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ELLIPTIC BETA INTEGRALS AND MODULAR
HYPERGEOMETRIC SUMS: AN OVERVIEW

J.F. VAN DIEJEN AND V.P. SPIRIDONOV

ABSTRACT. Recent results on elliptic generalizations of
various beta integrals are reviewed. Firstly, a single vari-
able Askey-Wilson type integral describing an elliptic exten-
sion of the Nassrallah-Rahman integral is presented. Then
a multiple Selberg-type integral defining an elliptic extension
of the Macdonald-Morris constant term identities for nonre-
duced root systems is described. The Frenkel-Turaev sum and
its multivariable generalization, conjectured recently by War-
naar, follow from these integrals through residue calculus. A
new elliptic Selberg-type integral, from which the previous one
can be derived via a technique due to Gustafson, is defined.
Residue calculus applied to this integral yields an elliptic gen-
eralization of the Denis-Gustafson sum a modular extension
of the Milne-type multiple basic hypergeometric sums.

1. Introduction. Elliptic generalizations of the very well-poised ba-
sic hypergeometric series were introduced by Frenkel and Turaev [12]
in relation to elliptic solutions of the Yang-Baxter equation associated
with the SOS-type solvable models of statistical mechanics [5]. These
series were derived also in [30] through a different technique, as solu-
tions of some particular spectral problems associated with new families
of discrete biorthogonal rational functions generalizing the Wilson’s
functions [33, 34]. Various nice properties of the elliptic hypergeomet-
ric series were discovered in [12]. Firstly, under a balancing condition,
they become invariant with respect to modular transformations. Sec-
ondly, there exist natural generalizations of the Bailey’s transforma-
tion formula for a terminating 10Φ9 series and of the Jackson’s sum
for a terminating 8Φ7 series. Some new identities for terminating ellip-
tic hypergeometric series were derived and a multiple extension of the
Frenkel-Turaev sum was conjectured by Warnaar in [32].
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The present note is a brief status report on recent results concerning
elliptic beta integrals and their relation to the modular hypergeometric
series summation formulae of Frenkel-Turaev, Warnaar and to an
elliptic analogue of the Milne-type sums [6, 17, 19, 20], to be
defined below. The main new results were discussed in the authors’
talks at the NSF conference accompanying the NATO ASI “Special
functions 2000”and their detailed treatment can be found in [27, 28,
8 10].

We start from a description of notations. Let p and q be two complex
variables with |p|, |q| < 1. The q-shifted factorials are defined as [13]

(a; q)∞ ≡
∞∏

k=0

(1− aqk),

(a; p)s =
(a; p)∞
(aps; p)∞

,

(a1, . . . , ak; p)s =
k∏

m=1

(am; p)s.

Define the doubly infinite product

(1) (a; p, q)∞ ≡
∞∏

j,k=0

(1− apjqk).

For p = 0, one has (a; 0, q)∞ = (a; q)∞. The elliptic gamma function
[25] is defined as a ratio of such double products

(2) Γ(z; p, q) =
(pqz−1; p, q)∞
(z; p, q)∞

.

It satisfies the first-order q- and p-difference equations

(3) Γ(qz; p, q) = θ(z; p)Γ(z; p, q), Γ(pz; p, q) = θ(z; q)Γ(z; p, q),

where the θ-function is defined as

(4) θ(z; p) = (z, pz−1; p)∞.



ELLIPTIC BETA INTEGRALS 641

This function is related to the Jacobi θ1-function in a simple way

θ1(x | τ ) = 2
∞∑

m=0

(−1)mp(2m+1)2/8 sin π(2m+ 1)x

= p1/8ie−πix(p; p)∞θ(e2πix; p),

where p = e2πiτ . The key properties of the θ(z; p) function used
extensively in the calculations are described by the following functional
relations

(6) θ(pz; p) = θ(z−1; p) = −z−1θ(z; p).

Elliptic Pochhammer symbols are defined naturally as quotients of
elliptic gamma functions:

(7) θ(z; p; q)m =
Γ(zqm; p, q)
Γ(z; p, q)

=
m−1∏
j=0

θ(zqj ; p), m ∈ N.

It is easy to see that, for p = 0, one has

Γ(z; 0, q) =
1

(z; q)∞
, θ(z; 0, q)m = (z; q)m =

m−1∏
j=0

(1− zqj).

Copying the q-shifted factorial notations, we introduce the following
shorthand conventions

Γ(a1, . . . , al; p, q) =
l∏

r=1

Γ(ar; p, q),

θ(a1, . . . , al; p; q)m =
l∏

r=1

θ(ar; p; q)m,

θ(a1, . . . , al; p) =
l∏

r=1

θ(ar; p).

Some further properties of the elliptic gamma function are described
in [25] and [11].
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2. A one-variable elliptic beta integral. The Euler’s beta
integral

∫ 1

0
xα−1(1 − x)β−1 dx = Γ(α)Γ(β)/Γ(α + β), Reα, Re β >

0, and its various extensions play a fundamental role in the theory
of special functions [1]. The most important one-variable q-beta
integrals are the Askey-Wilson integral, determining the absolutely
continuous part of the measure for Askey-Wilson polynomials [4], and
the Nassrallah-Rahman integral [21], determining the measure of a
family of continuous 10Φ9 biorthogonal rational functions [22]. For a
comprehensive survey of the one-variable q-beta integrals, see [23].

Recently, one of us introduced a new Askey-Wilson type integral that
amounts to a generalization of the Nassrallah-Rahman integral to the
elliptic level [27, 28].

Theorem 1. Let T be the positively oriented unit circle, and let us
take two complex bases p and q satisfying the inequalities |p|, |q| < 1 and
five complex parameters tm, m = 0, . . . , 4, satisfying the constraints
|tm| < 1, |pq| < |A|, where A =

∏4
m=0 tm. Then the following identity

holds true:
(9)
1
2πi

∫
T

∏4
m=0 Γ(ztm, z

−1tm; p, q)
Γ(z2, z−2, zA, z−1A; p, q)

dz

z
=

2
∏

0≤m<s≤4 Γ(tmts; p, q)

(q; q)∞(p; p)∞Γ4
m=0Γ(At

−1
m ; p, q)

.

The same formula remains true if one deforms the unit circle to a
contour C which encircles the poles at z = {trplqm}l,m∈N, r = 0, . . . , 4,
{pl+1qm+1A−1}l,m∈N and separates them from the partner poles with
inversed coordinates.

For p = 0, the equality (9) is reduced to the Nassrallah-Rahman
q-beta integral [21, 22]:
(10)

1
2πi

∫
T

(z2, z−2, zA, z−1A; q)∞∏4
m=0(ztm, z−1tm; q)∞

dz

z
=

2
∏4

m=0(t
−1
m A; q)∞

(q; q)∞
∏

0≤m<s≤4(tmts; q)∞
,

where it is assumed that |tm| < 1. When one of the parameters, say t4,
goes to zero, (10) is reduced to the celebrated Askey-Wilson integral
(11)

1
2πi

∫
T

(z2, z−2; q)∞∏3
m=0(ztm, z−1tm; q)∞

dz

z
=

2(t0t1t2t3; q)∞
(q; q)∞

∏
0≤m<s≤3(tmts; q)∞

.
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The method used by Askey for proving the Askey-Wilson and
Nassrallah-Rahman integrals [2, 3] was partially lifted to the elliptic
level in [27]. This resulted in the proof of the integral (9) for the fol-
lowing choice of parameters: |p| < |t0| < 1 and t1 = qk1 , t2 = qk2+1/2,
t3 = −qk3 , t4 = −qk4+1/2, where ki ∈ N such that the condition
|pq| < |A| is not violated. Additional elements of the scheme, lead-
ing to the complete proof of the equality (9), have been discovered in
[28]. It can be shown [29] that, similar to the situation with (10),
(11), the elliptic beta integral (9) determines a measure for an elliptic
generalization of the Rahman’s set of biorthogonal rational functions
[22], which may be considered as a continuous analogue of the set of
functions discovered in [30]. Actually, there is even a more general set
of meromorphic functions whose biorthogonality is determined by the
integral (9) [29].

3. An elliptic Selberg integral generalizing Macdonald-
Morris conjectures. A natural multivariable generalization of the
Euler’s beta integral is given by the Selberg integral [1]. Its various
q-extensions play a vital role in the Macdonald’s theory of multivari-
able orthogonal polynomials and symmetric functions [18]. The most
general known multiple q-beta integrals were derived by Gustafson [14,
15]. In this and the next sections we describe elliptic generalizations of
the corresponding integrals which are reduced to (9) in the one-variable
cases.

The following conjecture was put forward in [8] and its proof under
some vanishing hypothesis (to be described below) is given in [9].

Conjecture. Let p, q, t, tr, r = 0, . . . , 4, be complex variables such
that |p|, |q|, |t| and |tr| are smaller than 1 and |pq| < |B|, where
B = t2n−2

∏4
s=0 ts. Then the following Selberg-type integration formula

holds true
(12)∫

T n

∆n(z; p, q)
dz1
z1

· · · dzn

zn

=
2nn!

(q; q)n∞(p; p)n∞

n∏
j=1

Γ(tj ; p, q)
Γ(t; p, q)

∏
0≤r<s≤4 Γ(t

j−1trts; p, q)∏4
r=0 Γ(tn+j−2t−1

r
∏4

s=0 ts; p, q)
,
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where
(13)

∆n(z; p, q) =
1

(2πi)n
∏

1≤j<k≤n

Γ(tzjzk, tzjz
−1
k , tz−1

j zk, tz
−1
j z−1

k ; p, q)

Γ(zjzk, zjz
−1
k , z−1

j zk, z
−1
j z−1

k ; p, q)

×
n∏

j=1

∏4
j=0 Γ(trzj , trz

−1
j ; p, q)

Γ(z2
j , z

−2
j , Bzj , Bz

−1
j ; p, q)

and T denotes the unit circle with positive orientation.

For n = 1 this integration formula coincides with (9). For p = 0 the
equality (12) is reduced to the multivariate Nassrallah-Rahman integral
derived by Gustafson in [15]

1
(2πi)n

∫
T n

∏
1≤j<k≤n

(zjzk, z
−1
k , z−1

j zk, z
−1
j z−1

k ; q)∞
(tzjzk, tzjz

−1
k , tz−1

j zk, tz
−1
j z−1

k ; q)∞

(14)

×
∏

1≤j≤n

(z2
j , z

−2
j , zjB, z

−1
j B; q)∞∏4

r=0(trzj , trz
−1
j ; q)∞

dz1
z1

· · · dzn

zn

= 2nn!
n∏

j=1

(t; q)∞
∏4

r=0(t
n+j−2t−1

r

∏4
s=0 ts; q)∞

(q, tj ; q)∞
∏

0≤r<s≤4(trtstj−1; q)∞
,

with |q|, |t| and |tr| < 1 for r = 0, . . . , 4.

The above integration formulae are nothing else than the statements
that the constant terms of the Laurent expansions in z of the functions
standing under the integral signs coincide with the expressions given
on the corresponding righthand sides. For p = 0 these constant
terms are equal for special values of the parameters tr to the constant
terms associated with the classical root systems that were originally
conjectured by Macdonald and Morris [16, 18].

Now we would like to describe briefly how one can derive the multiple
Frenkel-Turaev summation formula conjectured by Warnaar in [32].
The corresponding sum appears to be new even after the reductions to
the q and purely hypergeometric series levels.

For the parameter region for which the identity (12) is valid, the
integrated function has poles in zj lying inside the unit circle T at
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z = {trplqm}l,m∈N, r = 0, . . . , 4, {z±1
k tplqm}l,m∈N, {z±1

k pl+1qm+1}l,m∈N

and {pl+1qm+1B−1}l,m∈N. Due to the zj → z−1
j reflection-invariant of

the integrand, the poles located outside T are related to those inside
by simple inversion.

Let us now dilate the parameter t0 from the regime |t0| < 1 to |t0| > 1.
As a result, a finite number of poles moves from the interior of T to
the exterior and the same number of poles makes an opposite move.
More precisely, let 0 < p, q < 1 and N ∈ N be some integer such that
q−N < |t0| < q−N−1. Then, for p < 1/|t0| the poles in zj at t0qm,
m = 0, . . . , N , relocate to the exterior of T and the poles related to
these by inversion move to the interior of T . A theorem providing a
residue formula taking into account such pole movements across the
integration contour has been formulated in [8].

Theorem 2. Let ∆n(z; p, q) be given by (13) with 0 < q, t < 1 and
t0, . . . , t4 generic such that #{arg(tr), arg(t−1

r ) | r = 0, . . . , 4} = 10
and t−1

r

∏r
s=0 ts /∈ [1 + ∞[ for r = 0, . . . , 4. Let also |t0| > 1 and

|tr| < 1 for r = 1, . . . , 4, and 0 < p < min(|t0|−1, q−1|B|). Then

(15)
∫

Cn

∆n(z; p, q)
dz1
z1

· · · dzn

zn

=
n∑

m=0

2mm!
(
n
m

) ∑
0≤λ1≤···≤λm

|τmqλm |>1

∫
T n−m

µm(λ, z; p; q)
dz1
z1

· · · dzn−m

zn−m
,

where τj = t0t
j−1, j = 1, . . . , n,

µm(λ, z; p; q) = κmνm(λ; p; q)δm,n−m(λ, z)∆n−m(z; p, q),

with

κm =
∏

1≤j<k≤m

Γ(tτkτ
−1
j , tτ−1

k τ−1
j ; p, q)

Γ(τkτ
−1
j , τ−1

k τ−1
j ; p, q)

×
m∏

j=1

∏4
r=1 Γ(trτj , trτ

−1
j ; p, q)

(q; q)∞(p; p)∞Γ(τ−2
j , τ−1

j B, τjB; p, q)
,
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νm(λ; p; q) = q

∑m

j=1
λj t

2
∑m

j=1
(n−j)λj

×
∏

1≤j<k≤m

(
θ(τkτjq

λk+λj , τkτ
−1
j qλk−λj ; p)

θ(τkτj , τkτ
−1
j ; p)

× θ(tτkτj ; p; q)λk+λj

θ(qt−1τkτj ; p; q)λk+λj

θ(tτkτ
−1
j ; p; q)λk−λj

θ(qt−1τkτ
−1
j ; p; q)λk−λj

)

×
m∏

j=1

(
θ(τ2

j q
2λj ; p)

θ(τ2
j ; p)

t∏
r=0

θ(trτj ; p; q)λj

θ(qt−1
r τj ; p; q)λj

)
,

and

δm,n−m(λ, z) =
∏

1≤j≤m1≤k≤n−m

Γ(tτjq
λjzk, tτjq

λjz−1
k , tτ−1

j q−λjzk, tτ
−1
j q−λjz−1

k ; p, q)

Γ(τjqλjzk, τjqλjz−1
k , τ−1

j q−λjzk, τ
−1
j q−λjz−1

k ; p, q)
.

Here T is the positively oriented unit circle and the contour C ⊂ C
is a smooth positively oriented Jordan curve around zero such that
(i) every half-line parting from zero intersects C just once, (ii) C−1 :=
{z ∈ C | z−1 ∈ C} = C and (iii) C separates the poles in zj

at {trplqm, pl+1qm+1B−1}l,m∈N, r = 0, . . . , 4, (all in the interior of
C) from those related to it by inversion (all in the exterior of C).
Furthermore, t5, in νm(λ; p; q), is determined by q, t and t0, . . . , t4 via
the balancing condition q−1t2n−2

∏t
r=0 tr = 1.

The proof of the theorem is given in [8]; it uses a residue formula
for a multivariate Askey-Wilson q-beta integral derived by Stokman in
[31].

By analyticity, the formula (12) becomes valid for a wider region
of parameters (for tr dilated radially to the exterior of T provided
we replace the contour of integration T by C which satisfies the
conditions (i) (iii) of the last theorem. Notice that these conditions
avoid crossings over poles and that C also separates the interior poles
in zj at {z±1

k tplqm}l,m∈N from the ones with inversed coordinates.

By taking a special limit in the described residue formula, one can
get the following multi-dimensional modular hypergeometric Frenkel-
Turaev sum:
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Corollary 3. Take N ∈ N. For parameters subject to

(16)
q−1t2n−2

5∏
r=0

tr = 1 (balancing condition),

qN tn−1t0t4 = 1 (truncation condition),

one has the following meromorphic identity in the parameters

(17)
∑

0≤λ1≤λ2≤···≤λn≤N

νn(λ; p; q) = Nn(p; q),

where νn(λ; p; q) is as stated in Theorem 2 and
(18)

Nn(p; q) =
n∏

j=1

θ(qtn+j−2t20; p; q)N
∏

1≤r<s≤3 θ(qt
1−jt−1

r t−1
s ; p; q)N

θ(qt2−n−j
∏3

r=0 t
−1
r ; p; q)N

∏3
r=1 θ(qtj−1t0t

−1
r ; p; q)N

,

provided none of the denominators of νn(λ; p; q) and Nn(p; q) vanishes.

Indeed, the lefthand side expression in (15) can be replaced by the
combination of elliptic gamma functions standing on the righthand
side of (12). Suppose that t1−nq−N < |t0| < t1−nq−N−1 for some
N ∈ N. Then division of the residue formula (15) by 2nn!κn and
the limit t4 → t−1

0 t1−nq−N yield the stated summation formula for
a restricted parameter domain. However, the resulting formula may
be analytically extended to a meromorphic identity in q, t and tr,
r = 0, . . . , 5 restricted only by the balancing and truncation conditions
in (16). Further details of the derivation can be found in [8].

For n = 1 the sum (17) coincides with the elliptic generalization of the
terminating 8Φ7 Jackson sum derived by Frenkel and Turaev [12]. The
arbitrary n case of the sum (17) was conjectured by Warnaar in [32]. Its
direct proof has been obtained recently in [24]. For completeness, let us
give explicit forms of summation formulae appearing in two sequential
p → 0 and q → 1 limits taken in (17).

Corollary 4. Let parameters t, tm be subject to the balancing and
truncation conditions in (16). Then the following multiple generaliza-
tion of the Jackson’s sum for terminating very well-poised balanced 8Φ7
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basic hypergeometric series holds true

(19)
∑

0≤λ1≤λ2≤···≤λn≤N

νn(λ; q) = Nn(q),

where
(20)

νn(λ; q) = q

∑n

j=1
λj t

2
∑n

j=1
(n−j)λj

×
∏

1≤j<k≤n

(
1− τkτjq

λk+λj

1− τkτj

1− τkτ
−1
j qλk−λj

1− τkτ
−1
j

× (tτkτj ; q)λk+λj

(qt−1τkτj ; q)λk+λj

(tτkτ
−1
j ; q)λk−λj

(qt−1τkτ
−1
j ; q)λk−λj

)

×
∏

1≤j≤n

(
1− τ2

j q
2λj

1− τ2
j

t∏
r=0

(trτj ; q)λj

(qt−1
r τj ; q)λj

)
,

and

(21) Nn(q) =
∏

1≤j≤n

(qtn+j−2t20; q)N
∏

1≤r<s≤3(qt
1−jt−1

r t−1
s ; q)N

(qt2−n−j
∏3

r=0 t
−1
r ; q)N

∏3
r=1(qtj−1t0t

−1
r ; q)N

.

If one uses relations (16) for elimination of t4, t5 and afterwards
takes the limit t3 → ∞, then this summation formula reduces to the
terminating multiple 6Φ5 sum derived in [7]. Other multi-dimensional
generalizations of the terminating 8Φ7 sum that are different from
the one described above can be found in the works of Milne, Denis-
Gustafson and Schlosser, see, e.g., [6, 19, 26].

The plain 7F6 hypergeometric series level simplification of the sum-
mation formula (19) is reached if one sets t = qg, tr = qgr , r = 0, . . . , 5,
and takes the limit q → 1. The result generalizes the terminating mul-
tiple 5F4 sum of [7].

Corollary 5. Let the parameters g, gr, r = 0, . . . , 5, be subject to
the constraints

(22)
(2n− 2)g +

5∑
r=0

gr − 1 = 0 (balancing condition)

(n− 1)g + g0 + g4 +N = 0 (truncation condition).
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Then the following multiple generalization of the Dougall’s very well-
posed 2-balanced terminating 7F6 sum holds true:

(23)
∑

0≤λ1λ2≤···≤λn≤N

νn(λ) = Nn,

where

νn(λ) =
∏

1≤j<k≤n

((
1 +

λk + λj

ρk + ρj

)(
1 +

λk − λj

ρk − ρj

)

× (g + ρk + ρj)λk+λj
(g + ρk − ρj)λk−λj

(1− g + ρk + ρj)λk+λj
(1− g + ρk − ρj)λk−λj

)

×
n∏

j=1

(
1 +

λj

ρj

) 5∏
r=0

(gr + ρj)λj

(1− gr + ρj)λj

,

with ρj ≡ (j − 1)g + g0, j = 1, . . . , n, and
(25)

Nn =
n∏

j=1

(1 + (n+ j − 2)g + 2g0)N
∏

1≤r<s≤3(1− (j − 1)g − gr − gs)N
(1− (n+ j − 2)g − ∑3

r=0 gr)N
∏3

r=1(1 + (j − 1)g + g0 − gr)N
.

Here (a)n is the standard Pochhammer symbol, (a)n = a(a+1) · · · (a+
n− 1).

4. A multiparameter elliptic Selberg integral and a related
summation formula. We would like to describe now another Selberg-
type extension of the elliptic beta integral (9) proposed in [9]. This
integral generalizes the multi-parameter q-beta integral derived by
Gustafson in [14] and one can deduce from it the previous elliptic
Selberg integration formula (12). The following vanishing hypothesis
is needed for a proof of this new elliptic Selberg integral.

Hypothesis. Let 0 < p, q < 1, and let t0, . . . , t2n+1 be complex
parameters such that 0 < |tr| < 1 for r = 0, . . . , 2n, t2n+1 =

∏2n
r=0 t

−1
r

and with generic argument values in the sense that #{arg(tr), arg(t−1
r ) |
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r = 0, . . . , 2n+ 1} = 4n+ 4. Then

(26)
∫

Cn

∏
1≤j<k≤n

Γ−1(zjzk, zjz
−1
k , z−1

j zk, z
−1
j z−1

k ; p, q)

×
n∏

j=1

∏2n+1
r=0 Γ(trzj , trz

−1
j ; p, q)

Γ(z2
j , z

−2
j ; p, q)

dz1
z1

· · · dzn

zn
= 0,

where the contour C ⊂ C is a positively oriented Jordan curve around
zero such that (i) the interior is star shaped around the origin: every
half-line parting from zero intersects C just once, (ii) C−1 := {z ∈ C |
z−1 ∈ C} = C and (iii) the points tr, r = 0, . . . , 2n + 1, all lie in the
interior of C.

Although there are some heuristic indications on the validity of
equality (26), they did not get yet a firm mathematical ground. For
n = 1 the conjecture (26) is confirmed by the elliptic beta integral
(9). For arbitrary n and p = 0, it follows from the Sp(n) Selberg-type
Nassrallah-Rahman integral of Gustafson [14]. As a consequence of the
vanishing hypothesis the following statement was inferred in [9].

Corollary 6. Let the complex parameters tr, r = 0, . . . , 2n + 2,
satisfy the constraints |tm| < 1 and |pq| < |A| where A =

∏2n+2
r=0 tr.

Then the following integration formula holds true

(27)
1

(2πi)n

∫
T n

∏
1≤j<k≤n

Γ−1(zjzk, zjz
−1
k , z−1

j zk, z
−1
j z−1

k ; , q)

×
n∏

j=1

∏2n+2
r=0 Γ(trzj , trz

−1
j ; p, q)

Γ(z2
j , z

−2
j , Azj , Az

−1
j ; p, q)

dz1
z1

· · · dzn

zn

=
2nn!

(q; q)n∞(p; p)n∞

∏
0≤r<s≤2n+2 Γ(trts; p, q)∏2n+2

r=0 Γ(At−1
r ; p, q)

.

Theorem 7. The integral (27) implies the integral (12).

Proof. Let us denote the integral on the lefthand side of (12) by
In(t, tr). Using (27) one can evaluate the interior integral of the
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following expression

(28)
1

(2πi)2n−1

∫
T n

∫
T n−1

∏
1≤j<k≤n

Γ−1(zjzk, zjz
−1
k , z−1

j zk, z
−1
j z−1

k ; p, q)

×
n∏

j=1

∏4
r=0 Γ(trzj , trz

−1
j ; p, q)

Γ(z2
j , z

−2
j , zjtn−1

∏
0≤s≤4 ts, z

−1
j tn−1

∏
0≤s≤4 ts; p, q)

×
∏

1≤j≤n
1≤k≤n−1

Γ(t1/2zjwk, t
1/2zjw

−1
k , t1/2z−1

j wk, t
1/2z−1

j w−1
k ; p, q)

×
∏

1≤j<k≤n−1

Γ−1(wjwk, wjw
−1
k , w−1

j wk, w
−1
j w−1

k ; p, q)

×
n−1∏
j=1

Γ(wjt
n−3/2

∏
0≤s≤4 ts, w

−1
j tn−3/2

∏
0≤s≤4 ts; p, q)

Γ(w2
j , w

−2
j , wjt2n−3/2

∏
0≤s≤4 ts, w

−1
j t2n−3/2

∏
0≤s≤4 ts; p, q)

× dw1

w1
· · · dwn−1

wn−1

dz1
z1

· · · dzn

zn
,

and arrive to the lefthand side of the integral (12) up to some factor.
Evaluating the exterior integral in (28) one comes to In−1(t, t1/2tr) up
to a factor. Equating these two evaluations entails the recursion
(29)

In(t, tr)
In−1(t, t1/2tr)

=
2n

(q; q)∞(p; p)∞
Γ(tn; p, q)
Γ(t; p, q)

∏
0≤r<s≤4 Γ(t4ts; p, q)∏4

r=0 Γ(tn−1t−1
r

∏4
s=0 ts; p, q)

,

iteration of which, starting from the known value for n = 1 from
Theorem 1, yields (12).

Thus the proof of the integral (12) is reduced to the proof of the
equality (26). Comparing with (27) one can see that the hypothesis
(26) is equivalent to the condition that the lefthand side of the integral
(27) vanishes after an appropriate deformation of the contour T to
C and an enforcement of the parameters to live on the hypersurface
determined by the constraint A = t2n+2.

The general guideline of the proof of the integration formula (27)
given in [9] corresponds to an elliptic generalization of the Gustafson’s
method [14] which, in turn, may be considered as a multivariate
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generalization of the method of Askey used in [3] for proving the
Nassrallah-Rahman integral.

First, we prove that both sides of the integration formula (27) satisfy
a set of (n+2)-term difference equations with some elliptic coefficients
(for n = 1 these are the equations derived in [27]). After this, the
integral (27) is proved by induction in n. Assuming that the equality
(27) has been established for some n = N , it can be proved at n = N+1
for a particular finite discrete set of parameters t2n+1, t2n+2 (it is only
at one of the intermediate steps in this procedure that the vanishing
hypothesis (26) is needed). After the application of a limiting procedure
and some analyticity arguments, similar to the ones used in [28], the
validity of the identity (27) with n = N + 1 integrations is established
for arbitrary values of the parameters. For a complete presentation of
all the details, we refer to [9].

Let us describe now a new modular hypergeometric series summation
formula derived in [10] which appears from the residue calculus for the
integral (27) and defines an elliptic analogue of the Milne-type multiple
sums [6, 17, 19, 20].

In order to get this sum we first dilate n parameters tj , j = 1, . . . , n,
from the region |tj | < 1 to |tj | > 1. In the same way as in the
previous case, a finite number of poles leaves the unit disk and the
same number of different poles enters it. Denote as Nj , j = 1, . . . , n,
positive integers satisfying the relations |tjqNj+1| < 1 < tjq

Nj | and
take |p| < min(|tj |−1, |q−1A|). Then a residue formula for the integral
(27), similar to (15), can be derived. Taking a special limit in the
parameters one gets a finite sum of residues instead of the continuous
integral.

Theorem 8. Let t0, . . . , t2n+3 be complex parameters subject
to the constraints as just described with the parameter t2n+3 deter-
mined from the balancing condition q−1

∏2n+3
r=0 tr = 1. For such a

choice of parameters, the integral (27) remains valid provided T is
replaced by the integration contour C separating the interior poles
at {trplqm, pl+1qm+1A−1}l,m∈N, r = 0, . . . , 2n + 2, from the exte-
rior ones obtained by the inversion of coordinates. Then the limits
tn+j → t−1

j q−Nj , j = 1, . . . , n, in the formula (27) with the de-
formed integration contour C degenerate it into the following elliptic



ELLIPTIC BETA INTEGRALS 653

hypergeometric series summation formula

(30)
∑

0≤λj≤Nj

j=1,... ,n

q

∑n

j=1
jλj

∏
1≤j<k≤n

θ(tjtkqλj+λk , tjt
−1
k qλj−λk ; p)

θ(tjtk, tjt−1
k ; p)

×
∏

1≤j≤n

(
θ(t2jq

2λj ; p)
θ(t2j ; p)

∏
0≤r≤2n+3

θ(tjtr; p; q)λj

θ(qtjt−1
r ; p; q)λj

)

= θ(q/ab, q/ac, q/bc; p; q)N1+···+Nn

×
∏

1≤j<k≤n

θ(qtjtk; p; q)Nj
θ(qtjtk; p; q)Nk

θ(qtjtk; p; q)Nj+Nk

×
∏

1≤j≤n

θ(qt2j ; p; q)Nj

θ(qtj/a, qtj/b, qtj/c, q1+N1+···+Nn−Nj/tjabc; p; q)Nj

,

where a = t2n+1, b = t2n+2, c = t0.

For p = 0 (basic hypergeometric degeneration) (30) reduces to the
Denis-Gustafson sum, (see Theorem 4.1 in [6], a similar result was
obtained by Milne and Lilly in [20]). Further degeneration q = 1
(plain hypergeometric level) has been described in Theorem 4.5 of [6].

In order to analyze modular properties of the elliptic functions iden-
tity (30), it is necessary to introduce modular parameters σ, τ : q ≡
e2πiσ, p ≡ e2πiτ and to redefine the parameters as tj = qgj . Using
the well-known modular transformation properties of the θ1-function
it is now fairly easy to check that (30) is invariant with respect to the
natural action of SL2(Z):

τ −→ aτ + b

cτ + d
, σ −→ σ

cτ + d
,

where a, b, c, d ∈ Z such that ad − bc = 1 and the parameters gj

are assumed to be invariant under these transformations. Modular
invariance of the multiple Frenkel-Turaev sum (17) is verified in the
same way. Repeating the arguments used in [8] in the analysis of (17),
one can conclude that, just from the validity of the original Denis-
Gustafson sum and modular invariance of both sides of the equality
(30), the elliptic summation formula (30) holds true at least up to the
order σ10 for small σ.
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