ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 32, Number 2, Summer 2002

A FOURTH ORDER q-DIFFERENCE EQUATION FOR ASSOCIATED DISCRETE q-ORTHOGONAL POLYNOMIALS

MOURAD E.H. ISMAIL AND PLAMEN SIMEONOV

ABSTRACT. In this work we prove that the associated polynomials of general q-orthogonal polynomials satisfy a fourth order q-difference equation. We provide two algorithms for constructing this equation and we identify its solution basis.

1. Introduction. Let w(x) be a positive weight defined on a q-linear lattice $\{aq^n, bq^n : n \in \mathbf{N}_0\}$ with |q| < 1. The corresponding discrete q-orthonormal polynomials satisfy the orthogonality relation

(1.1)
$$\int_{a}^{b} p_m(x)p_n(x)w(x)d_qx = \delta_{m,n},$$

where the q-integral, see [6, 8], is defined by

(1.2)

$$\int_{a}^{b} f(x) d_{q}x = \sum_{n=0}^{\infty} (bq^{n} - bq^{n+1})f(bq^{n}) - \sum_{n=0}^{\infty} (aq^{n} - aq^{n+1})f(aq^{n}),$$
and

(1.3)

$$\int_0^\infty f(x) \, d_q x = (1-q) \sum_{n=-\infty}^\infty q^n f(q^n).$$

If we normalize the weight so that

$$\int_{a}^{b} w(x) \, d_q x = 1$$

Research partially supported by NSF grant DMS-99-70865. Received by the editors on September 29, 2000, and in revised form on May 3, 2001.

Copyright ©2002 Rocky Mountain Mathematics Consortium

then the polynomial sequence $\{p_n(x)\}$ will satisfy initial conditions of the form

(1.4)
$$p_0(x) = 1, \quad p_1(x) = (x - b_0)/a_1,$$

and can be generated by a three-term recurrence relation of the form

(1.5)
$$xp_n(x) = a_{n+1}p_{n+1}(x) + b_n p_n(x) + a_n p_{n-1}(x), \quad n \in \mathbf{N}.$$

Note that (1.5) also holds for n = 0 if we set $p_{-1}(x) = 0$.

In [3, 2, 4] it was proved in the case q = 1 that, if $d_q x$ in (1.1) is replaced by dx, then $p_n(x)$ satisfies a linear second order differential equation. This was extended to the discrete q-case in [7]. A q-analogue of d/dx is the q-difference operator D_q defined by

(1.6)
$$D_q f(x) = \frac{f(qx) - f(x)}{(q-1)x}.$$

In [7] it was established that q-orthonormal polynomials satisfy a second order linear q-difference equation of the form

(1.7)
$$D_q^2 p_n(x) + R_n(x) D_q p_n(x) + S_n(x) p_n(x) = 0.$$

The coefficients $R_n(x)$ and $S_n(x)$ are defined by

(1.8)

$$R_{n}(x) = B_{n}(qx) - \frac{D_{q}A_{n}(x)}{A_{n}(x)} + \frac{A_{n}(qx)}{A_{n}(x)} \left(B_{n-1}(x) - \frac{(x-b_{n-1})A_{n-1}(x)}{a_{n-1}} \right),$$
(1.9)

$$S_n(x) = \frac{a_n}{a_{n-1}} A_n(qx) A_{n-1}(x) + D_q B_n(x) - \frac{B_n(x)}{A_n(x)} D_q A_n(x) + B_n(x) \frac{A_n(qx)}{A_n(x)} \left(B_{n-1}(x) - \frac{(x - b_{n-1})A_{n-1}(x)}{a_{n-1}} \right),$$

where the functions $A_n(x)$ and $B_n(x)$ are defined by

(1.10)

$$A_{n}(x) = a_{n} \frac{w(y/q)p_{n}(y)p_{n}(y/q)}{x - y/q} \Big|_{a}^{b} + a_{n} \int_{a}^{b} \frac{u(qx) - u(y)}{qx - y} p_{n}(y)p_{n}(y/q)w(y) d_{q}y,$$
(1.11)
(1.11)

$$B_{n} = a_{n} \frac{w(y/q)p_{n}(y)p_{n-1}(y/q)}{x - y/q} \bigg|_{a}^{b} + a_{n} \int_{a}^{b} \frac{u(qx) - u(y)}{qx - y} p_{n}(y)p_{n-1}(y/q)w(y) d_{q}y.$$

The function u(x) is related to the weight through the generalized Pearson equation

(1.12)
$$D_q w(x) = -u(qx)w(qx).$$

The second order q-difference equation follows from the lowering operator relationship [7]

(1.13)
$$D_q p_n(x) = A_n(x) p_{n-1}(x) - B_n(x) p_n(x), \quad n \in \mathbf{N}$$

the three-term recurrence relation (1.5), and the property

(1.14)
$$D_q(f(x)g(x)) = f(x)D_qg(x) + g(qx)D_qf(x) = f(x)D_qg(x) + g(x)D_qf(x) + (q-1)xD_qf(x)D_qg(x).$$

When the definition of a_n and b_n in (1.4) and (1.5) can be extended from integers to nonnegative real numbers, as for example when a_n and b_n are rational functions of n or of q^n , then the associated orthogonal polynomials of order c, $\{p_n^{(c)}(x)\}$ are generated by the initial conditions

(1.15)
$$p_0^{(c)}(x) = 1, \quad p_1^{(c)}(x) = (x - b_c)/a_{c+1},$$

and the recurrence relation (1.16)

$$xp_n^{(c)}(x) = a_{n+c+1}p_{n+1}^{(c)}(x) + b_{n+c}p_n^{(c)}(x) + a_{n+c}p_{n-1}^{(c)}(x), \quad n \in \mathbf{N}.$$

2. The fourth order q-difference equation for the associated polynomials. A basis of solutions for (1.5) is formed by $p_n(x)$ and the function of the second kind $Q_n(x)$ [7],

(2.1)
$$Q_n(x) = \frac{1}{w(x)} \int_a^b \frac{p_n(t)}{x - t} w(t) \, d_q t,$$

defined for $x \notin \{aq^n, bq^n, n \in \mathbf{N}_0\}$. Moreover, it was shown in [7] that $Q_n(x)$ satisfies the q-difference equation (1.7) provided that

(2.2)
$$w(a/q) = w(b/q) = 0.$$

From now on we shall assume that the weight w satisfies (2.2).

Let $c \in \mathbf{N}_0$. Since $p_{n+c}(x)$ and $Q_{n+c}(x)$ form a solution basis for (1.16), using (1.5) and the initial conditions (1.15) we obtain

(2.3)
$$p_n^{(c)}(x) = \frac{Q_{c-1}(x)p_{n+c}(x) - p_{c-1}(x)Q_{n+c}(x)}{Q_{c-1}(x)p_c(x) - p_{c-1}(x)Q_c(x)}.$$

Let $\Delta_c(x)$ denote the denominator in (2.3). Using (1.5) we get

$$\begin{aligned} \Delta_c(x) &= p_c(x) [(x - b_c)Q_c(x) - a_{c+1}Q_{c+1}(x)]/a_c \\ &- Q_c(x) [(x - b_c)p_c(x) - a_{c+1}p_{c+1}(x)]/a_c \\ &= a_{c+1}\Delta_{c+1}(x)/a_c. \end{aligned}$$

Thus, $a_{c+1}\Delta_{c+1}(x) = a_c\Delta_c(x)$ for every $c \ge 0$. Then

$$\begin{split} \Delta_c(x) &= \frac{a_1}{a_c} (Q_0(x) p_1(x) - p_0(x) Q_1(x)) \\ &= \frac{1}{a_c w(x)} \int_a^b \frac{a_1(p_1(x) - p_1(t))}{x - t} w(t) \, d_q t \\ &= \frac{1}{a_c w(x)}. \end{split}$$

Hence,

(2.4)
$$p_n^{(c)}(x)/w(x) = a_c[Q_{c-1}(x)p_{n+c}(x) - p_{c-1}(x)Q_{n+c}(x)].$$

Note that $p_{c-1}(x)$ and $Q_{c-1}(x)$ satisfy the q-difference equation

(2.5)
$$D_q^2 y(x) + R_{c-1}(x) D_q y(x) + S_{c-1}(x) y(x) = 0,$$

 $p_{n+c}(x)$ and $Q_{n+c}(x)$ satisfy the q-difference equation

(2.6)
$$D_q^2 y(x) + R_{n+c}(x) D_q y(x) + S_{n+c}(x) y(x) = 0,$$

and $p_n^{(c)}/w$ is a linear combination of $Q_{c-1}p_{n+c}$ and $p_{c-1}Q_{n+c}$.

Lemma 2.1. Let y_1 and y_2 be solutions of the second order q-difference equations

(2.7)
$$D_q^2 y(x) = f_j(x) D_q y(x) + g_j(x) y(x), \quad j = 1, 2,$$

respectively. Then y_1y_2 satisfies a q-difference equation of order less than five.

Proof. We set $u_1 = y_1y_2$, $u_2 = y_1D_qy_2$, $u_3 = y_2D_qy_1$, $u_4 = D_qy_1D_qy_2$ and $\tau(x) = (q-1)x$. From (1.14) and (2.7) we obtain

$$\begin{split} D_q u_1 &= u_2 + u_3 + \tau u_4, \\ D_q u_2 &= y_1 D_q^2 y_2 + D_q y_2 D_q y_1 + \tau D_q y_1 D_q^2 y_2 \\ &= u_4 + (y_1 + \tau D_q y_1) (f_2 D_q y_2 + g_2 y_2) \\ &= g_2 u_1 + f_2 u_2 + \tau g_2 u_3 + (1 + \tau f_2) u_4, \\ D_q u_3 &= g_1 u_1 + \tau g_1 u_2 + f_1 u_3 + (1 + \tau f_1) u_4, \\ D_q u_4 &= D_q y_1 D_q^2 y_2 + D_q y_2 D_q^2 y_1 + \tau D_q^2 y_1 D_q^2 y_2 \\ &= f_2 u_4 + g_2 u_3 + f_1 u_4 + g_1 u_2 \\ &+ \tau f_1 f_2 u_4 + \tau f_1 g_2 u_3 + \tau f_2 g_1 u_2 + \tau g_1 g_2 u_1. \end{split}$$

These equations can be written in a matrix form. Set $\bar{u} = (u_1, u_2, u_3, u_r)^t$ and define

$$A = \begin{bmatrix} 0 & 1 & 1 & \tau \\ g_2 & f_2 & \tau g_2 & 1 + \tau f_2 \\ g_1 & \tau g_1 & f_1 & 1 + \tau f_1 \\ \tau g_1 g_2 & g_1 + \tau f_2 g_1 & g_2 + \tau f_1 g_2 & f_1 + f_2 + \tau f_1 f_2 \end{bmatrix}.$$

Then we have

$$(2.8) D_q \bar{u} = A \bar{u}.$$

Let M be a 4×4 function matrix. From the matrix version of (1.14) and (2.8) we get

(2.9)
$$D_q(M\bar{u}) = MD_q\bar{u} + (D_qM)\bar{u} + \tau(D_qM)D_q\bar{u}$$
$$= (MA + D_qM + \tau(D_qM)A)\bar{u}$$
$$=: (L_AM)\bar{u}.$$

From (2.8)–(2.9), it follows that

$$(2.10) D_q^n \bar{u} = (L_A^{n-1}A)\bar{u}, \quad n \in \mathbf{N},$$

where L_A^0 is the identity operator, and the operator $L_A^{n+1} = L_A \circ L_A^n$ is defined inductively by composition. Let M_1, M_2, M_3, M_4 be the 5 × 4 matrices formed in the following way: the first, second, third, fourth and fifth rows of M_j are the *j*th rows of the matrices *E* (the 4 × 4 identity matrix), $A, L_A A, L_A^2 A$ and $L_A^3 A$, respectively. Then

(2.11)
$$(u_j, D_q u_j, D_q^2 u_j, D_q^3 u_j, D_q^4 u_j)^t = M_j \bar{u}, \quad j = 1, \dots, 4.$$

Since rank $(M_j) \leq 4$, a nonzero vector $\bar{\lambda}_j = (\lambda_{j,1}, \lambda_{j,2}, \lambda_{j,3}, \lambda_{j,4}, \lambda_{j,5})^t$ exists such that $\bar{\lambda}_j^t M_j = 0$, that is,

(2.12)
$$\sum_{k=0}^{4} \lambda_{j,k+1} D_q^k u_j = \bar{\lambda}_j^t M_j \bar{u} = 0.$$

This is a q-difference equation for u_j of order at most 4. Such vector $\bar{\lambda}_j$ can be found using that if $m_{s,l}^{(j)}$ are the entries of M_j and $\Delta_k(M_j)$ is the determinant of the 4×4 matrix obtained from M_j by removing its kth row, then $\sum_{k=1}^5 m_{k,l}^{(j)} (-1)^k \Delta_k(M_j) = 0, l = 1, \ldots, 4$. Thus we can take

$$\bar{\lambda}_j = (\Delta_1(M_j), -\Delta_2(M_j), \Delta_3(M_j), -\Delta_4(M_j), \Delta_5(M_j))^t,$$

provided that it is a nonzero vector. \Box

In most cases it is more convenient to write the q-difference equation (1.7) as a functional equation involving $p_n(x)$, $p_n(qx)$ and $p_n(q^2x)$. In

fact, any $q\mbox{-difference}$ equation of degree n can be written as a functional equation of the form

(2.13)
$$\sum_{j=0}^{n} a_j(x) f(q^j x) = 0,$$

and, conversely, any equation of the form (2.13) with $a_n(x) \neq 0$ is equivalent to a q-difference equation of degree n. This follows from the transformation formulas

(2.14)

$$D_q^n f(x) = \frac{1}{((1-q)x)^n} \sum_{j=0}^n (-1)^j q^{\binom{j+1}{2}-jn} \begin{bmatrix} n\\ j \end{bmatrix}_q f(q^j x), \quad n \in \mathbf{N}_0,$$
(2.15)

$$f(q^n x) = \sum_{j=0}^n (-1)^j ((1-q)x)^j q^{\binom{j}{2}} \begin{bmatrix} n\\ j \end{bmatrix}_q D_q^j f(x), \quad n \in \mathbf{N}_0,$$

where

$$\begin{bmatrix}n\\j\end{bmatrix}_q := \frac{(q;q)_n}{(q;q)_j(q;q)_{n-j}}, \quad j = 0, \dots, n,$$

are the so-called q-binomial coefficients, and

$$(a;q)_n := \prod_{k=0}^{n-1} (1 - aq^k), \quad n \in \mathbf{N}, \quad (a;q)_0 := 1.$$

The next lemma follows immediately from Lemma 2.1 and (2.14)–(2.15). We will give a different proof that provides a simpler algorithm for constructing a *q*-difference equation for the associated polynomials.

Lemma 2.2. Let y_1 and y_2 be solutions of the functional equations

(2.16)
$$y(q^2x) = \tilde{f}_j(x)y(qx) + \tilde{g}_j(x)y(x), \quad j = 1, 2$$

respectively. Then $v(x) = y_1(x)y_2(x)$ satisfies a functional equation of the form

(2.17)
$$\sum_{k=0}^{4} c_k(x)v(q^k x) = 0.$$

Proof. We set $v_1(x) = v(x)$, $v_2(x) = y_1(x)y_2(qx)$, $v_3(x) = y_1(qx)y_2(x)$ and $v_4(x) = y_1(qx)y_2(qx)$. Then $v_1(qx) = v_4(x)$ and, from equations (2.16) we obtain

$$\begin{aligned} v_2(qx) &= y_1(qx)y_2(q^2x) = \tilde{f}_2(x)v_4(x) + \tilde{g}_2(x)v_3(x), \\ v_3(qx) &= y_1(q^2x)y_2(qx) = \tilde{f}_1(x)v_4(x) + \tilde{g}_1(x)v_2(x), \\ v_4(qx) &= y_1(q^2x)y_2(q^2x) \\ &= \tilde{f}_1(x)\tilde{f}_2(x)v_4(x) + \tilde{f}_1(x)\tilde{g}_2(x)v_3(x) \\ &+ \tilde{f}_2(x)\tilde{g}_1(x)v_2(x) + \tilde{g}_1(x)\tilde{g}_2(x)v_1(x). \end{aligned}$$

These equations can be written in a matrix form. With $\bar{v}(x) = (v_1(x), v_2(x), v_3(x), v_4(x))^t$ and

$$T(x) = \begin{bmatrix} 0 & 0 & 0 & 1\\ 0 & 0 & \tilde{g}_2(x) & \tilde{f}_2(x)\\ 0 & \tilde{g}_1(x) & 0 & \tilde{f}_1(x)\\ \tilde{g}_1(x)\tilde{g}_2(x) & \tilde{f}_2(x)\tilde{g}_1(x) & \tilde{f}_1(x)\tilde{g}_2(x) & \tilde{f}_1(x)\tilde{f}_2(x) \end{bmatrix}$$

we get the matrix equation

(2.18)
$$\bar{v}(qx) = T(x)\bar{v}(x).$$

We set $T_1(x) = T(x)$ and $T_{n+1}(x) = T(q^n x)T_n(x)$, $n \in \mathbf{N}$. Then equation (2.18) implies $\overline{v}(q^n x) = T_n(x)\overline{v}(x)$, $n \in \mathbf{N}$. As in the proof of Lemma 2.1, for $j = 1, \ldots, 4$, we define \tilde{M}_j to be the 5 × 4 matrix, the *i*th row of which is the *j*th row of $T_i(x)$, $i = 0, \ldots, 4$, where $T_0(x)$ is the 4 × 4 identity matrix *E*. Let $\overline{\lambda}_j = (\lambda_{j,1}, \lambda_{j,2}, \lambda_{j,3}, \lambda_{j,4}, \lambda_{j,5})^t$ be a nonzero vector such that $\overline{\lambda}_j^t \tilde{M}_j = 0$. Then

(2.19)
$$\sum_{k=0}^{4} \lambda_{j,k+1} v_j(q^k x) = \bar{\lambda}_j^t \tilde{M}_j \bar{v} = 0,$$

is a functional equation for $v_j(x)$ of the form (2.17). In particular, for j = 1, we get such an equation for $v_1(x) = y_1(x)y_2(x)$ that can be written as a q-difference equation using (2.15). \Box

The main result concerning associated q-orthogonal polynomials is the following

Theorem 2.3. The associated q-orthogonal polynomials $p_n^{(c)}$ with $c \in \mathbf{N}$ satisfy a fourth order q-difference equation.

Proof. Applying Lemma 2.1 to (2.5)–(2.6) and using (2.4), we obtain a q-difference equation for $p_n^{(c)}/w$ of order at most four. Using formula (2.14) we can write this equation as an equation of the form (2.13) for $p_n^{(c)}/w$ and then for $p_n^{(c)}$ itself. Then applying (2.15) we get a q-difference equation for $p_n^{(c)}$ of order at most four. From Lemma 2.1 it follows that each one of the functions $wp_{c-1}p_{n+c}, wp_{c-1}Q_{n+c}, wQ_{c-1}p_{n+c}$ and $wQ_{c-1}Q_{n+c}$ satisfy this q-difference equation. We will show that these four functions form a solution basis for the q-difference equation for $p_n^{(c)}$, in particular the order of this equation is exactly four.

Indeed, assume that for some constants A, B, C and D,

$$(2.20) \quad Aw(x)p_{c-1}(x)p_{n+c}(x) + Bw(x)p_{c-1}(x)Q_{n+c}(x) + Cw(x)Q_{c-1}(x)p_{n+c}(x) + Dw(x)Q_{c-1}(x)Q_{n+c}(x) = 0, \quad x \in S_w,$$

where $S_w = \{x : w(x) > 0\}$. Since Q_{c-1} and Q_{n+c} have simple poles at infinitely many elements of the q-lattice, see (2.1), D = 0. Then B = C = 0 in which case A = 0 or $C = -B \neq 0$. For the latter case we use (2.4).

If $C = -B \neq 0$ we get from (2.20) with D = 0 and using (2.4)

$$Aw(x)p_{c-1}(x)p_{n+c}(x) = (B/a_c)p_n^{(c)}(x), \quad x \in S_w,$$

hence

$$\int_{a}^{b} (p_{n}^{(c)}(x))^{2} d_{q}x = (a_{c}A/B) \int_{a}^{b} p_{n}^{(c)}(x) p_{c-1}(x) p_{n+c}(x) w(x) d_{q}x = 0$$

since $p_{n+c}(x)$ is orthogonal to $p_n^{(c)}(x)p_{c-1}(x)$ which is a polynomial of degree n+c-1. This is clearly impossible. \Box

3. Some examples.

1. Big q-Jacobi polynomials. The big q-Jacobi polynomials [10] are defined by

(3.1)
$$P_n(x; a, b, c; q) = {}_3\phi_2 \left(\begin{array}{c} q^{-n}, abq^{n+1}, x \\ aq, cq \end{array} \middle| q; q \right),$$

where

$${}_{r}\phi_{s}\left(\begin{array}{c}a_{1},\ldots,a_{r}\\b_{1},\ldots,b_{s}\end{array}\middle|q;z\right)=\sum_{n=0}^{\infty}\frac{(a_{q},\ldots,a_{r};q)_{n}}{(q,b_{1},\ldots,b_{s};q)_{n}}z^{n}(-q^{(n-1)/2})^{n(s+1-r)}$$

denotes a basic hypergeometric series, and

$$(a_1,\ldots,a_r;q)_n = (a_1;q)_n \cdots (a_r;q)_n$$

denotes a product of q-shifted factorials.

The normalized polynomials (3.2)

$$p_n(x) := (-acq^2)^{-n/2} q^{\binom{-n}{2}/2} \left(\frac{(1-abq^{2n+1})(abq, aq, cq; q)_n}{(1-abq)(q, bq, abc^{-1}q; q)_n} \right)^{1/2} \times P_n(x; a, b, c; q)$$

satisfy the orthogonality relation

(3.3)
$$\int_{cq}^{aq} p_m(x) p_n(x) w(x) \, d_q x = \delta_{m,n},$$

with weight

(3.4)
$$w(x) = \frac{(aq, bq, cq, abc^{-1}q; q)_{\infty}}{aq(1-q)(q, a^{-1}c, ac^{-1}q, abq^{2}; q)_{\infty}} \frac{(a^{-1}x, c^{-1}x; q)_{\infty}}{(x, bc^{-1}x; q)_{\infty}}$$

Note that $p_0(x) = 1$ and, since w(a) = w(c) = 0, w satisfies (2.2). The q-difference equation in the form (2.16) is (3.5)

$$y(q^{2}x) = \left(1 + \frac{D(x) - (1 - q^{-n})(1 - abq^{n+1})q^{2}x^{2}}{B(x)}\right)y(qx) - \frac{D(x)}{B(x)}y(x),$$

where B(x) = aq(qx - 1)(bqx - c) and $D(x) = q^{2}(x - a)(x - c)$.

2. Big q-Laguerre polynomials. The big q-Laguerre polynomials [10] are defined by

(3.6)
$$P_n(x;a,b;q) = {}_3\phi_2 \left(\begin{array}{c} q^{-n},0,x \\ aq,bq \end{array} \middle| q;q \right).$$

The normalized polynomials

(3.7)
$$p_n(x) := (-abq^2)^{-n/2}q^{-\binom{n}{2}/2} \left(\frac{(aq, bq; q)_n}{(q; q)_n}\right)^{1/2} P_n(x; a, b; q)$$

satisfy the orthogonality relation

(3.8)
$$\int_{bq}^{aq} p_m(x)p_n(x)w(x)\,d_qx = \delta_{m,n},$$

with weight

(3.9)
$$w(x) = \frac{(aq, bq; q)_{\infty}}{aq(1-q)(q, ba^{-1}, ab^{-1}q; q)_{\infty}} \frac{(a^{-1}x, b^{-1}x; q)_{\infty}}{(x; q)_{\infty}}$$

Note that $p_0(x) = 1$ and, since w(a) = w(b) = 0, w satisfies (2.2). The q-difference equation in the form (2.16) is

(3.10)
$$y(q^2x) = \left(1 + \frac{D(x) + (1 - q^{-n})q^2x^2}{B(x)}\right)y(qx) - \frac{D(x)}{B(x)}y(x),$$

where B(x) = abq(qx - 1) and $D(x) = -q^2(x - a)(x - b)$.

Using the algorithm of Lemma 2.2, we can find fourth order q-difference equations for these two families of discrete q-orthogonal polynomials.

REFERENCES

1. G. Bangerezako, The fourth order equation for the Laguerre-Hahn orthogonal polynomials on special nonuniform lattices, to appear.

2. W. Bauldry, Estimates of asymmetric Freud polynomials on the real line, J. Approx. Theory 63 (1990), 225–237.

3. S.S. Bonan and D.S. Clark, *Estimates of the Hermite and the Freud polynomials*, J. Approx. Theory **63** (1990), 210–224.

4. Y. Chen and M.E.H. Ismail, Ladder operators and differential equations for orthogonal polynomials, J. Physics A **30** (1997), 7818–7829.

5. M. Foupouagnigni, A. Ronveaux and W. Koepf, Fourth order q-difference equation for the first associated of the q-classical orthogonal polynomials, J. Comp. Appl. Math. **101** (1999), 231–236.

6. G. Gasper and M. Rahman, *Basic hypergeometric series*, Cambridge University Press, Cambridge, 1990.

7. M.E.H. Ismail, Difference equations and quantized discriminants for q-orthogonal polynomials, manuscript, 1999.

8. — , Continuous and discrete q-orthogonal polynomials, manuscript, 1998.

9. M.E.H. Ismail and J. Wimp, On differential equations for orthogonal polynomials, Methods Appl. Anal. 5 (1998), 439–452.

10. R. Koekoek and R. Swarttouw, *The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue*, Report 98-17, Delft University of Technology, Delft, 1998.

11. J. Wimp, Explicit formulas for the associated Jacobi polynomials, Canad. J. Math. **39** (1987), 893–1000.

Department of Mathematics, University of South Florida, Tampa, FL 33620-5700

Email address: ismail@math.usf.edu

DEPARTMENT OF COMPUTER AND MATHEMATICAL SCIENCES, UNIVERSITY OF HOUSTON-DOWNTOWN, HOUSTON, TX 77002-1094 Email address: simeonov@dt.uh.edu