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INVERSION OF THE DUNKL INTERTWINING
OPERATOR AND ITS DUAL
USING DUNKL WAVELETS

KHALIFA TRIMÈCHE

ABSTRACT. We consider in this work the Dunkl intertwin-
ing operator Vk and its dual tVk on Rd. Using these operators
we give relations between the Dunkl continuous wavelet trans-
form on Rd and the classical continuous wavelet transform on
Rd, and we deduce the formulas which give the inverse oper-
ators of Vk and tVk.

1. Introduction. We consider the differential-difference operators
Tj , j = 1, 2, . . . , d, on Rd introduced by Dunkl in [3] and called Dunkl
operators in the literature. These operators are very important in pure
mathematics and in physics. They provide a useful tool in the study of
special functions with root systems [2, 4, 6] and they are closely related
to certain representations of degenerate affine Hecke algebras [1, 16];
moreover, the commutative algebra generated by these operators has
been used in the study of certain exactly solvable models of quantum
mechanics, namely, the Calogero-Sutherland-Moser models which deal
with systems of identical particles in a one-dimensional space, (see [8,
11, 13]).

Dunkl has proved in [5] that a unique isomorphism Vk exists from
the space of homogeneous polynomials Pn on Rd of degree n onto itself
satisfying the relations

(1) TjVk = Vk
∂

∂xj
, j = 1, 2, . . . , d

and

(2) Vk(1) = 1.

This operator is called the Dunkl intertwining operator.
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Rösler has considered this operator and has proved in [19] that for
each x ∈ Rd a probability measure µx exists on Rd with support in
the closed ball B(0, ‖x‖) of center 0 and radius ‖x‖ such that, for all
polynomials p on Rd, we have

Vk(p)(x) =
∫
Rd

p(y) dµx(y).

Next Trimèche has extended in [24] the operator Vk to an isomor-
phism from E(Rd), the space of C∞-functions on Rd, onto itself satis-
fying the relations (1) and (2) and has shown that, for each x ∈ Rd,
a unique distribution ηx exists in E ′(Rd), the space of distributions on
Rd of compact support, with support in B(0, ‖x‖) such that

(Vk)−1(f)(x) = 〈ηx, f〉, f ∈ E(Rd).

We have studied also in [24] the transposed operator tVk of the
operator Vk and we have proved that it has the integral representation,
for all y ∈ Rd,

tVk(f)(y) =
∫
Rd

f(x) dνy(x), f ∈ D(Rd),

where νy is a positive measure on Rd with support in the set {x ∈ Rd :
‖x‖ ≥ ‖y‖} and f in D(Rd), the space of C∞-functions on Rd with
compact support. This operator is called the dual Dunkl intertwining
operator.

We have proved in [24] that the operator tVk is an isomorphism from
D(Rd) onto itself, satisfying the relations, for all y ∈ Rd,

tVk(Tjf)(y) =
∂

∂yj

tVk(f)(y), j = 1, 2, . . . , d,

and we have shown that for each y ∈ Rd a unique distribution Zy exists
in S ′(Rd), the space of tempered distributions on Rd, such that

(tVk)−1(f)(y) = 〈Zy, f〉, f ∈ D(Rd).

The purpose of this paper is to establish for the Dunkl intertwining
operator Vk and its dual tVk the following results.
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(i) We define and characterize spaces of functions other than E(Rd)
and D(Rd) on which these transforms are bijective.

(ii) We give the following inversion formulas for Vk and tVk on some
spaces of functions

f = VkKtVk(f), f = KtVkVk(f),
f = tVkKDVk(f), f = KDVk

tVk(f),

where K and KD are pseudo-differential operators.

(iii) We define and study the Dunkl continuous wavelet transform
on Rd and we prove for this transform a Plancherel and an inversion
formula.

(iv) We obtain formulas which give the inverse operators V −1
k and

(tVk)−1 using Dunkl wavelets.

Analogous results to the precedent have been studied in the case of
differential operators and partial differential operators, (see [22, 23]).

The content of this paper is as follows:

In the first section we give results on the Dunkl operators and on
their eigenfunction called the Dunkl kernel.

We define in the second section the Dunkl intertwining operator Vk

and its dual tVk and we give their main properties.

We study in the third and fourth sections the harmonic analysis
associated with Dunkl operators (Dunkl transform, Dunkl translation
operators and Dunkl convolution product).

In the fifth section we give spaces other than E(Rd) and D(Rd) on
which the Dunkl intertwining operator Vk and its dual tVk are bijective,
and we establish inversion formulas for these operators.

We define and study in the sixth section Dunkl wavelets and the
Dunkl continuous wavelet transform, and we give for this transform
Plancherel and inversion formulas.

Using Dunkl wavelets we obtain in the last section formulas which
give the inverse operators of the operators Vk and tVk.

1. The eigenfunction of the Dunkl operators. In this section
we collect some notations and results on Dunkl operators and the Dunkl
kernel, (see [4, 5, 7, 9, 10]).
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1.1 Reflection groups, root systems and multiplicity functions. We
consider Rd with the Euclidean scalar product 〈·, ·〉 and ‖x‖ =

√〈x, x〉.
On Cd, ‖·, ·‖ also denotes the Hermitian norm, while 〈z, w〉 =∑d

j=1 zjwj .

For α ∈ Rd \{0}, let σα be the reflection in the hyperplane Hα ⊂ Rd

orthogonal to α, i.e.,

(1.1) σα(x) = x− (2〈α, x〉/‖α‖2)α.

A finite set R ⊂ Rd \ {0} is called a root system if R∩R ·α = {±α}
and σαR = R for all α ∈ R. For a given root system R the reflections
σα, α ∈ R, generate a finite group W ⊂ O(d), the reflection group
associated with R. All reflections in W correspond to suitable pairs of
roots. For a given β ∈ Rd \ ∪α∈RHα, we fix the positive subsystem
R+ = {α ∈ R : 〈α, β〉 > 0}, then for each α ∈ R either α ∈ R+ or
−α ∈ R+.

A function k : R → C on a root system R is called a multiplicity func-
tion if it is invariant under the action of the associated reflection group
W . If one regards k as a function on the corresponding reflections, this
means that k is constant on the conjugacy classes of reflections in W .
For abbreviation, we introduce the index

(1.2) γ = γ(R) =
∑

α∈R+

k(α).

Moreover, let ωk denote the weight function

(1.3) ωk(x) =
∏

α∈R+

|〈α, x〉|2k(α),

which is W -invariant and homogeneous of degree 2γ.

For d = 1 and W = Z2, the multiplicity function k is a single
parameter denoted γ > 0 and, for all x ∈ R,

(1.4) ωk(x) = |x|2γ .

We introduce the Mehta-type constant

(1.5) Ck =
( ∫

Rd

e−‖x‖2
ωk(x) dx

)−1

,
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which is known for all Coxeter groups W , (see [3, 14, 16]).

1.2 Dunkl operators and Dunkl kernel. The Dunkl operators Tj ,
j = 1, . . . , d, on Rd associated with the finite reflection group W and
multiplicity function k, are given for a function f of class C1 on Rd by

(1.6) Tjf(x) =
∂

∂xj
f(x) +

∑
α∈R+

k(α)αj
f(x) − f(σα(x))

〈α, x〉 .

In the case k = 0, the Tj , j = 1, 2, . . . , d, reduce to the corresponding
partial derivatives. In this paper we will assume throughout that k ≥ 0
and γ > 0.

For f of class C1 on Rd with compact support and g of class C1 on
Rd, we have

(1.7)

∫
Rd

Tif(x)g(x)ωk(x) dx = −
∫
Rd

f(x)Tjg(x)ωk(x) dx,

j = 1, 2, . . . , d.

For y ∈ Rd, the system

(1.8)
{
Tju(x, y) = yju(x, y) j = 1, 2, . . . , d
u(0, y) = 1

admits a unique analytic solution on Rd, denoted by K(x, y) and
called Dunkl kernel. This kernel has a unique holomorphic extension
to Cd × Cd.

Example. If d = 1 and W = Z2, the Dunkl kernel is given by

(1.9) K(z, t) = jγ−1/2(izt) +
zt

2γ + 1
jγ+1/2(izt), z, t ∈ C,

where for α ≥ −1/2, jα is the normalized Bessel function defined by

(1.10)

jα(u) = 2αΓ(α+ 1)
Jα(u)
uα

= Γ(α+ 1)
∞∑

n=0

(−1)n(u/2)2n

n!Γ(n+ α+ 1)
, u ∈ C,
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with Jα is the Bessel function of first kind and index α.

The Dunkl kernel possesses the following properties.

i) For all z, t ∈ Cd, we have K(z, t) = K(t, z); K(z, 0) = 1 and
K(λz, t) = K(z, λt) for all λ ∈ C.

ii) For all ν ∈ Zd
+, x ∈ Rd and z ∈ Cd, we have

(1.11) |Dν
zK(x, z)| ≤ ‖x‖|ν| exp[max

w∈W
〈wx,Re z〉].

In particular,

|Dν
zK(x, z)| ≤ ‖x‖|ν| exp[‖x‖‖Re z‖],(1.12)
|K(x, z)| ≤ exp[‖x‖‖Re z‖],(1.13)

and, for all x, y ∈ Rd:

(1.14) |K(ix, y)| ≤ 1,

with Dν
z = (∂|ν|/∂zν1

1 · · · ∂zνd

d ) and |ν| = ν1 + ν2 + · · · + · · · + νd.

iii) For all x, y ∈ Rd and w ∈W , we have

(1.15) K(−ix, y) = K(ix, y) and K(wx,wy) = K(x, y).

iv) The function K(x, z) admits for all x ∈ Rd and z ∈ Cd the
following Laplace type integral

(1.16) K(x, z) =
∫
Rd

e〈y,z〉 dµz(y),

where µx is a probability measure on Rd with support in the closed
ball B(0, ‖x‖) of center 0 and radius ‖x‖, (see [19]).

Remark. When d = 1 and W = Z2, for all x ∈ Rd\{0}, the relation
(1.16) is of the form

(1.17) K(x, z) =
Γ(γ + 1/2)√

πΓ(γ)
|x|−2γ

∫ |x|

−|x|
(|x| − y)γ−1(|x| + y)γeyz dy.
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Then, in this case, for all x ∈ Rd\{0}, the measure µx is given by
dµx(y) = κ(x, y) dy with

(1.18) κ(x, y) =
Γ(γ + 1/2)√

πΓ(γ)
|x|−2γ(|x| − y)γ−1(|x| + y)γ1]−|x|,|x|[(y),

where 1]−|x|,|x|[ is the characteristic function of the interval ]−|x|, |x| [.
We remark that by change of variables the relation (1.17) takes the

following form, for all x ∈ Rd, for all z ∈ Cd,

(1.19) K(x, z) =
Γ(γ + 1/2)√

πΓ(γ)

∫ 1

−1

etxz(1 − t2)γ−1(1 + t) dt.

2. The Dunkl intertwining operator and its dual.

Notations. We denote by C(Rd), respectively Cc(Rd), the space
of continuous functions on Rd, respectively with compact support;
Cp(Rd), respectively Cp

c (Rd), the space of functions of class Cp on Rd,
respectively with compact support; E(Rd), the space of C∞-functions
on Rd; D(Rd), the space of C∞-functions on Rd with compact support;
S(Rd), the space of C∞-functions on Rd which are rapidly decreasing
as their derivatives. We provided these spaces with the classical
topology.

We consider also the following spaces. E ′(Rd), the space of distribu-
tions on Rd with compact support. It is the topological dual of E(Rd);
S ′(Rd), the space of tempered distributions on Rd. It is the topological
dual of S(Rd).

The Dunkl intertwining operator Vk is defined on C(Rd) by

(2.1) Vk(f)(x) =
∫
Rd

f(y) dµx(y),

where µx is the measure given by the relation (1.16), (see [24]).

We have, for all x ∈ Rd, for all z ∈ Cd,

(2.2) K(x, z) = Vk(e〈·,y〉)(x).
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The operator tVk satisfying for f in Cc(Rd) and g in C(Rd), the
relation

(2.3)
∫
Rd

tVk(f)(y)g(y) dy =
∫
Rd

Vk(g)(x)f(x)ωk(x) dx,

is given by

(2.4) tVk(f)(y) =
∫
Rd

f(x) dνy(x),

where νy is a positive measure on Rd with support in the set {x ∈
Rd : ‖x‖ ≥ ‖y‖}. This operator is called the dual Dunkl intertwining
operator, (see [24]).

The following theorems give some properties of the operators Vk and
tVk, (see [24]).

Theorem 2.1. i) The operator Vk is a topological isomorphism from
E(Rd) onto itself satisfying the relations, for all x ∈ Rd,

(2.5) TjVk(f)(x) = Vk

(
∂

∂χj
f

)
(x), j = 1, 2, . . . , d, f ∈ E(Rd).

ii) For each x ∈ Rd, a unique distribution ηx in E ′(Rd) exists with
support in the closed ball B(0, ‖x‖) of center 0 and radius ‖x‖ such
that, for all f in E(Rd), we have

(2.6) V −1
k (f)(x) = 〈ηx, f〉.

Theorem 2.2. i) The operator tVk is a topological isomorphism from
D(Rd), respectively S(Rd), onto itself, satisfying the relations, for all
y ∈ Rd,

(2.7) tVk(Tjf)(y) =
∂

∂yj

tVk(f)(y), j = 1, 2, . . . , d, f ∈ D(Rd).
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ii) For each y ∈ Rd, a unique distribution Zy exists in S ′(Rd) with
support in the set {x ∈ Rd : ‖x‖ ≥ ‖y‖} such that for all f in D(Rd),
we have

(2.8) (tVk)−1(f)(y) = 〈Zy, f〉.

Examples. 1) When d = 1 and W = Z2, the Dunkl intertwining
operator Vk is defined by (2.1) with κ given by the relation (1.18). We
have shown in [15] that it can also be written for all f in E(R), in the
form, for all x ∈ R,

(2.9) Vk(f)(x) = Rγ−1/2(fe)(x) +
d

dx
Rγ−1/2I(f0)(x),

where fε, respectively f0, the even, respectively the odd, part of
f,Rγ−1/2 the Riemann-Liouville integral transform defined for all even
C∞-function g on R by, for all r > 0,

(2.10) Rγ−1/2(g)(r) =
2Γ(γ + 1/2)√

πΓ(γ)
r−2γ+1

∫ r

0

g(t)(r2 − t2)γ−1 dt

(see [23, pages 26 27] and [21, page 74]), and I the operator given by,
for all x ∈ R,

(2.11) I(f0)(x) =
∫ |x|

0

f0(t) dt.

Using properties of the transform Rγ−1/2, we prove that the inverse
operator V −1

k can be written for all f in E(R), in the following form,
for all x ∈ R,

(2.12) V −1
k (f)(x) = R−1

γ−1/2(fe)(x) +
1
x
R−1

γ−1/2(yf0(y))(x).

It is an integro-differential operator.

The dual Dunkl intertwining operator tVk is defined by (2.4) with
dνy(x) = κ(x, y)ωk(x) dx,where κ and ωk given respectively by the
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relations (1.18) and (1.4). It can also be written for all f in D(R), in
the form, for all y ∈ R,

(2.13) tVk(f)(y) = Wγ−1/2(fe)(y) +
d

dy
Wγ−1/2J(f0)(y),

where Wγ−1/2 is the Weyl integral transform defined for all even C∞-
function g on R with compact support, by, for all t ≥ 0,

(2.14) Wγ−1/2(g)(t) =
2Γ(γ + 1/2)√

πΓ(γ)

∫ ∞

t

g(r)(r2 − t2)γ−1 dr

(see [23, pages 41 50] and [21, pages 81, 85]), and the operator J is
given by, for all x ∈ R,

(2.15) J(f0)(x) =
∫ x

−∞
f0(t), dt.

From properties of the transform Wγ−1/2 we deduce that the inverse
operator (tVk)−1 possesses for all f in D(R), the following form, for all
y ∈ R,

(2.16) (tVk)−1(f)(y) = W−1
γ−1/2(fe)(y) + yW−1

γ−1/2

(
1
x
f(x)

)
(y).

It is also an integro-differential operator.

2) The Dunkl intertwining operator Vk of index γ =
∑d

i=1 αi, αi > 0,
associated with the reflection group Z3 ×Z2 × · · · ×Z2 on Rd is given
for all f in E(Rd) by, for all x ∈ Rd,

Vk(f)(x) =
d∏

i=1

(
Γ(αi+(1/2))√

πΓ(αi)

)(2.17)

×
∫

[−1,1]d
f(t1x1, t2x2, . . . , tdxd)

d∏
i=1

(1−t2i )αi−1(1+ti)dt1 · · · dtd,

(see [26]). It can also be written in the form, for all x ∈ Rd,

(2.18) Vk(f)(x) = (Vk)1 ⊗ (Vk)2 ⊗ · · · ⊗ (Vk)d(f)(x),
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where for all g in E(R) we have, for all xi ∈ R,

(Vk)i(g)(xi) =
Γ(αi + (1/2))√

πΓ(αi)

∫ 1

−1

g(tixi)(1 − t2i )αi−1(1 + ti) dti.

Using the results of the previous example, we determine the inverse
operator V −1

k , the dual operator tVk and its inverse (tVk)−1. We deduce
from (2.12) and (2.16) that the operators V −1

k and (tVkk)−1 are integro-
differential operators. We remark that if one or many αi is equal to
zero, we replace the corresponding (Vk)i in the definition (2.18) of the
operator Vk by the operator identity.

3. Dunkl transform. In this section we define the Dunkl transform
and we give the main results satisfied by this transform, (see [5, 9, 10,
25]).

Notations. We denote by S0(Rd) the subspace of S(Rd) consisting
of functions f such that, for all ν ∈ Nd,

Dνf(0) = 0,

where for ν = (ν1, ν2, . . . , νd) ∈ Nd,

Dν =
∂|ν|

∂xν1
1 · · · ∂xνd

d

,

and |ν| = ν1 + · · · + νd.

S0(Rd) is the subspace of S(Rd) consisting of functions f such that,
for all ν ∈ Nd, ∫

Rd

f(x)xν dx = 0,

where for ν = (ν1, ν2, . . . , νd) ∈ Nd and x = (x1, x2, . . . , xd) ∈ Rd, we
have xν = xν1

1 · xν2
2 · · · · · ·xνd

d .

S0
0 (Rd) is the subspace of S(Rd) consisting of functions f such that,

for all ν ∈ Nd, ∫
Rd

f(x)mν(x)ωk(x) dx = 0,
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where, for all x ∈ Rd,

mν(x) = Vk

(
uν

ν!

)
(x),

where for ν = (ν1, ν2, . . . , νd) ∈ Nd, we have ν! = ν1!ν2! · · · νd!.

Lp
k(Rd), p ∈ [1,+∞], the space of measurable functions on Rd such

that

‖f‖k,p =
( ∫

Rd

|f(x)|pωk(x) dx
)1/p

< +∞, if 1 ≤ p < +∞,

‖f‖k,∞ = ess sup
x∈Rd

|f(x)| < +∞.

H(Cd) is the space of entire functions on Cd which are of exponential
type and rapidly decreasing.

We provide these spaces with the classical topology.

The Dunkl transform of a function f in D(Rd) is given by, for all
y ∈ Rd,

(3.1) FD(f)(y) =
∫
Rd

f(x)K(x,−iy)ωk(x) dx.

This transform has the following properties

i) For f in L1
k(Rd), we have

(3.2) ‖FD(f)‖k,∞ ≤ ‖f‖k,1.

ii) Let f be in D(Rd). If f−(x) = f(−x) and fw(x) = f(wx) for
x ∈ Rd, w ∈W , then for all y ∈ Rd, we have

(3.3) FD(f−)(y) = FD(f)(y) and FD(fw)(y) = FD(f)(wy).

iii) For all f in S(Rd), we have

(3.4) FD(f) = FotVk(f),
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where F is the classical Fourier transform on Rd given by, for all
y ∈ Rd,

(3.5) F(f)(y) =
∫
Rd

f(x)e−i〈x,y〉 dx, f ∈ D(Rd).

Theorem 3.1. The transform FD is a topological isomorphism from
D(Rd) onto H(Cd), from S(Rd) onto itself, from S0

0 (Rd) onto S0(Rd).
The inverse transform is given by, for all x ∈ Rd,

(3.6) F−1
D (h)(x) =

C2
k

22γ+d

∫
Rd

h(y)K(x, iy)ωk(y) dy.

Theorem 3.2. Let f be in L1
k(Rd) such that the function FD(f)

belongs to L1
k(Rd). Then we have the following inversion formula for

the transform FD:

(3.7) f(x) =
C2

k

22γ+d

∫
Rd

FD(f)(y)K(x, iy)ωk(y) dy, a.e.

Theorem 3.3. i) Plancherel formula for FD. For all f in D(Rd)
we have

(3.8)
∫
Rd

|f(x)|2ωk(x) dx =
C2

k

22γ+d

∫
Rd

|FD(f)(y)|2ωk(y) dy.

ii) Plancherel theorem for FD. The renormalized Dunkl transform
f → 2−γ−d/2CkFD(f) can be uniquely extended to an isometric iso-
morphism on L2

k(Rd).

From Theorem 3.1, the relation (3.4) and properties of the classical
Fourier transform F , we deduce the following result.

Theorem 3.4. The transform tVk is a topological isomorphism from
S0

0 (Rd) onto S0(Rd).



902 K. TRIMÈCHE

Using Theorem 3.3 we obtain the following proposition.

Proposition 3.1. Let f and g be two measurable functions on Rd

satisfying: p, q ∈ N exist such that the functions (1 + ‖x‖2)−pf and
(1 + ‖x‖2)−qg belong to L1

k(Rd). We suppose that for all ψ in S(Rd)
we have

(3.9)
∫
Rd

f(x)FD(ψ)(x)ωk(x) dx =
∫
Rd

g(x)ψ(x)ωk(x) dx.

Then the function f belongs to L2
k(Rd) if and only if the function g

belongs to L2
k(Rd), and we have

(3.10) FD(f) = g.

4. Dunkl translation operators and Dunkl convolution prod-
uct. In this section we define and study the Dunkl translation oper-
ators and the Dunkl convolution product, and we give some of their
properties, (see [25]).

4.1 Dunkl translation operators. The Dunkl translation operators τx,
x ∈ Rd, are defined on E(Rd) by, for all y ∈ Rd,

(4.1) τxf(y) = (Vk)x(Vk)y[(Vk)−1(f)(x+ y)],

where Vk is the Dunkl intertwining operator given by the relation (2.1).

In the following propositions we give some properties of the operators
τx, x ∈ Rd.

Proposition 4.1. i) For all x ∈ Rd, the operator τx is continuous
from E(Rd) into itself.

ii) The function x→ τx is of class C∞ on Rd.

iii) For all x, y ∈ Rd and z ∈ Cd we have the product formula

(4.2) τxK(y, z) = K(x, z)K(y, z).
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iv) For all f in E(Rd), we have

(4.3) τxf(0) = f(x); τxf(y) = τyf(x).

(4.4)
{
Tj(τxf) = τx(Tjf) j = 1, 2, . . . , d,
(Tj)x(τxf) = τx(Tjf) j = 1, 2, . . . , d,

where Tj, j = 1, 2, . . . , d, are the Dunkl operators.

Proposition 4.2. Let f be given in E(Rd). We put

(4.5) u(x, y) = τxf(y).

Then the function u is the unique solution of class C∞ with respect to
each variable of the system

(4.6)
{

(Tj)xu(x, y) = (Tj)yu(x, y) j = 1, 2, . . . , d,
u(x, 0) = f(x).

Proposition 4.3. For f in D(Rd) and x ∈ Rd, the function
y → τxf(y) belongs to D(Rd), and we have, for all y ∈ Rd,

(4.7) FD(τxf)(y) = K(ix, y)FD(f)(y).

Remark. From the relation (4.7), which is also true for functions in
S(Rd) and Theorem 3.1, we deduce that, for f in S(Rd) and x, t ∈ Rd,
we have

(4.8) τxf(t) =
C2

k

22γ+d

∫
Rd

K(ix, y)K(iy, t)FD(f)(y)ωk(y) dy.

Rösler has given this relation in [18, page 535].
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In the following, we give definitions of the Dunkl translation operators
on the spaces Lp

k(Rd), p = 1, 2:

i) The relation (4.8) permits also to define the Dunkl translation
operators τx, x ∈ Rd, on the space of functions f in L1

k(Rd) such that
FD(f) belongs to L1

k(Rd).

ii) Using Theorem 3.3 we define the Dunkl translation operators τx,
x ∈ Rd, on L2

k(Rd) by the relation

(4.9) FD(τxf) = K(ix, .)FD(f).

The function τxf belongs to L2
k(Rd), and we have

‖τxf‖k,2 ≤ ‖f‖k,2.

Remark. When d = 1 and W = Z2, Rösler [17] has shown that the
Dunkl translation operators τx, x ∈ R, possess the integral representa-
tion

τxf(y) =
∫
R

f(t) dµx,y(t),

where µx,y is a finite signed measure on R, of total mass less than or
equal to 4, and supported in [−|x|−|y|,−‖x|−|y‖]∪ [‖x|−|y‖, |x|+ |y|].

4.2 Dunkl convolution product. The Dunkl convolution product of
two functions f and g in D(Rd) is the function f ∗D g defined by, for
all x ∈ Rd,

(4.10) f ∗D g(x) =
∫
Rd

τxf(−y)g(y)ωk(y) dy,

(see [25]).

This convolution product is commutative and associative and satisfies
the properties given in the following propositions.

Proposition 4.4. i) Let f be in D(Rd) with support in the ball
B(0, a), a > 0, of center 0 and radius a and g in D(Rd) with support
in B(0, b), b > 0. Then the function f ∗D g belongs to D(Rd) with
support in B(0, a+ b).



INVERSION OF DUNKL OPERATOR 905

ii) Let f and g be in S(Rd). Then f ∗D g belongs to S(Rd) and we
have, for all y ∈ Rd,

(4.11) FD(f ∗D g)(y) = FD(f)(y).FD(g)(y).

iii) For all f and g in S(Rd), respectively D(Rd), we have

(4.12) tVk(f ∗D g) = tVk(f) ∗ tVk(g)

where ∗ is the classical convolution product of Rd given by, for all
x ∈ Rd,

(4.13) f ∗ g(x) =
∫
Rd

f(x− y)g(y) dy.

Proposition 4.5. i) For f in S0(Rd) and g in S(Rd) the function
f ∗ g belongs to S0(Rd).

ii) For f in S0
0 (Rd) and g in S(Rd) the function f ∗D g belongs to

S0
0 (Rd).

Proof. We deduce these results from the relation (4.11), Theorem 3.1
and properties of the classical Fourier transform F .

We define in the following the Dunkl convolution production on the
spaces Lp

k(Rd), p = 1, 2.

i) Let f be in L1
k(Rd) and g in L2

k(Rd). The Dunkl convolution
product of f and g is the function f ∗D g of L2

k(Rd) satisfying

(4.14) FD(f ∗D g) = FD(f)FD(g).

ii) Let f and g be in L2
k(Rd). For each x ∈ Rd, we define f ∗D g(x)

by

(4.15) f ∗D g(x) =
C2

k

22γ+d

∫
Rd

K(ix, y)FD(f)(y)FD(g)(y)ωk(y) dy.
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This function belongs to L∞
k (Rd).

Proposition 4.6. Let f and g be in L2
k(Rd). Then

i) The function f ∗D g belongs to L2
k(Rd) if and only if the function

FD(f)FD(g) belongs to L2
k(Rd) and we have

(4.16) FD(f ∗D g) = FD(f)FD(g).

ii) We have
(4.17)∫
Rd

|f ∗D g(x)|2ωk(x) dx =
C2

k

22γ+d

∫
Rd

|FD(f)(y)|2|FD(g)(y)|2ωk(y) dy.

The two sides are finite or infinite.

Proof. i) We deduce these results from the fact that for all ψ in S(Rd)
we have
∫
Rd

f∗Dg(x)F−1
D (ψ)(x)ωk(x) dx =

∫
Rd

FD(f)(y)FD(g)(y)ψ(y)ωk(y) dy,

and Proposition 3.1.

ii) For f ∗D g in L2
k(Rd) the relation (4.17) can be deduced from

Theorem 3.3. For the other case the two members of the relation (4.17)
are infinite.

5. Inversion formula for the Dunkl intertwining operator
and its dual. In the following sections we suppose that x = 0 is the
only zero of the function ωq(x). In this section we show that the Dunkl
intertwining operator and its dual are bijective on spaces other than
E(Rd) and D(Rd), and we give inversion formulas for these operators.

We consider the operators K and KD defined respectively on S0(Rd)
and S0

0 (Rd) by, for all x ∈ Rd,

K(f)(x) = F−1[MkωkF(f)](x),(5.1)
KD(f)(x) = F−1

D [MkωkFD(f)](x),(5.2)
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where

(5.3) Mk =
(2π)dC2

k

22γ+d
.

Proposition 5.1. i) The operator K, respectively KD, is a topological
automorphism of S0(Rd), respectively S0

0 (Rd).

ii) For all f in S0
0 (Rd), we have

(5.4) KD(f) = tVk
−1 ◦ K ◦ tVk(f).

Proof. i) The mapping f →Mkωkf is a topological automorphism of
S0(Rd). Its inverse is given by f → (1/Mk)ω−1

k f . We deduce the result
from Theorem 3.1 and the fact that the transform F is a topological
isomorphism from S0(Rd) onto S0(Rd).

ii) We obtain the result from the relations (5.2), (3.4) and Theo-
rem 3.4.

Proposition 5.2. i) For all f in S0(Rd) and for all g in S(Rd), we
have

(5.5) K(f ∗ g) = K(f) ∗ g.

ii) For all f in S0
0 (Rd) and for all g in S(Rd), we have

(5.6) KD(f ∗D g) = KD(f) ∗D g.

Proof. We obtain these relations from (5.1), (5.2), Proposition 4.5,
the relation (4.11), properties of the classical Fourier transform F and
the classical convolution product on Rd.
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Theorem 5.1. We have the following inversion formulas for the
operators Vk and tVk. For f in S0

0 (Rd),

(5.7) f = VkKtVk(f); f = KDVk
tVk(f).

For f in S0(Rd),

(5.8) f = tVkKDVk(f); f = KtVkVk(f).

Proof. Let f be in S0
0 (Rd). Using the relations (3.6), (2.2), (4.11) and

the inversion formula for the classical Fourier transform F , we obtain
for all x ∈ Rd,

f(x) =
C2

k

22γ+d

∫
Rd

FD(f)(y)K(x, iy)ωk(y) dy,

=
C2

k

22γ+d
Vk

[ ∫
Rd

FD(f)(y)ei〈.,y〉ωk(y) dy
]

(x),

= Vk

{
1

(2π)d

∫
Rd

[Mkωk(y)F ◦ tVk(f)(y)]ei〈.,y〉 dy
}

(x),

where Mk is the constant given by (5.3). Thus, for all x ∈ Rd,

f(x) = Vk{F−1[MkωkF ◦ tVk(f)]}(x),(5.9)
f(x) = VkKtVk(f)(x).

On the other hand, from this relation and (4.11), we obtain for f in
S0(Rd), the relation, for all x ∈ Rd,

(5.10) f(x) = tVkKDVk(f)(x).

We obtain the other relations by writing (5.9) and (5.10), respectively,
for the functions Vk(f) and tVk(f).

Corollary 5.1. The operator Vk is a topological isomorphism from
S0(Rd) onto S0

0 (Rd).
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Proof. We deduce the result from Proposition 5.1 i), Theorem 3.4
and the relation (5.9).

Corollary 5.2. For all f in S0(Rd) and g in S(Rd), we have

(5.11) Vk(f ∗ g) = Vk(f) ∗D (tVk)−1(g).

Proof. Using the relations (4.12), (5.9) and Proposition 5.2 i), we
obtain

V −1
k [Vk(f) ∗D

tVk
−1(g)] = KtVk[Vk(f) ∗D (tVk)−1(g)],

= K[tVkVk(f) ∗ g],
= [KtVkVk(f)] ∗ g.

But from Theorem 5.1 we have

KtVkVk(f) = f.

Thus
V −1

k [Vk(f) ∗D (tVk)−1(g)] = f ∗ g.
We obtain the result from Corollary 5.1.

6. Dunkl wavelets.

6.1 Classical wavelets on Rd. We say that a measurable function on
Rd is a classical wavelet on Rd if it satisfies, for almost all x ∈ Rd, the
condition

(6.1) 0 < C0
g =

∫ ∞

0

|F(g)(λx)|2 dλ
λ
< +∞,

where F is the classical Fourier transform given by the relation (3.5).

Let a ∈ ]0,+∞[ and g a classical wavelet on Rd in L2(Rd) (the
space of square integrable functions on Rd with respect to the Lebesgue
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measure). We consider the family ga,x, x ∈ Rd, of classical wavelets on
Rd in L2(Rd) defined by

(6.2) ga,x(y) = Ha(g)(x− y),

where Ha is the dilatation operator given by

(6.3) Ha(g)(x) =
1
ad
g

(
x

a

)
, x ∈ Rd.

In the following we denote the function Ha(g) by g0
a.

We define for regular functions f on Rd the classical continuous
wavelet transform Sg on Rd by

(6.4) Sg(f)(a, x) =
∫
Rd

f(y)ga,x(y) dy, for all x ∈ Rd.

This transform can also be written in the form

(6.5) Sg(f)(a, x) = f ∗ g0
a(x),

where ∗ is the classical convolution product given by (4.13).

The transform Sg has been studied in [12]. Several properties are
given, in particular if we consider a classical wavelet g on Rd in L2(Rd),
we have the following results.

i) Plancherel formula. For all f in L2(Rd), we have

(6.6)
∫
Rd

|f(x)|2 dx =
1
C0

g

∫ ∞

0

∫
Rd

|Sg(f)(a, x)|2 dxda
a
.

ii) Inversion formula. For all f in L1(Rd) (the space of integrable
functions on Rd with respect to the Lebesgue measure) such that F(f)
belongs to L1(Rd), we have

(6.7) f(x) =
1
C0

g

∫ ∞

0

( ∫
Rd

Sg(f)(a, y)ga,x(y) dy
)
da

a
, a.e.,

where for each x ∈ Rd, both the inner integral and the outer integral
are absolutely convergent but possibly not the double integral.
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6.2 Dunkl wavelets on Rd. Using the harmonic analysis associated
with the Dunkl operators Tj , j = 1, 2, . . . , d, in particular, the Dunkl
transform FD and the Dunkl translation operators τx, x ∈ Rd, we
define and study in this subsection Dunkl wavelets on Rd and the
Dunkl continuous wavelet transform on Rd, and we prove Plancherel
and inversion formulas for this transform.

Definition 6.1. A Dunkl wavelet on Rd is a measurable function g on
Rd satisfying for almost all x ∈ Rd the condition

(6.8) 0 < Cg =
∫ ∞

0

|FD(g)(λx)|2 dλ
λ
< +∞.

Example. The function αt, t > 0, defined by, for all x ∈ Rd,

(6.9) αt(x) =
Ck

(4t)γ+d/2
e−‖x‖2/4t,

satisfies, for all y ∈ Rd,

(6.10) FD(αt)(y) = e−t‖y‖2
,

(see [5, page 13] and [20, page 589]).

The function g(x) = −(d/dt)αt(x) is a Dunkl wavelet on Rd in S(Rd),
and we have Cg = (1/8t2).

Proposition 6.1. A function g is a Dunkl wavelet on Rd in S(Rd),
respectively S0

0 (Rd), if and only if the function tVk(g) is a classical
wavelet on Rd in S(Rd), respectively S0(Rd), and we have

(6.11) CtVk(g) = Cg.

Proof. We deduce these results from Theorems 2.2, 3.4 and the
relation (3.4).



912 K. TRIMÈCHE

Let a ∈ ]0,+∞[ and g a regular function on Rd. We consider the
function ga defined by, for all x ∈ Rd,

(6.12) ga(x) =
1

a2γ+d
g

(
x

a

)
.

It satisfies the following properties

i) For g in L2
k(Rd) the function ga belongs to L2

k(Rd), and we have

(6.13) FD(ga)(y) = FD(g)(ay), y ∈ Rd.

ii) For g in S(Rd), respectively S0
0 (Rd), the function ga belongs to

S(Rd), respectively S0
0 (Rd), and we have

ga = (tVk)−1 ◦Ha ◦ tVk(g).

Let g be a Dunkl wavelet on Rd in L2
k(Rd). We consider the family

ga,x, x ∈ Rd, of Dunkl wavelets on Rd in L2
k(Rd) defined by

(6.14) ga,x(y) = τxga(−y), y ∈ Rd,

where τx, x ∈ Rd, are the Dunkl translation operators given by (4.9).

Example. We consider the function αt, t > 0, given by (6.9). From
[5, page 13], (see also [20, page 589]), we have, for all x, y ∈ Rd,

(6.15) τx(αt)(y) =
Ck

(4t)γ+d/2
e

−‖x‖2+‖y‖2

4t K

(
x√
2t
,
y√
2t

)
.

Using (6.10) we deduce that the family ga,x, x ∈ Rd, given by, for all
y ∈ Rd,

(6.16) ga,x(y) = −τx
(
d

dt
αt

)
(−y),

is a family of Dunkl wavelets on Rd in S(Rd).
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Definition 6.2 Let g be a Dunkl wavelet on Rd in L2
k(Rd). The Dunkl

continuous wavelet transform SD
g on Rd is defined for regular functions

f on Rd by

(6.17)
SD

g (f)(a, x) =
∫
Rd

f(y)ga,x(y)ωk(y) dy,

a > 0, x ∈ Rd.

This transform can also be written in the form

(6.18) SD
g (f)(a, x) = f ∗D ga(x),

where ∗D is the Dunkl convolution product given by (4.10).

Theorem 6.1 (Plancherel formula for SD
g ). Let g be a Dunkl wavelet

on Rd in L2
k(Rd). For all f in L2

k(Rd), we have

(6.19)
∫
Rd

|f(x)|2ωk(x) dx =
1
Cg

∫ ∞

0

∫
Rd

|SD
g (f)(a, x)|2ωk(x) dx

da

a
.

Proof. Using Fubini-Tonnelli’s theorem, Proposition 4.5 ii) and the
relations (6.18) and (6.13), we obtain

1
Cg

∫ ∞

0

∫
Rd

|SD
g (f)(a, x)|2ωk(x) dx

da

a

=
1
Cg

∫ ∞

0

( ∫
Rd

|f ∗D ga(x)|2ωk(x) dx
)
da

a
,

=
1
Cg

∫ ∞

0

( ∫
Rd

|FD(f)(y)|2|FD(ga)(y)|2ωk(y) dy
)
da

a
,

=
∫
Rd

|FD(f)(x)|2
(

1
Cg

∫ ∞

0

|FD(g)(ay)|2 da
a

)
ωk(y) dy.

But, from Definition 6.1, we have for almost all y ∈ Rd,

1
Cg

∫ ∞

0

|FD(g)(ay)|2 da
a

= 1,
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then

1
Cg

∫ ∞

0

∫
Rd

|SD
g (f)(a, x)|2ωk(x) dx

da

a
=

∫
Rd

|FD(f)(y)|2ωk(y) dy.

We deduce the relation (6.19) from Theorem 3.3.

The following theorem gives an inversion formula for the transform
SD

g .

Theorem 6.2. Let g be a Dunkl wavelet on Rd in L2
k(Rd). For f

in L1
k(Rd), respectively L2

k(Rd), such that FD(f) belongs to L1
k(Rd),

respectively L1
k(Rd) ∩ L∞

k (Rd), we have

(6.20) f(x) =
1
Cg

∫ ∞

0

( ∫
Rd

SD
g (f)(a, y)ga,x(y)ωk(y) dy

)
da

a
, a.e.,

where for each x ∈ Rd both the inner integral and the outer integral are
absolutely convergent, but possibly not the double integral.

Proof. We obtain (6.20) by using an analogous proof as for Theorem
6.III.3 of [22, page 199].

7. Inversion of the Dunkl intertwining operator and of its
dual by using Dunkl wavelets. In this section we establish relations
between the Dunkl continuous wavelet transform SD

g on Rd, and the
classical continuous wavelet transform Sg on Rd. Next, using the
inversion formulas for the transforms SD

g and Sg, we deduce relations
which give the inverse operators of the Dunkl intertwining operator Vk

and of its dual tVk.

Theorem 7.1. i) Let g be a Dunkl wavelet on Rd in D(Rd),
respectively S(Rd). Then, for all f in the same space as g, we have,
for all x ∈ Rd,

(7.1) SD
g (f)(a, x) = (tVk)−1[StVk(g)(tVk(f))(a, .)](x).
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ii) Let g be a Dunkl wavelet on Rd in S0
0 (Rd). Then, for all f in

S0(Rd), we have, for all x ∈ Rd,

(7.2) StVk(g)(f)(a, x) = V −1
k [SD

g (Vk(f))(a, .)](x).

Proof. We deduce these results from the relations (6.5), (6.18) and
properties of the Dunkl convolution product studied in the subsection
4.2.

Theorem 7.2. Let g be a Dunkl wavelet on Rd in S0
0 (Rd). Then

i) For all f in S0
0 (Rd), we have, for all x ∈ Rd,

(7.3) SD
g (f)(a, x) = a−2γVk[SK(tVk(g))(tVk(f))(a, .)](x).

ii) For all f in S0(Rd), we have, for all x ∈ Rd,

(7.4) StVk(g)(f)(a, x) = a−2γtVk[SD
KD(g)(Vk(f))(a, .)](x).

Proof. We obtain these relations from Theorems 7.1, 5.1 and the fact
that

K(tVk(g)0a) = a−2γ(K(tVk(g)))0a,

and

KD(ga) = a−2γ(KD(g))a.

Theorem 7.3. Let g be a Dunkl wavelet on Rd in S0
0 (Rd). Then

i) For all f in S0
0 (Rd), we have, for all x ∈ Rd,

(7.5) (tVk)−1(f)(x)

=
1
Cg

∫ ∞

0

( ∫
Rd

Vk[SK(tVk(g))(f)(a, .)](y)ga,x(y)ωk(y) dy
)

da

a2γ+1
.
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ii) For all f in S0(Rd), we have, for all x ∈ Rd,

(7.6) V −1
k (f)(x)

=
1

C0
tVk(g)

∫ ∞

0

( ∫
Rd

tVk[SD
KD(g)

(f)(a, .)](y)tVk(g)a,x(y) dy
)

da

a2γ+1
.

Proof. We deduce (7.5) and (7.6) from Theorems 7.2, 6.2 and the
relation (6.7).
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