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A GENERALIZATION OF KUMMER’S IDENTITY

RAIMUNDAS VIDUNAS

ABSTRACT. The well-known formula of Kummer evaluates
the hypergeometric series 2F1

(
A,B

C

∣∣− 1
)
when the relation

C −A+B = 1 holds. This paper deals with the evaluation of

2F1(−1) series in the case when C−A+B is an integer. Such
a series is expressed as a sum of two Γ-terms multiplied by ter-
minating 3F2(1) series. A few such formulas were essentially
known to Whipple in the 1920s. Here we give a simpler and
more complete overview of this type of evaluation. Addition-
ally, algorithmic aspects of evaluating hypergeometric series
are considered. We illustrate Zeilberger’s method and discuss
its applicability to nonterminating series and present a couple
of similar generalizations of other known formulas.

1. The generalization. The subject of this paper is a generalization
of Kummer’s identity (see [11], [2, Section 2.3] or [1, Corollary 3.1.2]):

(1) 2F1

(
a, b

1 + a− b

∣∣∣∣− 1
)

=
Γ(1 + a− b)Γ(1 + a

2 )
Γ(1 + a)Γ(1 + a

2 − b)
.

The hypergeometric series on the left is defined if a−b is not a negative
integer, and it is absolutely convergent for Re (b) < 1/2. After analytic
continuation of 2F1

(
a,b

1+a−b

∣∣z) on C\ [1,∞), and after division of both
sides by Γ(1 + a − b) the formula has meaning and is correct for all
complex a, b. In this paper, whenever 2F1

(
A,B

C

∣∣z) denotes a well-
defined hypergeometric series, it also denotes its analytic continuation
on C \ [1,∞).

The generalization to be considered evaluates the hypergeometric se-
ries 2F1

(
A,B

C

∣∣− 1
)

whenever C − A + B is any integer. In the ter-
minology of [1], our generalization applies to 2F1(−1) series that are
contiguous to a series for Kummer’s formula (1). As is known (see [1,
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Section 2.5]), the 15 classical Gauss contiguity relations can be iterated
to produce a linear relation between any three contiguous 2F1(z) se-
ries, with coefficients that are rational functions in the parameters of
those series. This also applies to their analytic extensions. The gen-
eralized formula is such a relation in explicit form between contiguous

2F1

(
a+n,b

a−b

∣∣− 1
)
, 2F1

(
a,b

1+a−b

∣∣− 1
)
and 2F1

(
a−1,b

a−b

∣∣− 1
)
, where n is

an integer, and the last two series are evaluated using Kummer’s iden-
tity (1). The coefficient of the first series cannot be the zero function
because the quotient of the other two series is not in C(a, b, n). In
the generalized formula, these coefficients are written as terminating
3F2(1) series.

We write the generalization in the form

(2) 2F1

(
a+n,b

a−b

∣∣− 1
)
= P (n)

Γ(a− b)Γ(a+1
2 )

Γ(a)Γ(a+1
2 − b)

+Q(n)
Γ(a− b)Γ(a

2 )
Γ(a)Γ(a

2 − b)
.

Here, the two Γ-terms are equal (respectively) to 2F1

(
a−1,b

a−b

∣∣− 1
)
and

a−b
a−2b2F1

(
a,b

1+a−b

∣∣− 1
)
, and P (n), Q(n) are rational functions in a, b for

every integer n. The most convenient expressions for P (n) and Q(n)
are summarized in the three theorems below. In fact, expressions of
2F1(−1) series in (2), in terms of terminating series and Γ-functions,
were known to Whipple [17]. His formulas (8.3) and (8.41) would
express the 2F1(−1) series in (2) in terminating series for negative or
positive n, respectively. Whipple’s formulas (11.5) and (11.51) form the
statement of Theorem 1 below. Whipple derived them as a consequence
of transformations of 3F2(1) series allied to general 2F1(−1) series, and
from [4, formulas (2.6), (2.7)], where some 2F1(1/2) series are expressed
in terms of terminating series. However, Whipple’s main concern was
the relations of general 2F1(−1) and 3F2(1) series. As we will see, his
approach is not convenient when some of those series terminate.

In this paper we strive for a clear overview of possible expressions
for P (n) and Q(n) in terms of terminating 3F2(1) series, with sim-
pler proofs. Another aim is to consider algorithmic aspects of evalu-
ating hypergeometric series. In particular, we specialize formula (2)
to two-term identities, which however seem to go beyond Zeilberger’s
approach. Also, a few evaluations similar to (2) are presented; specif-
ically, these are evaluations of hypergeometric series contiguous to the
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2F1(1/4) and 3F2(1) series in Gosper’s and Dixon’s identities; see (35),
(36).

In the following theorems, we summarize the most convenient expres-
sions for P (n) and Q(n). A few more such expressions are presented in
(16) (19).

Theorem 1. Suppose that n is a nonnegative integer, or −1, and
a, b are complex numbers such that (a)n �= 0 and a− b is not zero or a
negative integer. Then the coefficients P (n) and Q(n) in formula (2)
can be written as:

P (n) =
1

2n+1 3F2

(−n
2 ,−n+1

2 , a
2 − b

1
2 ,

a
2

)
,(3)

Q(n) =
n+ 1
2n+1 3F2

(−n−1
2 ,−n

2 ,
a+1
2 − b

3
2 ,

a+1
2

)
.(4)

Theorem 2. Suppose that n is a nonnegative integer and a, b are
complex such that (a)n �= 0 and a− b is not zero or a negative integer.
Then the coefficients P (n) and Q(n) in formula (2) can be written as:

(5) P (n) =
1
2 3F2

(−n
2 ,−n+1

2 , b
−n, a

2

)
, Q(n) =

1
2 3F2

(−n−1
2 ,−n

2 , b−n, a+1
2

)
.

The hypergeometric sums should be interpreted as terminating series
with, up to ±1, �n

2 � terms.

Theorem 3. Let P (n, a, b) and Q(n, a, b) denote the coefficients
P (n) and Q(n) in (2) as functions of a, b as well. If n is a nonnegative
integer and a, b /∈ {0, 1, . . . , n}, then

P (−n− 1, a, b) = 22n (1− a
2 )n

(1− b)n
P (n− 1, a− 2n, b− n),(6)

Q(−n− 1, a, b) = −22n ( 1−a
2 )n

(1− b)n
Q(n− 1, a− 2n, b− n).(7)

Because of the last theorem, we do not give expressions for P (n) and
Q(n) for a negative n, except (13), (14) in the proof of Theorem 3.
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These theorems are proved in Section 2. There we also give an
overview of transformations between other expressions for P (n) and
Q(n) and give a survey of Whipple’s approach in [17]. In Section 3,
Theorem 2 is proved using the more universal Zeilberger’s method. The
key observation is that the sequences P (n) and Q(n) satisfy the same
recurrence relation as the lefthand side of (2). Theorem 1 can also be
proven in this way. Notice that any different expressions for P (n) and
Q(n) must represent the same rational functions in a, b for every n,
because the quotient of the Γ-terms in (2) is not in C(a, b). Section 4
is devoted to algorithmic aspects of evaluation of hypergeometric series
with similar generalizations of Dixon’s and Gosper’s identities.

2. Classical proof. We assume here that Re (a/2) > Re (b) > 0.
One can simply check that Theorems 1 and 2 hold for the analytic
continuation of the 2F1(−1) series as well.

To prove Theorem 1, we recall Whipple’s identity [17, formula (8.41)]

(8)
2F1

(
A,B
C

∣∣∣∣− 1
)

=
Γ(C)

2 · Γ(A)×
∞∑

k=0

(−1)k
(C − A+B − 1)k

k!
Γ(A

2 + k
2 )

Γ(C − A
2 + k

2 )
.

As was communicated by Askey, this identity can be proven easily using
Euler’s integral representation [3, formula 2.12(1)] for the 2F1(z) series.
One has to rearrange the integrand as

(9) tA−1(1−t)C−A−1(1+t)−B = tA−1(1+t)−C+A−B+1(1−t2)C−A−1,

expand (1 + t)−C+A−B+1 as a series, interchange integration and
summation, change the variable t → √

s and recognize the beta-integral
[3, formula 1.5(1)].

We apply1 formula (8) to the righthand side of the identity [3, formula
2.9(2)]:

(10) 2F1

(
a+n,b

a−b

∣∣∣∣− 1
)

= 2−2b−n
2F1

(
a−2b,−b−n

a−b

∣∣∣∣− 1
)
.

After this, we sum up the terms with even and odd indexes separately,
transform the Γ-factors slightly and get formula (2) with P (n), Q(n)
defined by (3), (4).
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Theorem 2 follows from Theorem 1 by the following transformation
of a terminating 3F2(1) series (see [1, Proof of Corollary 3.3.4]):

(11) 3F2

(−m,A,B
E,F

)
=

(E −A)m
(E)m

3F2

( −m,A, F − B
1 +A− E −m,F

)
,

where m must be a nonnegative integer. To make sure that the
interpretation of the ill-defined hypergeometric series in (5) is correct
for this transformation, one may specialize A to −ν/2 or −(ν ± 1)/2
with complex ν, instead of −n/2, etc., and take the limit ν → n.

To prove Theorem 3 we use Euler’s integral again. After rearranging
the integrand in (9) as tA−1(1− t)C−A+B−1(1− t2)−B and expanding
(1− t)C−A+B−1, we eventually get the formula:
(12)

2F1

(
A,B
C

∣∣∣∣− 1
)

=
1
2
Γ(C)Γ(1−B)
Γ(A)Γ(C −A)

×
∞∑

k=0

(A− B − C + 1)k
k!

Γ(A
2 + k

2 )
Γ(A

2 + k
2 + 1− B)

.

As in the proof of Theorem 1, we apply this formula to 2F1

(
a−n−1,b

a−b

∣∣−1
)

transformed by (10), and add the terms with even and odd indices sep-
arately. The result is:

P (−n− 1) = 2n (1− a
2 )n

(1− b)n
3F2

(−n
2 ,−n−1

2 , a
2 − b

1
2 ,

a
2 − n

)
,

(13)

Q(−n− 1) = −n2n ( 1−a
2 )n

(1− b)n
3F2

(−n−1
2 ,−n−2

2 , a+1
2 − b

3
2 ,

a+1
2 − n

)
.

(14)

Comparing these expressions with (3), (4) gives Theorem 3.

To get more expressions for P (n) and Q(n) one can use standard
transformations of terminating 3F2(1) series. For example, one may
repeatedly apply (11) or rewrite a terminating series in the reverse
order. In general, a terminating 3F2(1) series can be transformed to 17
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other terminating 3F2(1) series; see [16, Section 8] and [2, Section 3.9].
To give these transformations a group structure, one has to consider
transpositions of the two lower and two upper parameters as nontrivial
transformations. Then one gets a group of 72 elements which acts
on the set of 18 hypergeometric series; see [13]. The action of this
group can be summarized as follows: Let y0, . . . , y5 be six parameters
satisfying y0 + y1 + y2 = y3 + y4 + y5 = 1−m. Then the expression

(15) (y0 + y4)m(y0 + y5)m3F2

(−m, y0 + y1 − y3, y0 + y2 − y3
y0 + y4, y0 + y5

)

is invariant under the permutations within the sets {y0, y1, y2} and
{y3, y4, y5}, and gets multiplied by (−1)m when these two sets are in-
terchanged. For instance, formula (11) corresponds to the permutation
y0 ↔ y5, y1 ↔ y4, y2 ↔ y3.

Application of these transformations to the series (3), (4) or (5) gives
eight sets of 18 terminating 3F2(1) series, one set for a choice of P (n) or
Q(n), positive or negative and even or odd n. The number of different
hypergeometric series turns out to be 96. Here we summarize a few
interesting expressions for n ≥ 0:

P (n) =
�n

2 �!
2 · n!

(
1− a

2
+ b

)
�n/2�

3F2

(−�n
2 �, a+1

2 + �n
2 �, a

2 − b
1
2 , 1− b− �n

2 �
)(16)

=
1

2n+1

(b)�n/2�
(a
2 )�n/2�

3F2

(−�n
2 �, 1 + �n

2 �, a
2 − b

a
2 ,

a+1
2 − �n

2 � − b

)
,(17)

Q(n) =
�n

2 �!
2 · n!

(
1− a

2
+ b

)
�n/2�

3F2

(−�n
2 �, a

2 + �n
2 �, a+1

2 − b
a+1
2 , a

2 − �n
2 � − b

)(18)

=
n+ 1
2n+1

(b)�n/2�
(a+1

2 )�n/2�
3F2

(−�n
2 �, 1 + �n

2 �, a+1
2 − b

3
2 , 1− b− �n

2 �
)
.(19)

To get expressions for negative n, one may use Theorem 3. Notice that
the series in (17) and (19) terminate for both positive and negative n.

In the rest of this section, we followWhipple’s approach in [17], where
transformations of not necessarily terminating 3F2(1) series are used to
derive various identities with general 2F1(−1) series. We concentrate
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on the 2F1(−1) series which are contiguous to the series in Kummer’s
formula (1). Notice that proofs of Theorems 1 and 3 are valid for any
complex value of n, so that formula (2) with P (n) and Q(n) defined
by (3) (4) or (13) (14) is true for any complex n. Formula (2) with
P (n), Q(n) defined by (5) is also true for all n; see Whipple’s formulas
(23) (24) below. But one may check that, in general, these P (n) and
Q(n) are not the same.

Transformations of general 3F2(1) series were first derived by Thomae
[14]. Whipple introduced notation (see [16] and [2, Section 3.5-7]),
which gives a group-theoretical insight into those formulas. To begin
with, there is an action of the symmetric group S5 on 3F2(1)s. Hardy
described it in the notes to Lecture VII in [7] by saying that the function

(20)
1

Γ(E)Γ(F )Γ(E + F − A−B − C)3F2

(
A,B,C

E, F

)

is invariant under the permutations of E,F,E+F−B−C,E+F−A−C
and E + F −A−B. For example, we have (see [1, Corollary 3.3.5]):

3F2

(
A,B,C

E, F

)
=

Γ(F )Γ(E + F −A−B − C)
Γ(F − C)Γ(E + F −A−B)

(21)

× 3F2

(
E −A,E −B,C

E,E + F −A−B

)
.

An orbit of the general 3F2(1) consists of 10 different series. Note that
the series in (20) converge when Re (E + F − A − B − C) > 0, and
the whole expression is well defined and analytic for any parameters
under this condition. The function (20) can be continued analytically
to the region in the parameter space where at least one of the 10 series
converges.

Further, a general S5 orbit of 3F2(1)s is associated to 11 other orbits
so that we get sets of 120 allied 3F2(1) series, see [16]. For example,2

the series in (20) is allied to

(22)

3F2

(
A, 1 +A− E, 1 +A− F

1 +A−B, 1 + A− C

)
and 3F2

(
E −A,E −B,E − C

E, 1 + F − E

)
.
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In general, two allied series are not related by a two-term identity
like (21). But for any three allied series, there is a linear relation
between them, with coefficients being Γ-terms. This also gives three-
term relations for the 12 functions of type (20), and even defines their
analytic continuation to the whole space of parameters. Indeed, if the
series in (20) diverges, then its ally 3F2

(
1−A,1−B,1−C

2−D,2−E

)
converges; for

the third term one can take convergent series from a similar pair of
functions from other S5-orbits. Besides, all allied series converge in a
neighborhood of A = B = C = 1/2, E = F = 1.

In [17], Whipple applies the relations of allied series to a general
2F1(−1) series by expressing it as a 3F2(1) series and considering it as
a member of the corresponding allied family. In particular, his formulas
(3.1) and (3.51) read as follows:

2F1

(
a+ ν, b
a− b

∣∣∣∣− 1
)

=
Γ(a− b)Γ(a

2 )
Γ(a)Γ(a

2 − b) 3F2

(−ν−1
2 ,−ν

2 , b

−ν, a+1
2

)(23)

=
Γ(a− b)Γ(a+1

2 )
Γ(a)Γ(a+1

2 − b) 3F2

(−ν
2 ,−ν+1

2 , b

−ν, a
2

)
.(24)

If ν �∈ {0, 1, 2, . . . }, we may relate the 2F1(−1) series to the S5-orbit
of the 3F2(1) series in (23) (24) and get many two- and three-term
relations with 2F1(−1) and 3F2(1) series. Some of these identities
make sense and are correct even if ν is a nonnegative integer, because
singular Γ-factors cancel. For instance, formula (2) with P (n) and Q(n)
defined by (3) (4) is a three-term identity between allied series; see
the last paragraph of [17]. Similarly, (potentially) terminating series
in Whipple’s formulas (8.3) and (8.41) are derived from three-term
identities of allied series.

On the other hand, the 3F2(1) series in (23) (24) cannot be identified
with the terminating series in the expressions in (5). One has to
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compute:

lim
ν→n

3F2

(−ν
2 , −ν+1

2 , b

−ν, a
2

)

= 2P (n)− 1
4n+1

(b)n+1(
a
2

)
n+1

3F2

(n+2
2 , n+1

2 , b+ n+ 1
n+ 2, a

2 + n+ 1

)
,

lim
ν→n

3F2

(−ν−1
2 ,−ν

2 , b

−ν, a+1
2

)

= 2Q(n) +
1

4n+1

(b)n+1(
a+1
2

)
n+1

3F2

(n+3
2 , n+2

2 , b+ n+ 1
n+ 2, a+1

2 + n+ 1

)
.

In the sum of these two inequalities the non-terminating 3F2(1) series on
the righthand side cancel, since they are connected by transformation
(21). In this way identities (23) (24) prove Theorem 2.

Moreover, the 3F2(1) series (23) (24) can be transformed by S5 to
four series which are well defined and terminate when ν is an (odd
or even) positive integer n. Those terminating series are presented in
formulas (16) and (18). However, this does not give expressions for

2F1(1)
(

a+n, b

a−b

∣∣− 1
)
in terms of one termination 3F2(1) series, because

the four series mentioned diverge for ν > 1/2 (except when they
terminate), and we cannot use the S5-invariance of the corresponding
function in (20). Notice, for example, that (21) implies a wrong relation
between the 3F2(1) series in (16) and (18). As we see, Whipple’s
approach in [17] gets complicated in the case ν in (23) (24) is an
integer, and does not directly explain various expressions for our P (n)
and Q(n).

3. A proof by Zeilberger’s method. Here we prove Theorem 2
only. Theorem 1 can be proved in the same way.

Let us define S(n) = 2F1

(
a+n, b

a−b

∣∣− 1
)
. The contiguity relation [3,

2.8 (28)] between 2F1

(
A+1, B

C

∣∣z), 2F1

(
A−1, B

C

∣∣z) and 2F1

(
A, B

C

∣∣z)
gives the following recurrence relation:

(25) 2(n+ a)S(n+ 1)− (3n+ 2a)S(n) + (n+ b)S(n− 1) = 0.

We claim that the sequences P (n) and Q(n) satisfy the same recurrence
relation. Following the “creative telescoping” method of Zeilberger (see
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[12], [8]), let

(26) p(n, k) =
(−1)k

2 · 4k

(n+ 1)(n− k)!
(n− 2k + 1)!k!

(b)k(
a
2

)
k

be the kth summand of P (n) in (5). We set p(n, k) = 0 for k > �n
2 �.

Also define

r1(n, k) = −2k(n− k + 1)(a+ 2k − 2)
(n− 2k + 2)(n− 2k + 3)

, R1(n, k) = r1(n, k)p(n, k).

One can check that

2(n+ a)p(n+ 1, k)− (3n+ 2a)p(n, k) + (n+ b)p(n− 1, k)
= R1(n, k + 1)−R1(n, k),

so

2(n+ a)P (n+ 1)− (3n+ 2a)P (n) + (n+ b)P (n− 1) =
(27)

�n
2 �∑

k=0

(R1(n, k + 1)− (R1(n, k))−R1

(
n,
⌈n+ 1

2
⌉)

= 0.

Although this looks like an artificial trick, we follow the standard Wilf-
Zeilberger method of proving combinatorial identities; see [8, 12].
The expression r1(n, k) is the certificate of our standardized proof.
Given p(n, k), the recurrence relation for P (n) and the certificate
r1(n, k) can be found by Zeilberger’s algorithm. This algorithm is
implemented in the computer algebra packages EKHAD (see [18,
command ct]) and hsum.mpl see [9, command sumrecursion with
option certificate=true]. Also check [15] for a link to a Maple
worksheet for this proof. The finite sums in this proof require some
attention, since they are not natural according to [8].

In the same way,

2(n+ a)Q(n+ 1)− (3n+ 2a)Q(n) + (n+ b)Q(n− 1) =
(28)

�(n−1)/2�∑
k=0

(R2(n, k + 1)−R2(n, k))−R2

(
n,
⌈n
2
⌉)

= 0,
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where

(29) R2(n, k) =
2k(n− k + 1)(a+ 2k − 1)
(n− 2k + 1)(n− 2k + 2)

· (−1)k

2 · 4k

(
n− k

k

)
(b)k

(a+1
2 )k

is the kth summand of Q(n) in (5) multiplied by the corresponding
certificate.

Note that the condition (a)n �= 0 ensures that the recurrence relation
(25) does not degenerate to a first order relation until we evaluate P (n)
and Q(n). It remains to check that formula (2) holds for two initial
values of n. Kummer’s identity (1) suggests P (−1) = 1 and Q(−1) = 0,
which fits into the recurrence relation. We may use Gauss’s contiguity
relation [3, formula 2.8 (38)] between

2F1

(
A,B
C + 1

∣∣∣∣z
)
, 2F1

(
A,B
C

∣∣∣∣z
)

and 2F1

(
A− 1, B

C

∣∣∣∣z
)

to obtain

(30) (a− 2b)
Γ(1 + a− b)Γ(1 + a

2 )
Γ(1 + a)Γ(1 + a

2 − b)
− 2(a− b)S(0)+ (a− b)S(−1) = 0.

This implies the correct values P (0) = 1/2 and Q(0) = 1/2 and
completes the proof.

Note that the Gauss contiguity relations hold for analytic extensions
of hypergeometric functions on C \ [1,∞). Therefore, this proof does
not require convergence of the 2F1(−1) series.

In fact, the sequences P (n) and Q(n) satisfy the recurrence relation
(25) for all n. The recurrence can be verified directly for n = −2,−1, 0.
The values of P (n) and Q(n) for n = −3,−2,−1, 0, 1 are

2(a− 2)(a− b− 2)
(b− 1)(b− 2)

,
a− 2
b− 1

, 1,
1
2
,

a− b

2a

and

−2(a− 1)(a− 3)
(b− 1)(b− 2)

, −a− 1
b− 1

, 0,
1
2
,

1
2
,
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respectively. To compute the same recurrence relation for negative n,
one can use Theorem 1. Alternatively, one may choose an expression
for P (n) and Q(n) for negative n, say (13) (14), and compute the
recurrence relation with Zeilberger’s algorithm.

To show equalities like (16) (18) by Zeilberger’s method, one would
have to compute the recurrences for odd and even integers separately.
The recurrence relation (25) for any such expression and for all n can
be computed using contiguity relations for the 3F2(1) series. As is
known (see [1, Section 3.7]), contiguous 3F2(1) series satisfy three-term
relations (the coefficients being rational functions in the parameters of
those series), just like the contiguous 2F1(z) series.

4. Algorithmic aspects. The generalized formula (2) can be
specialized so that P (n) or Q(n) vanishes, giving an evaluation of
2F1(−1) series with a single Γ-term. For example,

(31) Q(−4) = −4
(a− 1)(a− 3)(2a− b− 7)

(b− 1)(b− 2)(b− 3)
,

so if b = 2a− 7, then Q(−4) = 0, which implies

(32) 2F1

(
3− c, 7− 2c

c

∣∣∣∣− 1
)

=
3
4

Γ(c)Γ(3− c
2 )

Γ(5− c)Γ( 3c
2 − 2)

.

Further, P (−5) = 0 if 2a2−4ab+b2−12a+17b+12 = 0. Parameterizing
the curve given by this equation, we get
(33)

2F1

(
−2t2−7t+6

t2−2 , t2+4t−8
t2−2

2t2+3t−8
t2−2

∣∣∣∣− 1

)
=
t2 + 3t− 6
t(t− 1)

Γ( 3t−4
t2−2 )Γ(

t2+7t−12
2(t2−2) )

Γ( 7t−10
t2−2 )Γ( t(t−1)

2(t2−2) )
.

It could be expected that formulas like (32) can be proved auto-
matically by current computer algebra algorithms, say by the Wilf-
Zeilberger method. As is demonstrated in [10], this method or Zeil-
berger’s algorithm can be adapted to nonterminating hypergeometric
series if one can justify the “creative telescoping” trick by dominated
convergence, and the hypergeometric series can be evaluated in the
limit n → ∞, where n is a discrete parameter. In general, a nonter-
minating hypergeometric series is given without a discrete parameter,
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so it must be introduced by an algorithm. For example, after the sub-
stitution a → a + 2n, one can prove Kummer’s formula (1) by the
Wilf-Zeilberger method, see [5].

In the case of equation (32), we may substitute c → c+ n and apply
Zeilberger’s algorithm to get the right first order difference equation.
However, we cannot evaluate the hypergeometric series, neither in the
limit n → ∞ nor for a finite value of n. What we can do is to
combine explicitly Gauss’s contiguity relations in such a way that we
“accidentally” get a two-term relation where one of the terms can be
evaluated by Kummer’s formula. For example, the relation between
contiguous 2F1

(
A,B

C

∣∣z), 2F1

(
A+1,B−2

C

∣∣z) and, say, 2F1

(
A,B−1

C

∣∣z),
after the specialization (A,B,C, z) → (3− c, 7− 2c, c,−1) becomes

(34) 2F1

(
3− c, 7− 2c

c

∣∣∣∣− 1
)

=
3
4 2F1

(
4− c, 5− 2c

c

∣∣∣∣− 1
)
.

In this way even the exotic (33) can be proved.

This shows that relations between contiguous hypergeometric series
can be useful for finding new “nonstandard” evaluations of 2F1 series.
One may take such a relation and try to find families of its two term
specializations with a discrete parameter n. This would give a first
order recurrence relation, and if the series can be evaluated in the
limit n → ∞, one gets a (perhaps) new formula! Relations between
contiguous series also give a way, alternative to Zeilberger’s algorithm,
to compute recurrence relations.

In [15], there is a link to Maple routines, which for three given integer
vectors (ki, li,mi) for i = 1, 2, 3, derive a C(A,B,C, z)-linear relation
between three contiguous functions 2F1

(
A+ki,B+li

C+mi

∣∣z). Computer
experiments found many first order recurrence relations for some values
z = 1/4, 1/3, 1/9, exp(iπ/3), 3 − 2

√
2, . . . ; some of them can be

successfully solved. It is an interesting question which 2F1(z) series
can be evaluated in terms of Γ-functions. The evaluations produced so
far can be obtained using classical quadratic or cubic transformations.

Here we generalize a few known formulas of the same type as (2).
They were obtained by considering relations between three contiguous
hypergeometric series where two of them can be evaluated by a known
formula, and trying to express the coefficients in these relations as
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hypergeometric series. This was done by considering partial fraction
decomposition of these coefficients empirically. The formulas can be
proved by showing that all three terms in a formula satisfy the same
recurrence relation by Zeilberger’s algorithm, and checking the identity
for a couple of values of the discrete parameter.

We start with a generalization of Gosper’s “nonstandard” evaluations
of 2F1(1/4) series, see [6, formula 1/4.1-2]. A generalization is

(35) 2F1

( −a, 1
2

2a+ 3
2 + n

∣∣∣∣14
)

=
2n+3/2

3n+1

Γ(a+ 5
4 + n

2 )Γ(a+
3
4 + n

2 )Γ(a+
1
2 )

Γ(a+ 7
6 + n

3 )Γ(a+
5
6 + n

3 )Γ(a+
1
2 + n

3 )
K(n)

− (−3)n−223/2Γ(a+
5
4 + n

2 )Γ(a+
3
4 + n

2 )Γ(a+ 1)
Γ(a+ 3

2 )Γ(a+
1
2 + n

2 )Γ(a+ 1 + n
2 )
L(n),

where
K(1) = L(0) = 0, K(0) = L(1) = 1,

for n > 1:

K(n) = (−1)n
�n

2 �∑
k=�n/3�

27k

4k

n(k − 1)!
(n− 2k)!(3k − n)!

(a+ 1
2 )k

(a+ 1)k
,

L(n) = 4F3

(−n−1
3 ,−n−2

3 ,−n−3
3 , a+ 1

−n−2
2 ,−n−3

2 , a+ 3
2

)
,

and for −n < 0:

K(−n) = 4F3

(−n
3 − n−1

3 ,−n−2
3 ,−a

−n−1
2 ,−n−2

2 ,−a+ 1
2

)

=
�n/3�∑
k=0

(−4)k

27k

n(n− 2k − 1)!
(n− 3k)!k!

(−a)k
(−a+ 1

2 )k
,

L(−n) = (−1)n
�(n+1)/2�∑

k=�(n+1)/3�

27k

4k

× (n+ 1)(k − 1)!
(n− 2k + 1)!(3k − n− 1)!

(−a− 1
2 )k

(−a)k .
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Gosper has found the special cases n = 0, 1. The Γ-factors to K(n) and
L(n) are C(a)-multiples of these two Gosper’s evaluations, respectively,
for each n. All three terms in (35) satisfy the recurrence relation

2(n+2a+1)(2n+6a+3)S(n+1)+ (2n+4a+3)(4n+6a+1)S(n)
− 3(2n+ 4a+ 1)(2n+ 4a+ 3)S(n− 1) = 0.

Next we recall the classical Dixon’s identity which evaluates well-
poised 3F2(1) series, see [2, Section 3.1]. We generalize it as follows:
(36)

3F2

(
a+ n, b, c
a− b, a− c

)
=
P̃ (n)
2

Γ(a+1
2 )Γ(a− b)Γ(a− c)Γ(a+1

2 − b− c)
Γ(a)Γ(a+1

2 − b)Γ(a+1
2 − c)Γ(a− b− c)

+
Q̃(n)
2

Γ(a
2 )Γ(a− b)Γ(a− c)Γ(a

2 − b− c)
Γ(a)Γ(a

2 − b)Γ(a
2 − c)Γ(a− b− c)

,

where P̃ (−1) = 1, Q̃(−1) = 0, then for n ≥ 0:

P̃ (n) = 4F3

( −n
2 ,−n+1

2 , b, c

−n, a
2 ,

1−a
2 + b+ c

)
, Q̃(n) = 4F3

( −n−1
2 ,−n

2 , b, c

−n, 1+a
2 , 1− a

2 + b+ c

)
,

and for −n < 0:

P̃ (−n− 1) = 22n (
1−a
2 )n( 1+a

2 − b− c)n
(1− b)n(1− c)n

×

4F3

( −n
2 ,−n−1

2 , b− n, c− n

1− n, a
2 − n, 1−a

2 + b+ c− n

)
,

Q̃(−n− 1) = −22n (
1−a
2 )n(a

2 − b− c)n
(1− b)n(1− c)n

×

4F3

( −n−1
2 ,−n−2

2 , b− n, c− n

1− n, 1+a
2 − n, 1− a

2 + b+ c− n

)
.

Dixon’s identity is the special case n = −1. This generalized formula
is a relation between contiguous 3F2(1) series in explicit form. For
positive n it is strikingly similar to the generalization (2), (5) of
Kummer’s identity. In fact, the generalization in Theorem 2 is the
limiting case c → ∞ of (36), just as Kummer’s formula is the limiting
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case of Dixon’s identity. The recurrence relation for the three terms in
(36) is:

(n+ a)(n− a+ 2b+ 2c+ 1)S(n+ 1) + (n+ b)(n+ c)S(n− 1)
− (2n2 + 3bn+ 3cn+ n− a2 + 2ab+ 2ac+)S(n) = 0.

More evaluations of the same type can be obtained using standard
transformations of 2F1(z) series to 2F1(z/(z−1)) series, see [3, formulas
2.9(3)-(4)]. Applying them to the generalized Kummer’s formula (2)
gives evaluations of 2F1(1/2) which generalize classical formulas of
Gauss and Bailey, see [2, Section 2.4]. The same transformation of (35)
gives evaluations of 2F1(−1/3). Similarly, one can apply (21) to identity
(36) and get generalizations of Watson’s and Whipple’s formulas [2,
Sections 3.3-4].

All these formulas evaluate hypergeometric series which are contigu-
ous to a series for which an evaluation is known. In order to find these
formulas automatically, one needs an algorithm which would find the
solutions of a recurrence relation in the form of terminating hypergeo-
metric series.

Acknowledgments. The author would like to thank Richard Askey
and Tom Koornwinder for useful suggestions, in particular for ideas
leading to the easy proofs in Section 2 and Dennis Stanton for the
references to Whipple.

ENDNOTES

1. The same could be done directly to 2F1

(
a+n,b

a−b

∣∣− 1

)
, of course. We would

get the less-convenient formula

2F1

(
a+n,b

a−b

∣∣− 1

)
=

1

2

Γ(a − b)Γ(a+n
2

)

Γ(a + n)Γ(a−n
2

− b)
3F2

(
−n

2
, −n+1

2
, a+n

2
1
2
, a−n

2
− b

)

+
n + 1

2

Γ(a − b)Γ(a+n+1
2

)

Γ(a + n)Γ(a−n+1
2

− b)
3F2

(
−n−1

2
, −n

2
, a+n+1

2
3
2
, a−n+1

2
− b

)
.

Here for each positive integer n the two Γ-terms are C(a, b)-multiples of the Γ-
terms in (2), so the coefficients P (n), Q(n) are equal to C(a, b)-multiples of the
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3F2(1) series in this formula. But the correspondence depends on whether n is even
or odd.

2. Whipple introduced for the 3F2(1) series six parameters r0, . . . , r5 related by
the condition

∑
ri = 0 so that: all allied series can be obtained by permutations of

the six parameters and/or changing the sign of them all; an S5-orbit is determined by
fixing a parameter and an element of the set {+,−} and S5 permutes the remaining
five parameters. Specifically, one may choose that the S5 action on (20) fixes r0

and take E = 1 + r4 − r0.
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