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LINEAR RATIONAL INTERPOLATION AND
ITS APPLICATION IN APPROXIMATION

AND BOUNDARY VALUE PROBLEMS

JEAN-PAUL BERRUT AND HANS D. MITTELMANN

ABSTRACT. We consider the case that a function with
large gradients in the interior of an interval has to be approx-
imated over this interval or that the pseudospectral method
is used to compute a similar solution of an ordinary boundary
value problem. In both cases we assume that the function
has minimal continuity properties but can be evaluated any-
where in the given interval. The key idea is then to attach
poles to the polynomial interpolant, respectively solution of
the collocation problem to obtain a special rational function
with poles whose location has been optimized suitably. In the
first case, the max norm of the error is minimized while in
the second, the same norm is minimized of the residual of the
given differential equation. The algorithms are presented and
discussed. Their effectiveness is demonstrated with numerical
results.

1. Introduction. In this paper we address two problems which are
not necessarily related but for both of which we propose in principle the
same basic approach. The first problem is that of interpolating a given
continuous function f between N + 1 distinct points x0, x1, . . . , xN

in an interval [a, b]. We can choose [a, b] = [−1, 1] without loss of
generality. The second problem is that of solving on the same interval
the boundary value problem (BVP)

u′′(x) + p(x)u′(x) + q(x)u(x) = f(x)
u(−1) = ul, u(1) = ur,

where all arising functions belong to C∞[−1, 1] and where ul and ur

are given real numbers. For more details on both problems, see [16,
17].
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Our goal is to improve on the classical method of polynomial inter-
polation for the first and that of polynomial collocation for the second
problem in the case that the interpolated function f , respectively, the
solution u of the boundary value problem, has steep gradients in the
interior of the domain.

In Section 2 we will outline the method proposed for interpolation and
in Section 3 that for collocation. Both lead to an optimization problem
or a sequence of optimization problems which are nondifferentiable and
of which a global optimum is sought. In Section 4 we use essentially the
same example in that f = u, to demonstrate the effectiveness of our
method on both problems. A conclusion and outlook to future work is
given in the last section. A referee has suggested that Section 2 was an
“implementation” of a method given in [8]. However this earlier work
deals with the Padé approximation of analytic functions with known
branch points. No interpolation and no pole optimization is involved as
in the present work. In [9], then, the authors suggest a certain choice
of poles, again nonoptimal, in the context of improved calculations of
critical indices from series expansion for Ising models.

2. The interpolation problem.

2.1 Attaching poles to a rational interpolant. Let Pm and Rm,n,
respectively, denote the linear space of all polynomials of degree ≤ m
and the set of all rational functions with numerator degree ≤ m and
denominator degree ≤ n; furthermore, denote by fk the interpolated
values f(xk), k = 0(1)N , of f . Then the unique polynomial p ∈ PN

that interpolates f between the xks can be written in its barycentric
form [25]

(1) p(x) =
N∑

k=0

wk

x− xk
fk

/
N∑

k=0

wk

x− xk
,

where the so-called weight wk corresponding to the point xk is given
by

wk := 1

/
N∏

i=0
i �=k

(xk − xi).
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The barycentric formula has several advantages [18, page 357]. One of
them is the fact that the weights appear in the numerator and in the
denominator, so that they can be divided by any common factor. For
example, simplified weights for equidistant points are given by

w∗
k = (−1)k

(
N
k

)

[19], while for the Čebyšev points of the second kind cosφk, φk :=
k(π/N), one simply has [26]

w∗
k = (−1)kδk, δk =

{
1/2 k = 0 or k = n,
1 otherwise.

As explained in the introduction, we now want to improve the quality
of approximation of the interpolant, for instance for functions with very
large derivatives. For that purpose, we will divide the interpolant by
an optimized denominator, while maintaining interpolation.

Let P, P ≤ N , be the number of the poles zi, i = 1(1)P , we want to
attach to the polynomial. If some rational interpolant r ∈ RN,P exists
with poles at the zis and only there, then its denominator takes the
values

(2) dk := a

P∏
i=1

(xk − zi), a �= 0 ∈ C arbitrary,

at the interpolation points xk. (The fact that it does not exist may
mean that attaching the poles is not advisable from an approximation
point of view, see [10].) To ensure interpolation, the values of the
numerator at the same points will be fkdk. Writing the numerator and
the denominator as interpolating polynomials in their barycentric form
(1) and simplifying, one gets

(3) r(x) :=
N∑

k=0

wk

∏P
i=1(xk − zi)
x− xk

fk

/
N∑

k=0

wk

∏P
i=1(xk − zi)
x− xk

.

Equation (3) is the barycentric representation of r with weights vk :=
wk

∏P
i=1(xk − zi). In the present case, with all poles prescribed, the
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weights are unique up to a constant [10]. Barycentric representations
exist for every rational interpolant in RN,N [12, 15]: Every r ∈ RN,N

interpolating a continuous function f between interpolation points
x0, . . . , xN can be written in its barycentric form

(4) r(x) =
N∑

j=0

βj

x− xj
f(xj)

/
N∑

j=0

βj

x− xj

for some (nonunique) numbers βj , one per node. This form can be used
to solve the classical rational interpolation problem also when only a
subset of the poles are prescribed [10].

In order to stay with real interpolants, we will assume here that the
poles zi with �zi ∈ [−1, 1] and �zi �= 0 arise in complex conjugate
pairs.

2.2 Optimizing the location of the poles. In order to find a best
denominator, we will solve the optimization problem of minimizing
‖r − f‖∞ with respect to the zis, where r is given by (3).

It should be noted that it is not possible that a pole zi thereby comes
to lie in the interval [−1, 1]: The corresponding r could never be a best
approximation to the continuous f . In particular, no zi can be zero.

The existence of an optimum is easily seen. For that purpose, write
r as

(5) r(x) :=
N∑

k=0

wk

∏P
i=1(1− (xk/zi))
x− xk

fk

/
N∑

k=0

wk

∏P
i=1(1− (xk/zi))
x− xk

and consider every zi on its Riemann sphere C. For the polynomial,
every pole is at infinity, i.e., at the north pole of its sphere. And a set
of zis must exist for which ‖r − f‖∞ is minimal, since the latter is a
continuous function over the cross product of the P spheres, which is
compact.

The unicity question is more involved. We refer to [16] for a
discussion. This question can also be narrowed to an interesting one,
to which we do not have the answer. It is obvious from the above
construction that nonvanishing of the numerator at zi is a sufficient



LINEAR RATIONAL INTERPOLATION 531

condition for r to have a pole there. We have checked this condition in
its equivalent form [10]

(6) ci :=
N∑

k=0

wkfk

P∑
j=1
j �=i

(xk − zj) �= 0.

Do the conditions (6) one for every zi imply that the corresponding
optimal r is the only one minimizing ‖r − f‖∞?

We want to point to another representation of (6). Indeed,
∑N

k=0 wkg(xk)
is the leading coefficient of the polynomial interpolating a function g
between the xk’s, and this coefficient is the divided difference of g with
respect to all xk’s [3]. Condition (6) can therefore be written as

(7) gi[x0, x1, . . . , xN ] �= 0, where gi(x) := f(x)
P∏

j=1
j �=i

(x− zj).

A nice property of the suggested interpolation deserves special notice.
The approximation error cannot increase with the number of poles, this
in sharp contrast with classical rational interpolation. Indeed, as a new
unknown, say zP , is added to the set of variables, {z1, . . . , zP−1}, the
optimal value of the latter is a feasible vector for the higher dimensional
optimization–simply set zP = ∞ in (5). In particular, attaching poles
to the interpolating polynomial can never worsen the quality of the
approximation.

3. The collocation problem.

3.1 The linear rational collocation method for boundary value prob-
lems. This generalization, suggested in [13] and [14], of the now clas-
sical polynomial pseudospectral method is the application to BVPs of
the corresponding method for time evolution problems [6]. In view of
the presence in the problem of the boundary values we will restrict our-
selves here to sets of nodes containing the extremities −1 and 1, i.e.,
Lobatto points (and in particular to Čebyšev points of the second kind
in numerical computations).
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For fixed β := [β0, . . . , βN ]T the set of all interpolants (4) is a linear
space, which we denote by R(β)

N . The functions

L
(β)
j (x) :=

βj

x− xj

/
N∑

k=0

βk

x− xk
, j = 0, 1, . . . , N

make up a basis for this space, and they satisfy the Lagrange property

(8) L
(β)
j (xi) = δij .

The linear rational collocation method (in barycentric form) for the
nodes xj tries to find u as an interpolant

(9) ũ(x) =
N∑

j=0

ũjL
(β)
j (x) ∈ R(β)

N

for some given weights β and some unknown values ũj at the xj ’s, in-
serts ũ into the differential equation and collocates at the same interior
xj ’s, for simplicity (collocation points different from the interpolation
points, as in [23], are equally possible). This yields the following linear
system of equations for the ũj :

(10)
N∑

j=0

ũjL
(β)′′

j (xi) + p(xi)
N∑

j=0

ũjL
(β)′

j (xi) + q(xi)
N∑

j=0

ũjL
(β)
j (xi) = f(xi),

i = 1, . . . , N − 1, ũ0 = ur, ũN = ul.

In order to write this in a more concise way, we introduce the following
vectors and matrices in RN−1, respectively R(N−1)×(N−1):

ũ : = [ũ1, ũ2, . . . , ũN−1]T ,

D(1) = (D(1)
ij ), D

(1)
ij := L

(β)′

j (xi),

D(2) = (D(2)
ij ), D

(2)
ij := L

(β)′′

j (xi),

P : = diag (p(xi)), Q := diag (q(xi)),

f : = [f(xi) − ur(L
(β)′′

0 (xi) + p(xi)L
(β)′

0 (xi))

− ul(L
(β)′′

N (xi) + p(xi)L
(β)′

N (xi))]T ,
i, j = 1, . . . , N − 1.
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In view of (8), the system (10) for the unknown values ũ of the
approximant then reads Aũ = f , with

A := D(2) + PD(1) + Q.

Despite its large condition number for N large, it can be solved very
precisely by Gaussian elimination [11, 27] for only the differentiation
operator A is ill-conditioned, not the integration operator A−1. The
system can often also be solved efficiently via iterative methods [11],
although the ill-conditioned A then slows down the convergence. (A
conformal shift of the points can improve on this, see [13].) In our
calculations we have alleviated the instability by using the modified
Schneider-Werner formulae [5, 4]

D
(1)
ij =

{
[(βj/βi)/xi − xj ] i �= j,

−∑
k �=i D

(1)
ik i = j,

and

D
(2)
ij =

{
2D(1)

ij [D(1)
ii − 1/(xi − xj)] i �= j,

−∑
k �=i D

(2)
ik i = j,

for the differentiation matrices.

In the polynomial case (βj = wj , all j) and with the interpolation
points used here, the convergence of ũ toward the exact solution u is
exponential if p, q and f are analytic in an ellipse containing [−1, 1].
This can be seen through subtraction (and use of the exponential
convergence of the interpolant of f) if p and q are constant, by more
elaborate theorems [20] in general cases. However, this fast convergence
may show only after too large an N for practical purposes if u has
huge gradients, see the introduction in [16]. For error bounds through
estimates of the norm of the inverse operator, see the work by Wright
and collaborators, [1, 22].

We will now make use of the pole attachment in Section 2.1 for
improving upon the polynomial pseudospectral solution of two-point
boundary value problems. As in Section 2.2 we suggest to move them
from infinity toward an optimal position where they minimize some
error functional, which we take here as the norm

(11) J(z) := ‖r′′ + pr′ + qr − f‖∞, z := [z1, . . . , zP ]T ,



534 J.-P. BERRUT AND H.D. MITTELMANN

of the residual of the differential equation for the approximation r with
given values ũ of the solution u at the xjs.

Note that the interpolated values ũj at the nodes do not change as
one displaces the poles: Interpolation is warranted by the barycentric
formula [12, 15, 28]. And the optimization can only decrease the value
of J , since the interpolating polynomial belongs to the feasible set.

Optimizing the poles zi is a nonlinear problem to be solved by
iteration. There is always an optimal z but, at least in special cases,
there can be several of them. Nevertheless, in every undetermined
case among our many tests, the optimal set was a continuum and
the multiplicity could easily be detected from the divergence of the
optimization procedure.

3.2 The linear rational collocation method with iteratively optimized
poles. The algorithm we suggest here for solving the boundary value
problem improves iteratively on the polynomial pseudospectral method.
It consists in recursively performing the linear collocation method and
the optimal placement of poles.

Let the N +1 interpolation points x0, . . . , xN be given, as well as the
number P of poles to be optimized, which are first supposed at infinity
(if no information on their final location is known at the onset). For
k = 1, 2, . . . , repeat

Step 1) compute the approximate solution ũ(k) = [ũ(k)
1 , . . . , ũ

(k)
N−1]

T

by the linear rational collocation method with βj = wjdj , dj from (2),
dj ≡ 1 for k = 1. This modifies ũ, for k > 1, but not the poles z and
the weights β.

Step 2) for the ũ(k) inherited from Step 1), optimize the location of
the poles z by minimizing J(z). This changes β, but not ũ(k) and yields
a new interpolant û(k)(x) of the latter values.

When to stop? Roughly speaking, when the decrease in J becomes
too small in comparison with the cost of one step of the algorithm.

The recurrence of Step 2) makes the algorithm costly. Note, however,
that at the outcome, when β and ũ have been computed, evaluating ũ
by the formula (9) is exactly as expensive as evaluating the polynomial
solution. The algorithm presented here therefore aims at such cases in
which, e.g., the time for finding the solution is not very relevant, but
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the latter must be evaluated a great many times.

4. Numerical results.

4.1 An interpolation example. In this section, we consider essentially
the same example to demonstrate the effectiveness of the proposed
methods in both cases. As interpolation/collocation points we have
chosen the Čebyšev points of the second kind xj := cos(jπ/N), j =
0, . . . , N . The maximum norm of the interpolation error, respectively
the residual in (11), has been estimated by evaluating at the equally
spaced points

x̂l = −5
4

+
l − 1
L− 1

· 10
4
, l = 1(1)L

with L = 1000 for interpolation and L = 100 for collocation and then
by computing the maximal absolute value at those x̂l lying in [−1, 1].
Due to the nondifferentiable and global nature of the optimization
problems, the simulated annealing algorithm of [21] was chosen. The
computations were performed in Fortran 77 on HP workstations.

We consider a case with a large derivative in the interior of the interval
of interpolation, as motivated by the introduction. With erf denoting
the standard error function and for given positive ε, the function to
approximate is chosen as [24]

(12) f(x) = cosπx+
erf (δx)
erf (δ)

, δ =
√
.5ε.

This function has values −2 at x = −1 and 0 at x = 1 and has a steep
gradient near x = 0 for large ε. Figure 1 shows the graph of f for
ε = 10, 000.

For not too large values of ε, the cases of moderate numbers P of poles
could be relatively easily solved, while the problem is getting harder
with increasing ε due to the steep gradient near x = 0. For example,
with ε = 100 everything works perfectly: with two pairs of poles, the
error decreases exponentially with N , from 4.0 · 10−3 for N = 7 to
4.1 · 10−14 for N = 63, whereas the polynomial error decreases merely
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FIGURE 1.

from 1.3 · 10−1 to 2.1 · 10−6. For ε = 10, 000 and Čebyšev points
of the second kind, in two of the cases the algorithm used failed to
produce the desired results. In all other cases, however, the numbers
in Table 1 show again that the attachment of a small number of poles
leads to a significant improvement of the approximation properties of
the interpolant.

Note the decreasing values of abs (ci), the test for the presence of
the poles, as N grows. This stems from the fact, noted above, that
this quantity is a divided difference of order N : if the derivatives do
not increase as fast as the corresponding factorials, divided differences
become smaller as their order increases.
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For small N , classical rational interpolation, Table 2, has a hard time
with the latter example. Poles occur in the interpolation interval at
least until N = 15, where our r has already decreased the error to
5.5 · 10−3, a value the classical interpolant does not even reach with 64
points for as small a denominator degree.

Note the decreasing values of abs (ci), the test for the presence of
the poles, as N grows. This stems from the fact, noted above, that
this quantity is a divided difference of order N : if the derivatives do
not increase as fast as the corresponding factorials, divided differences
become smaller as their order increases.

For small N , classical rational interpolation, Table 2, has a hard time
with the latter example. Poles occur in the interpolation interval at
least until N = 15, where our r has already decreased the error to
5.5 · 10−3, a value the classical interpolant does not even reach with 64
points for as small a denominator degree.

Example 4. We present results for a problem whose solution is given
by (12):

u′′(x) + εxu′(x) = −π2 cos(πx)− επx sin(πx),
u(−1) = −2, u(1) = 0.

We have solved the problem for ε up to 10,000. Some of our results
with the larger ε are summarized in Table 3. Since we have seen in
Section 4.1 that for too small an N the optimization procedure may
fail to converge, we give numbers only for N ≥ 128. They share some
common features. For instance, for given ε and N , the imaginary parts
of the optimal poles are quite close to one another. Moreover, if four
poles are optimized, they have the tendency to gather as the vertices
of a rectangle about the origin, where the maximum gradient arises.

As for the errors, the optimization improves the residuum by four to
six digits, much more than it does with the maximum error, less than
three digits–see the comment on the condition of the problem in the
conclusion. Nevertheless, with ε = 5′000 and N = 64 or ε = 10′000 and
N = 128 or N = 256, attaching poles decreases the maximum error,
more than doubling N !
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TABLE 1. Interpolation example, Čebyšev points of the second kind

N P max error Re(zi) Im(zi) abs(ci)

7 0 .860929

2 .585487 .498187E-01 .855217E-01 .9510E-01

4 .250594 .963782 .195789 .1388

.173890E-02 -.519644E-01 .3671E-01

6 .136934 .381364 -5.03092 .4074

-1.490736 .527043 .1002

.218230E-02 -.363523E-01 .1622E-01

15 0 .731061

2 .152567 .445251E-07 .386686E-01 .1594E-01

4 .129811E-01 .691377E-05 -.226144E-01 .1851E-03

.714004E-04 -.148341 .2528E-02

6 .550262E-02 .178129E-01 .334510 .1433E-03

.199111E-02 -.105384 .1369E-03

.180070E-04 .209114E-01 .2179E-04

31 0 .527525

2 .347874E-01 -.303433E-12 -.251649E-01 .2897E-03

4 .609649E-02 -.899892E-12 .994387E-01 .1162E-03

-.279530E-12 .207341E-01 .2197E-04

6

63 0 .269966

2 .612221E-02 .378870E-09 -.208431E-01 .3708E-09

4

6 .808776E-03 .628162E-02 -.190003E-01 .3167E-10

-.118652E-08 .694756E-01 .1117E-09

-.628161E-02 .190003E-01 .3167E-10

127 0 .102178

2 .2822739E-02 -.263671E-03 .217792E-01 .2285E-15

4 .584158E-03 -.674335E-02 -.204741E-01 .1388E-14

.674335E-02 .204741E-01 .1110E-14

6 .143965E-04 .156860E-01 -2.49369E-01 .1221E-14

-.156860E-01 .249370E-01 .7772E-15

-.106757E-07 .263960E-01 .2224E-15
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TABLE 2. Interpolation example, ε = 104, errors for

classical rational interpolation

N P max error

7 2 pole

4 1.398

6 pole

15 2 .6274

4 pole

6 pole

8 pole

31 2 .3719

4 .3154

6 .2833

8 .2659

63 2 .1388

4 .1991E-01

6 .5993

8 .9756E-01

4.2 The collocation example.

Our results are not quite as good as those obtained in [2] with the
same example. We recall, however, that they are not comparable,
for our method yields C∞-approximations of the C∞-solutions of the
problems considered here.

Finally, we give in Figures 2 and 3 error curves for a fixed ε-N -
pair and an increasing number of attached poles: even with the large
gradient the error behaves nicely as P increases.

5. Conclusion and future work. In the present work we have
discussed rational interpolants with guaranteed interpolation, no poles
in the interval of interpolation, and an error which usually decreases,
and never increases, with the degree of the denominator. The error is
consistently smaller than that of classical rational interpolation with
the same denominator degree.

Simple comparison is not fair, however: our r has total degree
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FIGURE 2.

N + P , as opposed to N for the classical rational interpolant. More
importantly, it requires knowledge of the interpolated function in
the entire interpolation interval, so that it is more an “interpolative
approximant” than an interpolant in the classical sense, but with
interesting applications.

One of these is the solution of two-point boundary value problems.
Our approach consists of an iterative improvement of the polynomial
pseudospectral method, which is known to converge exponentially for
good interpolation points and highly differentiable problems. After
having obtained the solution at some (collocation) points by the poly-
nomial method, we compute (one of the) rational interpolant(s) of these
same values with a denominator of given degree by minimizing the
residuum of the differential equation. This defines the new linear space
of all rationals interpolating between these same points and having that
same denominator. We then have only to start again with the solution
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FIGURE 3.

of the original equation in the new space, and so on. Although we
can prove the effectiveness of a Galerkin version of the method [17],
in practice we solve the problem with the much simpler collocation
method.

The computed examples show the somewhat surprising result that
one can usually gain between three and five digits of accuracy in com-
parison with classical polynomial collocation and this almost indepen-
dently of N . This is especially significant in cases where the preci-
sion obtained with the latter method is low and one does not want
to increase the number of points to keep consequent evaluation of the
solution as cheap as possible.

The placement of the poles is a very well-conditioned problem in the
sense that many of their locations around the optimal one yield merely
slightly larger residua. The tables show that the gain in the resid-
ual error is usually much larger than the improvement in the precision



542 J.-P. BERRUT AND H.D. MITTELMANN

TABLE 3. Collocation example.

ε N P res. norm max. error Re (zi) Im (zi)
5e3 128 0 7.592e+03 4.804e-02

2 5.890e+01 3.106e-03 -.209478e-11 .354525e-01
4 3.347e+00 1.575e-03 .119518e-01 .332938e-01

-.119518e-01 .332938e-01
6 8.687e-01 4.942e-04 .307586e-04 .405216e-01

-.206948e-01 .382752e-01
.207135e-01 .383201e-01

256 0 1.079e+02 1.212e-04
2 5.306e-02 7.308e-06 .137751e-09 .548452e-01
4 2.779e-03 1.074e-06 -.135939e-01 .56742e-01

.135939e-01 .567424e-01
6 1.397e-04 1.285e-07 .234374e-01 .576278e-01

-.882100e-05 .578770e-01
-.234495e-01 .576437e-01

512 0 7.823e-07 1.019e-13
1e4 128 0 3.443e+04 .1591

2 1.695e+02 8.342e-03 .303713e-08 .207640e-01
4 7.610e+01 1.579e-02 .652847e-02 .201166e-01

-.652852e-02 .201166e-01
6 1.057e+00 3.371e-03 .172391e-01 .250201e-01

-.488556e-06 .251768e-01
-.172387e-01 .250215e-01

256 0 5.677e+03 5.680e-03
2 2.985e+00 4.197e-04 .144070e-06 .294745e-01
4 1.197e-01 1.146e-04 .934422e-02 .296229e-01

-.934516e-02 .296229e-01
512 0 5.254e-01 8.860e-08
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of ũ. This is probably due in part to the fact that the computation of
the residuum is smeared by the ill-conditioning of the differentiation
matrices, despite the improvement by the methods in [5].

A further improvement in both methods presented above will be
achieved through a conformal mapping of the nodes towards an equidis-
tant distribution, see [7]. In particular, the derivatives of the functions
will be better approximated. We plan on investigating this in the near
future.
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