≥ δ − η

1 − ηδ
|z|.

Thus φ has exactly one zero in the disk {|z| < η}. Hence, by the
argument principle, the image Γ of the circle {|z| = η} has winding
number n(Γ, 0) = 1 at 0. But Γ lies outside the disk {|w| < (δ−η)/(1−
ηδ)η}, so n(Γ, a) = 1 for any a inside this disk. A second application
of the argument principle then yields the last assertion.

Lemma 3. As δ → 0,

δ2

4
+O(δ4) ≤ bδ ≤ δ2

4
+O(δ3).

Proof. The lower estimate follows from Lemma 2 as follows. Evi-
dently,

rφ ≥ sup
0≤η≤δ

(
δ − η

1 − ηδ

)
η,

since {|w| < (δ− η)/(1− ηδ)η} is an unramified disk for φ if 0 < η < δ.
Now the supremum is attained at

η∗ =
1 − (1 − δ2)1/2

δ
=

1
2
δ +O(δ3).

Hence, for small δ,

bδ ≥ η∗

(
δ − η∗
1 − η∗δ

)
≥ η∗(δ − η∗)

≥
(
δ

2
+O(δ3)

)(
δ

2
+O(δ3)

)

=
δ2

4
+O(δ4).
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For the upper estimate consider the quadratic map

φ(z) = δz − εz2,

where δ + ε = 1. This has a branch point at z = (δ/2ε), and

φ

(
δ

2ε

)
=

δ2

4ε
=

δ2

4(1 − δ)
=

δ2

4
+O(δ3).

Hence rφ ≤ (δ2/4) +O(δ3) for this map.

Proof of Proposition 2. For a ∈ D, let σa(z) = (a − z)/(1 − āz) be
the Möbius transformation which interchanges a and 0. Note that σa
maps the disk ∆(0, r) onto the disk ∆(a, r) and vice versa, since σa is
its own inverse. Consider the change of variables

ψ(z) = σφ(a) ◦ φ ◦ σa(z).

Then ψ(0) = 0 and a calculation shows that

ψ′(0) = − 1 − |a|2
1 − |φ(a)|2 φ

′(a),

so that |ψ′(0)| = τφ(a), where

τφ(z) =
1 − |z|2

1 − |φ(z)|2 |φ′(z)|.

Now ∆(φ(a), r) is an unramified disk for φ at a if and only if ∆(0, r)
is an unramified disk for ψ at 0. If r(a) is the radius of the largest
unramified disk for φ at a, then

1
4
τφ(a)2 +O(τ4

φ(a)) ≤ r(a) ≤ τφ(a)

by Lemma 3 and the estimate preceding Lemma 2. Hence,
lim|a|→1 r(a) = 0 if and only if lim|a|→1 τφ(a) = 0. That completes
the proof.

3. Comparisons. It was shown by Bourdon, Cima and Matheson
that if Cφ is compact on BMOA, then it must also be compact on H2.
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It is easy to find a function ψ ∈ VMOA such that Cψ is compact on
H2 but not on BMOA. In order to do this, let ψ(z) = 1− (1/2)

√
1 − z.

As noted in the last section, ψ is a univalent map of the unit disk onto
a region G which lies in a Stolz angle with vertex at 1 and opening
angle π/2. Indeed, the boundary Γ of G is tangent to the two rays
1 + te±i(3π/4). Since ψ is univalent and has no angular derivatives, Cψ
is compact on H2 by Shapiro’s univalent compactness condition [13,
p. 39]. This particular function is continuous up to T, so certainly
belongs to VMOA. Since G lies in a polygon, a result of Tjani [18]
guarantees that Cψ is compact on BMOA if and only if it is compact
on B. But Madigan and Matheson [9] showed that Cψ is not compact
on B0.

Using the fact that no inner function which is not a finite Blaschke
product belongs to VMOA, it is possible to construct a φ /∈ VMOA such
that Cφ is compact on H2 but not on BMOA. The authors would like
to thank an anonymous referee for simplifying the original argument,
which used ideas from [12].

Indeed, let φ = ψ ◦ b, where b is an infinite Blaschke product. Since
Cφ = Cb ◦Cψ and Cψ is compact on H2, it follows that Cφ is compact
on H2. Now

b = ψ−1 ◦ φ = 1 − 4(1 − φ)2.

Since L∞ ∩ VMOA is an algebra, it follows that φ /∈ VMOA.

The collection of functions sr(z) − (r − z)/(1 − rz) for 0 < r <
1 satisfies ‖sr‖∞ = 1, and so forms a bounded family in BMOA.
Also sr(z) → 1 uniformly on compact subsets of D as r → 1, and
consequently so does sr ◦φ. It will be enough to show that there exists
δ > 0 such that ‖sr ◦ φ‖∗ ≥ δ for most r, 0 ≤ r < 1, since ‖1‖∗ = 0.

The Frostman set for b is the set of points a ∈ D such that
(a − b(z))/(1 − āb(z)) is not a Blaschke product. As the Frostman
set has capacity zero, ψ−1(r) will not belong to the Frostman set for
most values of r. For any such r, choose x such that b(x) = ψ−1(r).
Then φ(x) = r, and so sr ◦ φ(x) = 0. On the other hand, there is a
δ > 0 such that |ψ(eiθ)| ≥ δ for all θ, and hence |φ(eiθ)| ≥ δ almost
everywhere. Thus,

‖sr ◦ φ‖2
∗ ≥

∫ π

−π

∣∣∣∣ r − φ(eiθ)
1 − rφ(eiθ)

∣∣∣∣
2

Px(eiθ)
dθ

2π
≥ δ2
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for any such r and x. Since r can be chosen arbitrarily close to 1, Cφ
is not compact on BMOA. Choosing b to be an interpolating Blaschke
product, one can in fact guarantee that φ /∈ B0.

As mentioned previously, since BMOA is isomorphic to the second
dual of VMOA, it follows from Gantmakher’s theorem that Cφ is weakly
compact on VMOA if and only if Cφ(BMOA) ⊂ VMOA. As the next
theorem shows, it is possible to consider BMO and VMO in place of
BMOA and VMOA. In the last condition of the theorem below, 1E
denotes the characteristic function of the set E.

Theorem 4. The following are equivalent:

(i) Cφ is weakly compact on VMOA;

(ii) Cφ(BMOA) ⊂ VMOA;

(iii) Cφ(BMO) ⊂ VMO;

(iv) Cφ(L∞) ⊂ VMO;

(v) Cφ(1E) ∈ VMO for every Borel subset E of the unit circle.

Proof. Clearly (i) and (ii) are equivalent, (iv) implies (v) and (iii)
implies (ii) and (iv). To see that (iv) implies (iii), it is enough to note
that any function f ∈ BMO can be written in the form f = u + ṽ
where u, v ∈ L∞, composition commutes with conjugation, and BMO
is closed under conjugation.

To see that (ii) implies (iii), it is enough to consider real valued
u ∈ L∞. Then f = u + iũ ∈ BMOA, and so by (ii) f ◦ φ ∈ VMOA.
Hence u ◦ φ = �f ◦ φ ∈ VMO.

Finally the implication (v) implies (iv) follows from the fact that
QC = L∞∩VMO is uniformly closed and the fact that simple functions
are dense in L∞.

A result of P. Jones [8] leads to the following curious corollary. Note
that in general Pa(uv̄) �= Pa(u)Pa(v̄).

Corollary 1. The composition operator Cφ is not weakly compact
on VMOA if and only if there exist two interpolating Blaschke products
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u and v such that Cφ(uv̄) /∈ VMO.

Proof. According to the theorem of Jones, every unimodular function
in L∞ is a uniform limit of functions of the form uv̄, where u and v
are interpolating Blaschke products. If Cφ is not weakly compact on
VMOA, then there is a Borel set E such that Cφ(1E) /∈ VMO. Now
apply the theorem of Jones to the unimodular function 2 · 1E − 1. The
corollary again follows because QC is uniformly closed.

Theorem 5. The following are equivalent:

(vi) Cφ(H∞ + C) ⊂ VMO;

(vii) Cφ(H∞) ⊂ VMOA;

(viii) u ◦ φ ∈ VMOA for every interpolating Blaschke product u.
Moreover, each of these conditions holds if Cφ is weakly compact on
VMOA.

Proof. Clearly (vi) implies (vii) which in turn implies (viii). In
order to prove the implication that (viii) implies (vi), let f = g + h,
where g ∈ H∞ and h ∈ C. Since C ⊂ VMO, it follows that
Cφ(h) ∈ VMO. According to a recent result of Garnett and Nicolau [6,
10], the interpolating Blaschke products generate H∞. Hence there is a
sequence (pn) of linear combinations of finite products of interpolating
Blaschke products which converge in H∞ to g. Since VMO ∩ L∞ is a
closed subalgebra of L∞, it follows that Cφ(pn) ∈ VMOA for each n
and that the limit function g also belongs to VMOA. The last remark
follows from Theorem 2 as (iv) implies (vi).

4. Weakly compact operators. Finally the question has been
raised as to whether or not every weakly compact operator on VMOA
is compact. A Banach space X is said to have the Schur property if
every weakly null sequence in X converges to zero in norm. It is easy
to see that if X∗ has the Schur property, then every weakly compact
operator T : X → Y is actually compact. In particular, since the dual
of B0 is isomorphic to the sequence space l1, and the latter space is
known to have the Schur property, every weakly compact operator on
B0 is compact. On the other hand, H1, the dual of VMOA, is readily
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seen to not have the Schur property. Indeed, H1 contains weak∗ closed
complemented copies of Hilbert space, and this fact leads to a negative
resolution of the above question. Indeed, the following theorem then
guarantees that VMOA contains complemented copies of Hilbert space,
and the associated projections are clearly weakly compact but not
compact.

Theorem 6. Let X∗ = Y ⊕ Z be a direct sum decomposition of
the dual space X∗, where each of the factors Y and Z is weak∗ closed.
Then Z⊥ = {x ∈ X | z∗x = 0 for all z ∈ Z} is complemented in X.

Proof. Throughout this proof, X will be identified with its canonical
embedding in X∗∗. Let P : X∗ → X∗ be a bounded projection of
X∗ onto Z. Then the adjoint operator P ∗ is a projection of X∗∗ onto
Z⊥, which is clearly the identity operator on Z⊥ ⊂ Z⊥. To complete
the proof it will suffice to show that P ∗x ∈ X for each x ∈ X. This
will follow by showing that P ∗x is weak∗ continuous. According to
Theorem V.5.6 of [4], it is enough to show that P ∗x is continuous
for the bounded weak∗ topology on X∗. To this end, let (x∗α) be a
bounded net in X∗ which converges to x∗. Then each xα has a unique
decomposition x∗α = yα+zα, where yα ∈ Y , zα ∈ Z and ‖yα‖, ‖zα‖ ≤ K
for some constant K. By the Banach-Alaoglu theorem, each subnet
(x∗α′) of (xα) has a further subnet (x∗α′′) for which the nets (yα′′) and
(zα′′) both converge, say, to y, and z, respectively. Clearly, x∗ = y+ z.
Since Y and Z are weak∗ closed, it follows that y ∈ Y and z ∈ Z. In
particular, y and z are uniquely determined, and so the original nets
(yα) and (zα) converge to y and z, respectively. It follows that z = Px∗.
Now

lim
α
P ∗x(x∗α) = lim

α
P ∗x(yα + zα) = lim

α
P (yα + zα)(x)

= lim
α
yα(x) = y(x) = Px∗(x) = P ∗x(x∗).

Hence P ∗x is bounded weak∗ continuous. That completes the proof.

Now if E is a subset of the set of nonnegative integers, let H1
E

be the subspace of functions f in H1 whose Taylor coefficients f̂(m)
vanish unless m ∈ E. Since the evaluation of Taylor coefficients is
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weak∗ continuous on H1, each H1
E is weak∗ closed. If E is a gap

sequence, i.e., E = {nk}, where (nk+1/nk) ≥ λ > 1 for each k, then
an inequality of Paley [19, 20] shows that

∑∞
k=0 |f̂(nk)|2 ≤ C‖f‖2

1

for each f ∈ H1. On the other hand, if
∑∞
k=1 |ak|2 < ∞, then the

function f(z) =
∑∞
k=1 akz

nk belongs to H2 and hence a fortiori to H1.
It follows that H1

E is a complemented subspace of H1 isomorphic to l2.
If F is the complement of E in the set of nonnegative integers, then
the above theorem shows that VMOAE = (H1

F )⊥ is complemented in
VMOA. Since its dual is isomoprhic to H1

E , it follows that VMOAE is
a complemented copy of Hilbert space in VMOA.

In closing, there are several questions remaining. First, is it the
case that every weakly compact composition operator on VMOA is
compact? It follows from the results in this paper that φ ∈ VMOA∩Bh

0

is necessary for Cφ to be weakly compact on VMOA. Is this condition
also sufficient? Finally, in light of the work of Garnett and Nicolau [6],
and of Marshall and Stray [10], is it possible to close the gap between
the corollary to Theorem 2 and condition (viii) of Theorem 3, i.e., is
(viii) sufficient?

In another direction, one could ask for a characterization of functions
φ ∈ Bh

0 or functions φ ∈ VMOA∩Bh
0 similar to the characterization of

bounded functions in B0 given by Bishop [2]. Such characterizations
could lead to the resolution of some of the questions above.
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