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A FOURTH ORDER q-DIFFERENCE EQUATION
FOR ASSOCIATED DISCRETE q-ORTHOGONAL

POLYNOMIALS

MOURAD E.H. ISMAIL AND PLAMEN SIMEONOV

ABSTRACT. In this work we prove that the associated
polynomials of general q-orthogonal polynomials satisfy a
fourth order q-difference equation. We provide two algorithms
for constructing this equation and we identify its solution
basis.

1. Introduction. Let w(x) be a positive weight defined on a q-linear
lattice {aqn, bqn : n ∈ N0} with |q| < 1. The corresponding discrete
q-orthonormal polynomials satisfy the orthogonality relation

(1.1)
∫ b

a

pm(x)pn(x)w(x)dqx = δm,n,

where the q-integral, see [6, 8], is defined by

∫ b

a

f(x) dqx =
∞∑

n=0

(bqn − bqn+1)f(bqn) −
∞∑

n=0

(aqn − aqn+1)f(aqn),

(1.2)

and

∫ ∞

0

f(x) dqx = (1 − q)
∞∑

n=−∞
qnf(qn).

(1.3)

If we normalize the weight so that

∫ b

a

w(x) dqx = 1
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then the polynomial sequence {pn(x)} will satisfy initial conditions of
the form

(1.4) p0(x) = 1, p1(x) = (x− b0)/a1,

and can be generated by a three-term recurrence relation of the form

(1.5) xpn(x) = an+1pn+1(x) + bnpn(x) + anpn−1(x), n ∈ N.

Note that (1.5) also holds for n = 0 if we set p−1(x) = 0.

In [3, 2, 4] it was proved in the case q = 1 that, if dqx in (1.1) is
replaced by dx, then pn(x) satisfies a linear second order differential
equation. This was extended to the discrete q-case in [7]. A q-analogue
of d/dx is the q-difference operator Dq defined by

(1.6) Dqf(x) =
f(qx) − f(x)

(q − 1)x
.

In [7] it was established that q-orthonormal polynomials satisfy a
second order linear q-difference equation of the form

(1.7) D2
qpn(x) +Rn(x)Dqpn(x) + Sn(x)pn(x) = 0.

The coefficients Rn(x) and Sn(x) are defined by

Rn(x) = Bn(qx) − DqAn(x)
An(x)

(1.8)

+
An(qx)
An(x)

(
Bn−1(x) − (x− bn−1)An−1(x)

an−1

)
,

Sn(x) =
an

an−1
An(qx)An−1(x) +DqBn(x) − Bn(x)

An(x)
DqAn(x)

(1.9)

+Bn(x)
An(qx)
An(x)

(
Bn−1(x) − (x− bn−1)An−1(x)

an−1

)
,
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where the functions An(x) and Bn(x) are defined by

An(x) = an
w(y/q)pn(y)pn(y/q)

x− y/q
∣∣∣∣
b

a

(1.10)

+ an

∫ b

a

u(qx) − u(y)
qx− y pn(y)pn(y/q)w(y) dqy,

Bn = an
w(y/q)pn(y)pn−1(y/q)

x− y/q
∣∣∣∣
b

a

(1.11)

+ an

∫ b

a

u(qx) − u(y)
qx− y pn(y)pn−1(y/q)w(y) dqy.

The function u(x) is related to the weight through the generalized
Pearson equation

(1.12) Dqw(x) = −u(qx)w(qx).

The second order q-difference equation follows from the lowering oper-
ator relationship [7]

(1.13) Dqpn(x) = An(x)pn−1(x) −Bn(x)pn(x), n ∈ N

the three-term recurrence relation (1.5), and the property

(1.14)
Dq(f(x)g(x)) = f(x)Dqg(x) + g(qx)Dqf(x)

= f(x)Dqg(x) + g(x)Dqf(x)
+ (q − 1)xDqf(x)Dqg(x).

When the definition of an and bn in (1.4) and (1.5) can be extended
from integers to nonnegative real numbers, as for example when an and
bn are rational functions of n or of qn, then the associated orthogonal
polynomials of order c, {p(c)n (x)} are generated by the initial conditions

(1.15) p
(c)
0 (x) = 1, p

(c)
1 (x) = (x− bc)/ac+1,

and the recurrence relation
(1.16)
xp(c)n (x) = an+c+1p

(c)
n+1(x) + bn+cp

(c)
n (x) + an+cp

(c)
n−1(x), n ∈ N.
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2. The fourth order q-difference equation for the associated
polynomials. A basis of solutions for (1.5) is formed by pn(x) and
the function of the second kind Qn(x) [7],

(2.1) Qn(x) =
1
w(x)

∫ b

a

pn(t)
x− tw(t) dqt,

defined for x /∈ {aqn, bqn, n ∈ N0}. Moreover, it was shown in [7] that
Qn(x) satisfies the q-difference equation (1.7) provided that

(2.2) w(a/q) = w(b/q) = 0.

From now on we shall assume that the weight w satisfies (2.2).

Let c ∈ N0. Since pn+c(x) and Qn+c(x) form a solution basis for
(1.16), using (1.5) and the initial conditions (1.15) we obtain

(2.3) p(c)n (x) =
Qc−1(x)pn+c(x) − pc−1(x)Qn+c(x)
Qc−1(x)pc(x) − pc−1(x)Qc(x)

.

Let ∆c(x) denote the denominator in (2.3). Using (1.5) we get

∆c(x) = pc(x)[(x− bc)Qc(x) − ac+1Qc+1(x)]/ac

−Qc(x)[(x− bc)pc(x) − ac+1pc+1(x)]/ac

= ac+1∆c+1(x)/ac.

Thus, ac+1∆c+1(x) = ac∆c(x) for every c ≥ 0. Then

∆c(x) =
a1
ac

(Q0(x)p1(x) − p0(x)Q1(x))

=
1

acw(x)

∫ b

a

a1(p1(x) − p1(t))
x− t w(t) dqt

=
1

acw(x)
.

Hence,

(2.4) p(c)n (x)/w(x) = ac[Qc−1(x)pn+c(x) − pc−1(x)Qn+c(x)].

Note that pc−1(x) and Qc−1(x) satisfy the q-difference equation

(2.5) D2
qy(x) +Rc−1(x)Dqy(x) + Sc−1(x)y(x) = 0,
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pn+c(x) and Qn+c(x) satisfy the q-difference equation

(2.6) D2
qy(x) +Rn+c(x)Dqy(x) + Sn+c(x)y(x) = 0,

and p(c)n /w is a linear combination of Qc−1pn+c and pc−1Qn+c.

Lemma 2.1. Let y1 and y2 be solutions of the second order q-
difference equations

(2.7) D2
qy(x) = fj(x)Dqy(x) + gj(x)y(x), j = 1, 2,

respectively. Then y1y2 satisfies a q-difference equation of order less
than five.

Proof. We set u1 = y1y2, u2 = y1Dqy2, u3 = y2Dqy1, u4 = Dqy1Dqy2
and τ (x) = (q − 1)x. From (1.14) and (2.7) we obtain

Dqu1 = u2 + u3 + τu4,

Dqu2 = y1D2
qy2 +Dqy2Dqy1 + τDqy1D

2
qy2

= u4 + (y1 + τDqy1)(f2Dqy2 + g2y2)
= g2u1 + f2u2 + τg2u3 + (1 + τf2)u4,

Dqu3 = g1u1 + τg1u2 + f1u3 + (1 + τf1)u4,

Dqu4 = Dqy1D
2
qy2 +Dqy2D

2
qy1 + τD2

qy1D
2
qy2

= f2u4 + g2u3 + f1u4 + g1u2

+ τf1f2u4 + τf1g2u3 + τf2g1u2 + τg1g2u1.

These equations can be written in a matrix form. Set ū = (u1, u2, u3, ur)t

and define

A =




0 1 1 τ
g2 f2 τg2 1 + τf2
g1 τg1 f1 1 + τf1
τg1g2 g1 + τf2g1 g2 + τf1g2 f1 + f2 + τf1f2


 .

Then we have

(2.8) Dqū = Aū.
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Let M be a 4 × 4 function matrix. From the matrix version of (1.14)
and (2.8) we get

(2.9)
Dq(Mū) =MDqū+ (DqM)ū+ τ (DqM)Dqū

= (MA+DqM + τ (DqM)A)ū
=: (LAM)ū.

From (2.8) (2.9), it follows that

(2.10) Dn
q ū = (Ln−1

A A)ū, n ∈ N,

where L0
A is the identity operator, and the operator Ln+1

A = LA ◦Ln
A is

defined inductively by composition. Let M1,M2,M3,M4 be the 5 × 4
matrices formed in the following way: the first, second, third, fourth
and fifth rows of Mj are the jth rows of the matrices E (the 4 × 4
identity matrix), A,LAA,L

2
AA and L3

AA, respectively. Then

(2.11) (uj , Dquj , D
2
quj , D

3
quj , D

4
quj)t =Mj ū, j = 1, . . . , 4.

Since rank (Mj) ≤ 4, a nonzero vector λ̄j = (λj,1, λj,2, λj,3, λj,4, λj,5)t

exists such that λ̄t
jMj = 0, that is,

(2.12)
4∑

k=0

λj,k+1D
k
quj = λ̄t

jMj ū = 0.

This is a q-difference equation for uj of order at most 4. Such vector
λ̄j can be found using that if m(j)

s,l are the entries of Mj and ∆k(Mj)
is the determinant of the 4 × 4 matrix obtained from Mj by removing
its kth row, then

∑5
k=1m

(j)
k,l(−1)k∆k(Mj) = 0, l = 1, . . . , 4. Thus we

can take

λ̄j = (∆1(Mj),−∆2(Mj),∆3(Mj),−∆4(Mj),∆5(Mj))t,

provided that it is a nonzero vector.

In most cases it is more convenient to write the q-difference equation
(1.7) as a functional equation involving pn(x), pn(qx) and pn(q2x). In
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fact, any q-difference equation of degree n can be written as a functional
equation of the form

(2.13)
n∑

j=0

aj(x)f(qjx) = 0,

and, conversely, any equation of the form (2.13) with an(x) 
= 0 is
equivalent to a q-difference equation of degree n. This follows from the
transformation formulas

Dn
q f(x) =

1
((1 − q)x)n

n∑
j=0

(−1)jq(
j+1
2 )−jn

[
n
j

]
q

f(qjx), n ∈ N0,

(2.14)

f(qnx) =
n∑

j=0

(−1)j((1 − q)x)jq(
j
2)

[
n
j

]
q

Dj
qf(x), n ∈ N0,

(2.15)

where

[
n
j

]
q

:=
(q; q)n

(q; q)j(q; q)n−j
, j = 0, . . . , n,

are the so-called q-binomial coefficients, and

(a; q)n :=
n−1∏
k=0

(1 − aqk), n ∈ N, (a; q)0 := 1.

The next lemma follows immediately from Lemma 2.1 and (2.14) (2.15).
We will give a different proof that provides a simpler algorithm for con-
structing a q-difference equation for the associated polynomials.

Lemma 2.2. Let y1 and y2 be solutions of the functional equations

(2.16) y(q2x) = f̃j(x)y(qx) + g̃j(x)y(x), j = 1, 2,

respectively. Then v(x) = y1(x)y2(x) satisfies a functional equation of
the form

(2.17)
4∑

k=0

ck(x)v(qkx) = 0.
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Proof. We set v1(x) = v(x), v2(x) = y1(x)y2(qx), v3(x) =
y1(qx)y2(x) and v4(x) = y1(qx)y2(qx). Then v1(qx) = v4(x) and, from
equations (2.16) we obtain

v2(qx) = y1(qx)y2(q2x) = f̃2(x)v4(x) + g̃2(x)v3(x),

v3(qx) = y1(q2x)y2(qx) = f̃1(x)v4(x) + g̃1(x)v2(x),
v4(qx) = y1(q2x)y2(q2x)

= f̃1(x)f̃2(x)v4(x) + f̃1(x)g̃2(x)v3(x)

+ f̃2(x)g̃1(x)v2(x) + g̃1(x)g̃2(x)v1(x).

These equations can be written in a matrix form. With v̄(x) =
(v1(x), v2(x), v3(x), v4(x))t and

T (x) =




0 0 0 1
0 0 g̃2(x) f̃2(x)
0 g̃1(x) 0 f̃1(x)

g̃1(x)g̃2(x) f̃2(x)g̃1(x) f̃1(x)g̃2(x) f̃1(x)f̃2(x)




we get the matrix equation

(2.18) v̄(qx) = T (x)v̄(x).

We set T1(x) = T (x) and Tn+1(x) = T (qnx)Tn(x), n ∈ N. Then
equation (2.18) implies v̄(qnx) = Tn(x)v̄(x), n ∈ N. As in the proof of
Lemma 2.1, for j = 1, . . . , 4, we define M̃j to be the 5 × 4 matrix, the
ith row of which is the jth row of Ti(x), i = 0, . . . , 4, where T0(x) is
the 4 × 4 identity matrix E. Let λ̄j = (λj,1, λj,2, λj,3, λj,4, λj,5)t be a
nonzero vector such that λ̄t

jM̃j = 0. Then

(2.19)
4∑

k=0

λj,k+1vj(qkx) = λ̄t
jM̃j v̄ = 0,

is a functional equation for vj(x) of the form (2.17). In particular, for
j = 1, we get such an equation for v1(x) = y1(x)y2(x) that can be
written as a q-difference equation using (2.15).
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The main result concerning associated q-orthogonal polynomials is
the following

Theorem 2.3. The associated q-orthogonal polynomials p(c)n with
c ∈ N satisfy a fourth order q-difference equation.

Proof. Applying Lemma 2.1 to (2.5) (2.6) and using (2.4), we ob-
tain a q-difference equation for p(c)n /w of order at most four. Us-
ing formula (2.14) we can write this equation as an equation of
the form (2.13) for p(c)n /w and then for p(c)n itself. Then apply-
ing (2.15) we get a q-difference equation for p(c)n of order at most
four. From Lemma 2.1 it follows that each one of the functions
wpc−1pn+c, wpc−1Qn+c, wQc−1pn+c and wQc−1Qn+c satisfy this q-
difference equation. We will show that these four functions form a
solution basis for the q-difference equation for p(c)n , in particular the
order of this equation is exactly four.

Indeed, assume that for some constants A,B,C and D,

(2.20) Aw(x)pc−1(x)pn+c(x) +Bw(x)pc−1(x)Qn+c(x)
+ Cw(x)Qc−1(x)pn+c(x) +Dw(x)Qc−1(x)Qn+c(x) = 0, x ∈ Sw,

where Sw = {x : w(x) > 0}. Since Qc−1 and Qn+c have simple poles
at infinitely many elements of the q-lattice, see (2.1), D = 0. Then
B = C = 0 in which case A = 0 or C = −B 
= 0. For the latter case
we use (2.4).

If C = −B 
= 0 we get from (2.20) with D = 0 and using (2.4)

Aw(x)pc−1(x)pn+c(x) = (B/ac)p(c)n (x), x ∈ Sw,

hence
∫ b

a

(p(c)n (x))2 dqx = (acA/B)
∫ b

a

p(c)n (x)pc−1(x)pn+c(x)w(x) dqx = 0

since pn+c(x) is orthogonal to p(c)n (x)pc−1(x) which is a polynomial of
degree n+ c− 1. This is clearly impossible.

3. Some examples.
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1. Big q-Jacobi polynomials. The big q-Jacobi polynomials [10] are
defined by

(3.1) Pn(x; a, b, c; q) = 3φ2

(
q−n, abqn+1, x

aq, cq

∣∣∣∣q; q
)
,

where

rφs

(
a1, . . . , ar

b1, . . . , bs

∣∣∣∣q; z
)

=
∞∑

n=0

(aq, . . . , ar; q)n

(q, b1, . . . , bs; q)n
zn(−q(n−1)/2)n(s+1−r)

denotes a basic hypergeometric series, and

(a1, . . . , ar; q)n = (a1; q)n · · · (ar; q)n

denotes a product of q-shifted factorials.

The normalized polynomials
(3.2)

pn(x) := (−acq2)−n/2q(
−n
2 )/2

(
(1 − abq2n+1)(abq, aq, cq; q)n

(1 − abq)(q, bq, abc−1q; q)n

)1/2

× Pn(x; a, b, c; q)

satisfy the orthogonality relation

(3.3)
∫ aq

cq

pm(x)pn(x)w(x) dqx = δm,n,

with weight

(3.4) w(x) =
(aq, bq, cq, abc−1q; q)∞

aq(1 − q)(q, a−1c, ac−1q, abq2; q)∞
(a−1x, c−1x; q)∞

(x, bc−1x; q)∞
.

Note that p0(x) = 1 and, since w(a) = w(c) = 0, w satisfies (2.2). The
q-difference equation in the form (2.16) is
(3.5)

y(q2x) =
(

1 +
D(x) − (1 − q−n)(1 − abqn+1)q2x2

B(x)

)
y(qx) − D(x)

B(x)
y(x),

where B(x) = aq(qx− 1)(bqx− c) and D(x) = q2(x− a)(x− c).
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2. Big q-Laguerre polynomials. The big q-Laguerre polynomials [10]
are defined by

(3.6) Pn(x; a, b; q) = 3φ2

(
q−n, 0, x
aq, bq

∣∣∣∣q; q
)
.

The normalized polynomials

(3.7) pn(x) := (−abq2)−n/2q
−
(
n
2

)
/2( (aq, bq; q)n

(q; q)n

)1/2

Pn(x; a, b; q)

satisfy the orthogonality relation

(3.8)
∫ aq

bq

pm(x)pn(x)w(x) dqx = δm,n,

with weight

(3.9) w(x) =
(aq, bq; q)∞

aq(1 − q)(q, ba−1, ab−1q; q)∞
(a−1x, b−1x; q)∞

(x; q)∞
.

Note that p0(x) = 1 and, since w(a) = w(b) = 0, w satisfies (2.2). The
q-difference equation in the form (2.16) is

(3.10) y(q2x) =
(

1 +
D(x) + (1 − q−n)q2x2

B(x)

)
y(qx) − D(x)

B(x)
y(x),

where B(x) = abq(qx− 1) and D(x) = −q2(x− a)(x− b).
Using the algorithm of Lemma 2.2, we can find fourth order q-

difference equations for these two families of discrete q-orthogonal
polynomials.
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