A FOURTH ORDER q-DIFFERENCE EQUATION FOR ASSOCIATED DISCRETE q-ORTHOGONAL POLYNOMIALS

MOURAD E.H. ISMAIL AND PLAMEN SIMEONOV

Abstract

In this work we prove that the associated polynomials of general q-orthogonal polynomials satisfy a fourth order q-difference equation. We provide two algorithms for constructing this equation and we identify its solution basis.

1. Introduction. Let $w(x)$ be a positive weight defined on a q-linear lattice $\left\{a q^{n}, b q^{n}: n \in \mathbf{N}_{0}\right\}$ with $|q|<1$. The corresponding discrete q-orthonormal polynomials satisfy the orthogonality relation

$$
\begin{equation*}
\int_{a}^{b} p_{m}(x) p_{n}(x) w(x) d_{q} x=\delta_{m, n} \tag{1.1}
\end{equation*}
$$

where the q-integral, see $[\mathbf{6}, \mathbf{8}]$, is defined by

$$
\begin{equation*}
\int_{a}^{b} f(x) d_{q} x=\sum_{n=0}^{\infty}\left(b q^{n}-b q^{n+1}\right) f\left(b q^{n}\right)-\sum_{n=0}^{\infty}\left(a q^{n}-a q^{n+1}\right) f\left(a q^{n}\right) \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\infty} f(x) d_{q} x=(1-q) \sum_{n=-\infty}^{\infty} q^{n} f\left(q^{n}\right) \tag{1.3}
\end{equation*}
$$

If we normalize the weight so that

$$
\int_{a}^{b} w(x) d_{q} x=1
$$

Research partially supported by NSF grant DMS-99-70865.
Received by the editors on September 29, 2000, and in revised form on May 3, 2001.
then the polynomial sequence $\left\{p_{n}(x)\right\}$ will satisfy initial conditions of the form

$$
\begin{equation*}
p_{0}(x)=1, \quad p_{1}(x)=\left(x-b_{0}\right) / a_{1} \tag{1.4}
\end{equation*}
$$

and can be generated by a three-term recurrence relation of the form

$$
\begin{equation*}
x p_{n}(x)=a_{n+1} p_{n+1}(x)+b_{n} p_{n}(x)+a_{n} p_{n-1}(x), \quad n \in \mathbf{N} \tag{1.5}
\end{equation*}
$$

Note that (1.5) also holds for $n=0$ if we set $p_{-1}(x)=0$.
In $[\mathbf{3}, \mathbf{2}, \mathbf{4}]$ it was proved in the case $q=1$ that, if $d_{q} x$ in (1.1) is replaced by $d x$, then $p_{n}(x)$ satisfies a linear second order differential equation. This was extended to the discrete q-case in [7]. A q-analogue of $d / d x$ is the q-difference operator D_{q} defined by

$$
\begin{equation*}
D_{q} f(x)=\frac{f(q x)-f(x)}{(q-1) x} \tag{1.6}
\end{equation*}
$$

In [7] it was established that q-orthonormal polynomials satisfy a second order linear q-difference equation of the form

$$
\begin{equation*}
D_{q}^{2} p_{n}(x)+R_{n}(x) D_{q} p_{n}(x)+S_{n}(x) p_{n}(x)=0 \tag{1.7}
\end{equation*}
$$

The coefficients $R_{n}(x)$ and $S_{n}(x)$ are defined by

$$
\begin{align*}
R_{n}(x)= & B_{n}(q x)-\frac{D_{q} A_{n}(x)}{A_{n}(x)} \tag{1.8}\\
& +\frac{A_{n}(q x)}{A_{n}(x)}\left(B_{n-1}(x)-\frac{\left(x-b_{n-1}\right) A_{n-1}(x)}{a_{n-1}}\right) \\
S_{n}(x)= & \frac{a_{n}}{a_{n-1}} A_{n}(q x) A_{n-1}(x)+D_{q} B_{n}(x)-\frac{B_{n}(x)}{A_{n}(x)} D_{q} A_{n}(x) \tag{1.9}\\
& +B_{n}(x) \frac{A_{n}(q x)}{A_{n}(x)}\left(B_{n-1}(x)-\frac{\left(x-b_{n-1}\right) A_{n-1}(x)}{a_{n-1}}\right)
\end{align*}
$$

where the functions $A_{n}(x)$ and $B_{n}(x)$ are defined by

$$
\begin{align*}
A_{n}(x)= & \left.a_{n} \frac{w(y / q) p_{n}(y) p_{n}(y / q)}{x-y / q}\right|_{a} ^{b} \tag{1.10}\\
& +a_{n} \int_{a}^{b} \frac{u(q x)-u(y)}{q x-y} p_{n}(y) p_{n}(y / q) w(y) d_{q} y \\
B_{n}= & \left.a_{n} \frac{w(y / q) p_{n}(y) p_{n-1}(y / q)}{x-y / q}\right|_{a} ^{b} \tag{1.11}\\
& +a_{n} \int_{a}^{b} \frac{u(q x)-u(y)}{q x-y} p_{n}(y) p_{n-1}(y / q) w(y) d_{q} y
\end{align*}
$$

The function $u(x)$ is related to the weight through the generalized Pearson equation

$$
\begin{equation*}
D_{q} w(x)=-u(q x) w(q x) \tag{1.12}
\end{equation*}
$$

The second order q-difference equation follows from the lowering operator relationship [7]

$$
\begin{equation*}
D_{q} p_{n}(x)=A_{n}(x) p_{n-1}(x)-B_{n}(x) p_{n}(x), \quad n \in \mathbf{N} \tag{1.13}
\end{equation*}
$$

the three-term recurrence relation (1.5), and the property

$$
\begin{align*}
D_{q}(f(x) g(x))= & f(x) D_{q} g(x)+g(q x) D_{q} f(x) \\
= & f(x) D_{q} g(x)+g(x) D_{q} f(x) \tag{1.14}\\
& +(q-1) x D_{q} f(x) D_{q} g(x)
\end{align*}
$$

When the definition of a_{n} and b_{n} in (1.4) and (1.5) can be extended from integers to nonnegative real numbers, as for example when a_{n} and b_{n} are rational functions of n or of q^{n}, then the associated orthogonal polynomials of order $c,\left\{p_{n}^{(c)}(x)\right\}$ are generated by the initial conditions

$$
\begin{equation*}
p_{0}^{(c)}(x)=1, \quad p_{1}^{(c)}(x)=\left(x-b_{c}\right) / a_{c+1} \tag{1.15}
\end{equation*}
$$

and the recurrence relation

$$
\begin{equation*}
x p_{n}^{(c)}(x)=a_{n+c+1} p_{n+1}^{(c)}(x)+b_{n+c} p_{n}^{(c)}(x)+a_{n+c} p_{n-1}^{(c)}(x), \quad n \in \mathbf{N} \tag{1.16}
\end{equation*}
$$

2. The fourth order q-difference equation for the associated polynomials. A basis of solutions for (1.5) is formed by $p_{n}(x)$ and the function of the second kind $Q_{n}(x)[7]$,

$$
\begin{equation*}
Q_{n}(x)=\frac{1}{w(x)} \int_{a}^{b} \frac{p_{n}(t)}{x-t} w(t) d_{q} t \tag{2.1}
\end{equation*}
$$

defined for $x \notin\left\{a q^{n}, b q^{n}, n \in \mathbf{N}_{0}\right\}$. Moreover, it was shown in [7] that $Q_{n}(x)$ satisfies the q-difference equation (1.7) provided that

$$
\begin{equation*}
w(a / q)=w(b / q)=0 \tag{2.2}
\end{equation*}
$$

From now on we shall assume that the weight w satisfies (2.2).
Let $c \in \mathbf{N}_{0}$. Since $p_{n+c}(x)$ and $Q_{n+c}(x)$ form a solution basis for (1.16), using (1.5) and the initial conditions (1.15) we obtain

$$
\begin{equation*}
p_{n}^{(c)}(x)=\frac{Q_{c-1}(x) p_{n+c}(x)-p_{c-1}(x) Q_{n+c}(x)}{Q_{c-1}(x) p_{c}(x)-p_{c-1}(x) Q_{c}(x)} \tag{2.3}
\end{equation*}
$$

Let $\Delta_{c}(x)$ denote the denominator in (2.3). Using (1.5) we get

$$
\begin{aligned}
\Delta_{c}(x)= & p_{c}(x)\left[\left(x-b_{c}\right) Q_{c}(x)-a_{c+1} Q_{c+1}(x)\right] / a_{c} \\
& -Q_{c}(x)\left[\left(x-b_{c}\right) p_{c}(x)-a_{c+1} p_{c+1}(x)\right] / a_{c} \\
= & a_{c+1} \Delta_{c+1}(x) / a_{c}
\end{aligned}
$$

Thus, $a_{c+1} \Delta_{c+1}(x)=a_{c} \Delta_{c}(x)$ for every $c \geq 0$. Then

$$
\begin{aligned}
\Delta_{c}(x) & =\frac{a_{1}}{a_{c}}\left(Q_{0}(x) p_{1}(x)-p_{0}(x) Q_{1}(x)\right) \\
& =\frac{1}{a_{c} w(x)} \int_{a}^{b} \frac{a_{1}\left(p_{1}(x)-p_{1}(t)\right)}{x-t} w(t) d_{q} t \\
& =\frac{1}{a_{c} w(x)}
\end{aligned}
$$

Hence,

$$
\begin{equation*}
p_{n}^{(c)}(x) / w(x)=a_{c}\left[Q_{c-1}(x) p_{n+c}(x)-p_{c-1}(x) Q_{n+c}(x)\right] \tag{2.4}
\end{equation*}
$$

Note that $p_{c-1}(x)$ and $Q_{c-1}(x)$ satisfy the q-difference equation

$$
\begin{equation*}
D_{q}^{2} y(x)+R_{c-1}(x) D_{q} y(x)+S_{c-1}(x) y(x)=0 \tag{2.5}
\end{equation*}
$$

$p_{n+c}(x)$ and $Q_{n+c}(x)$ satisfy the q-difference equation

$$
\begin{equation*}
D_{q}^{2} y(x)+R_{n+c}(x) D_{q} y(x)+S_{n+c}(x) y(x)=0 \tag{2.6}
\end{equation*}
$$

and $p_{n}^{(c)} / w$ is a linear combination of $Q_{c-1} p_{n+c}$ and $p_{c-1} Q_{n+c}$.

Lemma 2.1. Let y_{1} and y_{2} be solutions of the second order q difference equations

$$
\begin{equation*}
D_{q}^{2} y(x)=f_{j}(x) D_{q} y(x)+g_{j}(x) y(x), \quad j=1,2 \tag{2.7}
\end{equation*}
$$

respectively. Then $y_{1} y_{2}$ satisfies a q-difference equation of order less than five.

Proof. We set $u_{1}=y_{1} y_{2}, u_{2}=y_{1} D_{q} y_{2}, u_{3}=y_{2} D_{q} y_{1}, u_{4}=D_{q} y_{1} D_{q} y_{2}$ and $\tau(x)=(q-1) x$. From (1.14) and (2.7) we obtain

$$
\begin{aligned}
D_{q} u_{1}= & u_{2}+u_{3}+\tau u_{4} \\
D_{q} u_{2}= & y_{1} D_{q}^{2} y_{2}+D_{q} y_{2} D_{q} y_{1}+\tau D_{q} y_{1} D_{q}^{2} y_{2} \\
= & u_{4}+\left(y_{1}+\tau D_{q} y_{1}\right)\left(f_{2} D_{q} y_{2}+g_{2} y_{2}\right) \\
= & g_{2} u_{1}+f_{2} u_{2}+\tau g_{2} u_{3}+\left(1+\tau f_{2}\right) u_{4} \\
D_{q} u_{3}= & g_{1} u_{1}+\tau g_{1} u_{2}+f_{1} u_{3}+\left(1+\tau f_{1}\right) u_{4} \\
D_{q} u_{4}= & D_{q} y_{1} D_{q}^{2} y_{2}+D_{q} y_{2} D_{q}^{2} y_{1}+\tau D_{q}^{2} y_{1} D_{q}^{2} y_{2} \\
= & f_{2} u_{4}+g_{2} u_{3}+f_{1} u_{4}+g_{1} u_{2} \\
& +\tau f_{1} f_{2} u_{4}+\tau f_{1} g_{2} u_{3}+\tau f_{2} g_{1} u_{2}+\tau g_{1} g_{2} u_{1} .
\end{aligned}
$$

These equations can be written in a matrix form. Set $\bar{u}=\left(u_{1}, u_{2}, u_{3}, u_{r}\right)^{t}$ and define

$$
A=\left[\begin{array}{cccc}
0 & 1 & 1 & \tau \\
g_{2} & f_{2} & \tau g_{2} & 1+\tau f_{2} \\
g_{1} & \tau g_{1} & f_{1} & 1+\tau f_{1} \\
\tau g_{1} g_{2} & g_{1}+\tau f_{2} g_{1} & g_{2}+\tau f_{1} g_{2} & f_{1}+f_{2}+\tau f_{1} f_{2}
\end{array}\right]
$$

Then we have

$$
\begin{equation*}
D_{q} \bar{u}=A \bar{u} \tag{2.8}
\end{equation*}
$$

Let M be a 4×4 function matrix. From the matrix version of (1.14) and (2.8) we get

$$
\begin{align*}
D_{q}(M \bar{u}) & =M D_{q} \bar{u}+\left(D_{q} M\right) \bar{u}+\tau\left(D_{q} M\right) D_{q} \bar{u} \\
& =\left(M A+D_{q} M+\tau\left(D_{q} M\right) A\right) \bar{u} \tag{2.9}\\
& =:\left(L_{A} M\right) \bar{u}
\end{align*}
$$

From (2.8)-(2.9), it follows that

$$
\begin{equation*}
D_{q}^{n} \bar{u}=\left(L_{A}^{n-1} A\right) \bar{u}, \quad n \in \mathbf{N} \tag{2.10}
\end{equation*}
$$

where L_{A}^{0} is the identity operator, and the operator $L_{A}^{n+1}=L_{A} \circ L_{A}^{n}$ is defined inductively by composition. Let $M_{1}, M_{2}, M_{3}, M_{4}$ be the 5×4 matrices formed in the following way: the first, second, third, fourth and fifth rows of M_{j} are the j th rows of the matrices E (the 4×4 identity matrix), $A, L_{A} A, L_{A}^{2} A$ and $L_{A}^{3} A$, respectively. Then

$$
\begin{equation*}
\left(u_{j}, D_{q} u_{j}, D_{q}^{2} u_{j}, D_{q}^{3} u_{j}, D_{q}^{4} u_{j}\right)^{t}=M_{j} \bar{u}, \quad j=1, \ldots, 4 \tag{2.11}
\end{equation*}
$$

Since $\operatorname{rank}\left(M_{j}\right) \leq 4$, a nonzero vector $\bar{\lambda}_{j}=\left(\lambda_{j, 1}, \lambda_{j, 2}, \lambda_{j, 3}, \lambda_{j, 4}, \lambda_{j, 5}\right)^{t}$ exists such that $\bar{\lambda}_{j}^{t} M_{j}=0$, that is,

$$
\begin{equation*}
\sum_{k=0}^{4} \lambda_{j, k+1} D_{q}^{k} u_{j}=\bar{\lambda}_{j}^{t} M_{j} \bar{u}=0 \tag{2.12}
\end{equation*}
$$

This is a q-difference equation for u_{j} of order at most 4. Such vector $\bar{\lambda}_{j}$ can be found using that if $m_{s, l}^{(j)}$ are the entries of M_{j} and $\Delta_{k}\left(M_{j}\right)$ is the determinant of the 4×4 matrix obtained from M_{j} by removing its k th row, then $\sum_{k=1}^{5} m_{k, l}^{(j)}(-1)^{k} \Delta_{k}\left(M_{j}\right)=0, l=1, \ldots, 4$. Thus we can take

$$
\bar{\lambda}_{j}=\left(\Delta_{1}\left(M_{j}\right),-\Delta_{2}\left(M_{j}\right), \Delta_{3}\left(M_{j}\right),-\Delta_{4}\left(M_{j}\right), \Delta_{5}\left(M_{j}\right)\right)^{t}
$$

provided that it is a nonzero vector.

In most cases it is more convenient to write the q-difference equation (1.7) as a functional equation involving $p_{n}(x), p_{n}(q x)$ and $p_{n}\left(q^{2} x\right)$. In
fact, any q-difference equation of degree n can be written as a functional equation of the form

$$
\begin{equation*}
\sum_{j=0}^{n} a_{j}(x) f\left(q^{j} x\right)=0 \tag{2.13}
\end{equation*}
$$

and, conversely, any equation of the form (2.13) with $a_{n}(x) \neq 0$ is equivalent to a q-difference equation of degree n. This follows from the transformation formulas

$$
D_{q}^{n} f(x)=\frac{1}{((1-q) x)^{n}} \sum_{j=0}^{n}(-1)^{j} q^{\left({ }_{2}^{j+1}\right)-j n}\left[\begin{array}{c}
n \tag{2.14}\\
j
\end{array}\right]_{q} f\left(q^{j} x\right), \quad n \in \mathbf{N}_{0}
$$

$$
f\left(q^{n} x\right)=\sum_{j=0}^{n}(-1)^{j}((1-q) x)^{j} q^{\binom{j}{2}}\left[\begin{array}{c}
n \tag{2.15}\\
j
\end{array}\right]_{q} D_{q}^{j} f(x), \quad n \in \mathbf{N}_{0}
$$

where

$$
\left[\begin{array}{c}
n \\
j
\end{array}\right]_{q}:=\frac{(q ; q)_{n}}{(q ; q)_{j}(q ; q)_{n-j}}, \quad j=0, \ldots, n
$$

are the so-called q-binomial coefficients, and

$$
(a ; q)_{n}:=\prod_{k=0}^{n-1}\left(1-a q^{k}\right), \quad n \in \mathbf{N}, \quad(a ; q)_{0}:=1
$$

The next lemma follows immediately from Lemma 2.1 and (2.14)-(2.15). We will give a different proof that provides a simpler algorithm for constructing a q-difference equation for the associated polynomials.

Lemma 2.2. Let y_{1} and y_{2} be solutions of the functional equations

$$
\begin{equation*}
y\left(q^{2} x\right)=\tilde{f}_{j}(x) y(q x)+\tilde{g}_{j}(x) y(x), \quad j=1,2 \tag{2.16}
\end{equation*}
$$

respectively. Then $v(x)=y_{1}(x) y_{2}(x)$ satisfies a functional equation of the form

$$
\begin{equation*}
\sum_{k=0}^{4} c_{k}(x) v\left(q^{k} x\right)=0 \tag{2.17}
\end{equation*}
$$

Proof. We set $v_{1}(x)=v(x), v_{2}(x)=y_{1}(x) y_{2}(q x), v_{3}(x)=$ $y_{1}(q x) y_{2}(x)$ and $v_{4}(x)=y_{1}(q x) y_{2}(q x)$. Then $v_{1}(q x)=v_{4}(x)$ and, from equations (2.16) we obtain

$$
\begin{aligned}
v_{2}(q x)= & y_{1}(q x) y_{2}\left(q^{2} x\right)=\tilde{f}_{2}(x) v_{4}(x)+\tilde{g}_{2}(x) v_{3}(x), \\
v_{3}(q x)= & y_{1}\left(q^{2} x\right) y_{2}(q x)=\tilde{f}_{1}(x) v_{4}(x)+\tilde{g}_{1}(x) v_{2}(x), \\
v_{4}(q x)= & y_{1}\left(q^{2} x\right) y_{2}\left(q^{2} x\right) \\
= & \tilde{f}_{1}(x) \tilde{f}_{2}(x) v_{4}(x)+\tilde{f}_{1}(x) \tilde{g}_{2}(x) v_{3}(x) \\
& +\tilde{f}_{2}(x) \tilde{g}_{1}(x) v_{2}(x)+\tilde{g}_{1}(x) \tilde{g}_{2}(x) v_{1}(x) .
\end{aligned}
$$

These equations can be written in a matrix form. With $\bar{v}(x)=$ $\left(v_{1}(x), v_{2}(x), v_{3}(x), v_{4}(x)\right)^{t}$ and

$$
T(x)=\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & \tilde{g}_{2}(x) & \tilde{f}_{2}(x) \\
0 & \tilde{g}_{1}(x) & 0 & \tilde{f}_{1}(x) \\
\tilde{g}_{1}(x) \tilde{g}_{2}(x) & \tilde{f}_{2}(x) \tilde{g}_{1}(x) & \tilde{f}_{1}(x) \tilde{g}_{2}(x) & \tilde{f}_{1}(x) \tilde{f}_{2}(x)
\end{array}\right]
$$

we get the matrix equation

$$
\begin{equation*}
\bar{v}(q x)=T(x) \bar{v}(x) \tag{2.18}
\end{equation*}
$$

We set $T_{1}(x)=T(x)$ and $T_{n+1}(x)=T\left(q^{n} x\right) T_{n}(x), n \in \mathbf{N}$. Then equation (2.18) implies $\bar{v}\left(q^{n} x\right)=T_{n}(x) \bar{v}(x), n \in \mathbf{N}$. As in the proof of Lemma 2.1, for $j=1, \ldots, 4$, we define \tilde{M}_{j} to be the 5×4 matrix, the i th row of which is the j th row of $T_{i}(x), i=0, \ldots, 4$, where $T_{0}(x)$ is the 4×4 identity matrix E. Let $\bar{\lambda}_{j}=\left(\lambda_{j, 1}, \lambda_{j, 2}, \lambda_{j, 3}, \lambda_{j, 4}, \lambda_{j, 5}\right)^{t}$ be a nonzero vector such that $\bar{\lambda}_{j}^{t} \tilde{M}_{j}=0$. Then

$$
\begin{equation*}
\sum_{k=0}^{4} \lambda_{j, k+1} v_{j}\left(q^{k} x\right)=\bar{\lambda}_{j}^{t} \tilde{M}_{j} \bar{v}=0 \tag{2.19}
\end{equation*}
$$

is a functional equation for $v_{j}(x)$ of the form (2.17). In particular, for $j=1$, we get such an equation for $v_{1}(x)=y_{1}(x) y_{2}(x)$ that can be written as a q-difference equation using (2.15).

The main result concerning associated q-orthogonal polynomials is the following

Theorem 2.3. The associated q-orthogonal polynomials $p_{n}^{(c)}$ with $c \in \mathbf{N}$ satisfy a fourth order q-difference equation.

Proof. Applying Lemma 2.1 to (2.5)-(2.6) and using (2.4), we obtain a q-difference equation for $p_{n}^{(c)} / w$ of order at most four. Using formula (2.14) we can write this equation as an equation of the form (2.13) for $p_{n}^{(c)} / w$ and then for $p_{n}^{(c)}$ itself. Then applying (2.15) we get a q-difference equation for $p_{n}^{(c)}$ of order at most four. From Lemma 2.1 it follows that each one of the functions $w p_{c-1} p_{n+c}, w p_{c-1} Q_{n+c}, w Q_{c-1} p_{n+c}$ and $w Q_{c-1} Q_{n+c}$ satisfy this $q-$ difference equation. We will show that these four functions form a solution basis for the q-difference equation for $p_{n}^{(c)}$, in particular the order of this equation is exactly four.

Indeed, assume that for some constants A, B, C and D,

$$
\begin{aligned}
& \text { (2.20) } A w(x) p_{c-1}(x) p_{n+c}(x)+B w(x) p_{c-1}(x) Q_{n+c}(x) \\
& \quad+C w(x) Q_{c-1}(x) p_{n+c}(x)+D w(x) Q_{c-1}(x) Q_{n+c}(x)=0, \quad x \in S_{w}
\end{aligned}
$$

where $S_{w}=\{x: w(x)>0\}$. Since Q_{c-1} and Q_{n+c} have simple poles at infinitely many elements of the q-lattice, see (2.1), $D=0$. Then $B=C=0$ in which case $A=0$ or $C=-B \neq 0$. For the latter case we use (2.4).
If $C=-B \neq 0$ we get from (2.20) with $D=0$ and using (2.4)

$$
A w(x) p_{c-1}(x) p_{n+c}(x)=\left(B / a_{c}\right) p_{n}^{(c)}(x), \quad x \in S_{w}
$$

hence

$$
\int_{a}^{b}\left(p_{n}^{(c)}(x)\right)^{2} d_{q} x=\left(a_{c} A / B\right) \int_{a}^{b} p_{n}^{(c)}(x) p_{c-1}(x) p_{n+c}(x) w(x) d_{q} x=0
$$

since $p_{n+c}(x)$ is orthogonal to $p_{n}^{(c)}(x) p_{c-1}(x)$ which is a polynomial of degree $n+c-1$. This is clearly impossible.

3. Some examples.

1. Big q-Jacobi polynomials. The big q-Jacobi polynomials $[\mathbf{1 0}]$ are defined by

$$
P_{n}(x ; a, b, c ; q)={ }_{3} \phi_{2}\left(\left.\begin{array}{c}
q^{-n}, a b q^{n+1}, x \tag{3.1}\\
a q, c q
\end{array} \right\rvert\, q ; q\right)
$$

where

$$
{ }_{r} \phi_{s}\left(\left.\begin{array}{c}
a_{1}, \ldots, a_{r} \\
b_{1}, \ldots, b_{s}
\end{array} \right\rvert\, q ; z\right)=\sum_{n=0}^{\infty} \frac{\left(a_{q}, \ldots, a_{r} ; q\right)_{n}}{\left(q, b_{1}, \ldots, b_{s} ; q\right)_{n}} z^{n}\left(-q^{(n-1) / 2}\right)^{n(s+1-r)}
$$

denotes a basic hypergeometric series, and

$$
\left(a_{1}, \ldots, a_{r} ; q\right)_{n}=\left(a_{1} ; q\right)_{n} \cdots\left(a_{r} ; q\right)_{n}
$$

denotes a product of q-shifted factorials.
The normalized polynomials

$$
\left.\left.\begin{array}{rl}
p_{n}(x):=\left(-a c q^{2}\right)^{-n / 2} q^{(-n} 2 \tag{3.2}\\
2
\end{array}\right) / 2\left(\frac{\left(1-a b q^{2 n+1}\right)(a b q, a q, c q ; q)_{n}}{(1-a b q)\left(q, b q, a b c^{-1} q ; q\right)_{n}}\right)^{1 / 2}\right)
$$

satisfy the orthogonality relation

$$
\begin{equation*}
\int_{c q}^{a q} p_{m}(x) p_{n}(x) w(x) d_{q} x=\delta_{m, n} \tag{3.3}
\end{equation*}
$$

with weight

$$
\begin{equation*}
w(x)=\frac{\left(a q, b q, c q, a b c^{-1} q ; q\right)_{\infty}}{a q(1-q)\left(q, a^{-1} c, a c^{-1} q, a b q^{2} ; q\right)_{\infty}} \frac{\left(a^{-1} x, c^{-1} x ; q\right)_{\infty}}{\left(x, b c^{-1} x ; q\right)_{\infty}} \tag{3.4}
\end{equation*}
$$

Note that $p_{0}(x)=1$ and, since $w(a)=w(c)=0, w$ satisfies (2.2). The q-difference equation in the form (2.16) is
$y\left(q^{2} x\right)=\left(1+\frac{D(x)-\left(1-q^{-n}\right)\left(1-a b q^{n+1}\right) q^{2} x^{2}}{B(x)}\right) y(q x)-\frac{D(x)}{B(x)} y(x)$,
where $B(x)=a q(q x-1)(b q x-c)$ and $D(x)=q^{2}(x-a)(x-c)$.
2. Big q-Laguerre polynomials. The big q-Laguerre polynomials [10] are defined by

$$
P_{n}(x ; a, b ; q)={ }_{3} \phi_{2}\left(\left.\begin{array}{c}
q^{-n}, 0, x \tag{3.6}\\
a q, b q
\end{array} \right\rvert\, q ; q\right) .
$$

The normalized polynomials

$$
\begin{equation*}
p_{n}(x):=\left(-a b q^{2}\right)^{-n / 2} q-\binom{n}{2} / 2\left(\frac{(a q, b q ; q)_{n}}{(q ; q)_{n}}\right)^{1 / 2} P_{n}(x ; a, b ; q) \tag{3.7}
\end{equation*}
$$

satisfy the orthogonality relation

$$
\begin{equation*}
\int_{b q}^{a q} p_{m}(x) p_{n}(x) w(x) d_{q} x=\delta_{m, n} \tag{3.8}
\end{equation*}
$$

with weight

$$
\begin{equation*}
w(x)=\frac{(a q, b q ; q)_{\infty}}{a q(1-q)\left(q, b a^{-1}, a b^{-1} q ; q\right)_{\infty}} \frac{\left(a^{-1} x, b^{-1} x ; q\right)_{\infty}}{(x ; q)_{\infty}} \tag{3.9}
\end{equation*}
$$

Note that $p_{0}(x)=1$ and, since $w(a)=w(b)=0, w$ satisfies (2.2). The q-difference equation in the form (2.16) is

$$
\begin{equation*}
y\left(q^{2} x\right)=\left(1+\frac{D(x)+\left(1-q^{-n}\right) q^{2} x^{2}}{B(x)}\right) y(q x)-\frac{D(x)}{B(x)} y(x) \tag{3.10}
\end{equation*}
$$

where $B(x)=a b q(q x-1)$ and $D(x)=-q^{2}(x-a)(x-b)$.
Using the algorithm of Lemma 2.2, we can find fourth order q difference equations for these two families of discrete q-orthogonal polynomials.

REFERENCES

1. G. Bangerezako, The fourth order equation for the Laguerre-Hahn orthogonal polynomials on special nonuniform lattices, to appear.
2. W. Bauldry, Estimates of asymmetric Freud polynomials on the real line, J. Approx. Theory 63 (1990), 225-237.
3. S.S. Bonan and D.S. Clark, Estimates of the Hermite and the Freud polynomials, J. Approx. Theory 63 (1990), 210-224.
4. Y. Chen and M.E.H. Ismail, Ladder operators and differential equations for orthogonal polynomials, J. Physics A 30 (1997), 7818-7829.
5. M. Foupouagnigni, A. Ronveaux and W. Koepf, Fourth order q-difference equation for the first associated of the q-classical orthogonal polynomials, J. Comp. Appl. Math. 101 (1999), 231-236.
6. G. Gasper and M. Rahman, Basic hypergeometric series, Cambridge University Press, Cambridge, 1990.
7. M.E.H. Ismail, Difference equations and quantized discriminants for q orthogonal polynomials, manuscript, 1999.
8. - Continuous and discrete q-orthogonal polynomials, manuscript, 1998.
9. M.E.H. Ismail and J. Wimp, On differential equations for orthogonal polynomials, Methods Appl. Anal. 5 (1998), 439-452.
10. R. Koekoek and R. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Report 98-17, Delft University of Technology, Delft, 1998.
11. J. Wimp, Explicit formulas for the associated Jacobi polynomials, Canad. J. Math. 39 (1987), 893-1000.

Department of Mathematics, University of South Florida, Tampa, FL 33620-5700
Email address: ismail@math.usf.edu
Department of Computer and Mathematical Sciences, University of Houston-Downtown, Houston, TX 77002-1094
Email address: simeonov@dt.uh.edu

