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SOME q-ORTHOGONAL POLYNOMIALS AND
RELATED HANKEL DETERMINANTS

GEORGE ANDREWS AND JET WIMP

1. Introduction. This paper grew out of some experiments using
the computer algebra MAPLE. Let the function f(t) have the Taylor
series development

f(t) =
∞∑

n=0

fnt
n,

which we assume converges in a neighborhood of the origin. The
coefficients fn may be interpreted as the moments of a suitable function,
actually the complex moments

fn = L(zn) =
1
2πi

∮
zn

(
f(1/z)
z

)
dz,

where the path of integration is, say, a circle centered at the origin
with a suitably large radius. Using the construction given in [1] and
the Gram determinants

GN =

∣∣∣∣∣∣∣∣

f0 f1 · · · fN

f1 f2 · · · fN+1

...
...

. . .
...

fN fN+1 · · · f2N

∣∣∣∣∣∣∣∣
,

one may construct the monic polynomials, call them PN (x), that are
orthogonal to the distribution which gives these moments.

PN (x) =
1

GN−1

∣∣∣∣∣∣∣∣∣∣

f0 f1 · · · fN

f1 f2 · · · fN+1

...
...

. . .
...

fN−1 fN · · · f2N−1

1 x · · · xN

∣∣∣∣∣∣∣∣∣∣
.
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These polynomials satisfy a three term recurrence relation

PN+1(x) = (x+BN )PN (x)− CNPN−1(x).

The coefficients BN and CN can be found from the above determi-
nental expression for the polynomials. In particular,

CN =
GNGN−2

G2
N−1

.

Conversely, by taking products in this expression, a formula for the
determinant GN can be recovered

GN = f0

N∏
j=1

CN+1−j
j .

As usual, let

(A; q)n =
n−1∏
j=0

(1−Aqj), N > 0, (A; q)0 = 1;

[
n
j

]
=

(q; q)n
(q; q)j(q, q)n−j

.

MAPLE experiments indicate that when one makes the choice

f(t) =
t∑∞

n=0
tn(a;q)n

(b;q)n
− 1

=
1∑∞

n=0
tn(a;q)n+1
(b;q)n+1

,

then the formulas for the coefficients BN and CN turned out to be
very simple. We were led to this choice for f(t) by previous work,
which had shown that when f(t) was the generating function for the
Bernoulli numbers, the BN and CN turned out to be simple. This
paper presents a proof of the formulas suggested by MAPLE. There
are many interesting special cases of our results. We have not yet been
able to extend this analysis to other choices of f(t).

2. Preliminary results. We prove here two preliminary results
dealing with the evaluation of certain Hankel-type determinants.
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Theorem 1. Suppose that we have two sequences sn and tn satisfying

t0 = 1, s0 �= 0

and
N∑

j=0

tjsN−j =
{
s0 N = 0;
0 N > 0.

Let

SN =

∣∣∣∣∣∣∣∣

s0 s1 · · · sN

s1 s2 · · · sN+1

...
...

. . .
...

sN sN+1 · · · s2N

∣∣∣∣∣∣∣∣
.

Let T0 = 1 and, for N > 0,

TN =

∣∣∣∣∣∣∣∣

t2 t3 · · · tN+1

t3 t4 · · · tN+2

...
...

. . .
...

tN+1 tN+2 · · · t2N

∣∣∣∣∣∣∣∣
.

Then

SN = (−1)NsN+1
0 TN .

Proof. When N = 0, the assertion reduces to s0 = s0. When N = 1,
we use the fact that t0 = 1 to get

∣∣∣∣ s0 s1
s1 s2

∣∣∣∣ =
∣∣∣∣ s0 t1s0 + t0s1
s1 t1s1 + t0s2

∣∣∣∣ =
∣∣∣∣ s0 0
s1 −t2s0

∣∣∣∣ = −s20t2 = −s20T1.

We shall show how this same process, which we call “O-reduction”,
owing to the orthogonality of the sequences sn and tn, works in general.
We combine columns of the SN determinant using the orthogonality
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relation:

SN =

∣∣∣∣∣∣∣∣∣∣∣

s0 t1s0 + t0s1 t2s0 + t1s1 + t0s2 · · ·
∑N

j=0
tN−jsj

s1 t1s1 + t0s2 t2s1 + t1s2 + t0s3 · · ·
∑N

j=0
tN−jsj+1

s2 t1s2 + t0s3 t2s2 + t1s3 + t0s4 · · ·
∑N

j=0
tN−jsj+2

...
...

...
. . .

...

sN t1sN + t0sN+1 t2sN + t1sN+1 + t0sN+2 · · ·
∑N

j=0
tN−jsj+N

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

s0 0 0 · · · 0

s1 −t2s0 −t3s0 · · · −tN+1s0

s2 −t3s0 − t2s1 −t4s0 − t3s1 · · · −tN+2s0 − tN+1s1

...
...

...
. . .

...

sN −
∑N−1

j=0
tN+1−jsj −

∑N−1

j=0
tN+2−jsj

· · · −
∑N−1

j=0
t2N−jsj

∣∣∣∣∣∣∣∣∣∣
.

We now multiply the second row by (si/s0) and subtract it from the
(i+ 2)nd row for 1 ≤ i ≤ N − 1:
SN

=

∣∣∣∣∣∣∣∣∣∣∣

s0 0 0 · · · 0

s1 −t2s0 −t3s0 · · · −tN+1s0

s2 − s2
1

s0
−t3s0 −t4s0 · · · −tN+2s0

..

.
..
.

..

. · · ·
..
.

sN − sN s1
s0

−
∑N−1

j=0
tN+1−jsj −

∑N−2

j=0
tN+2−jsj · · · −

∑N−2

j=0
t2N−jsj

.

∣∣∣∣∣∣∣∣∣∣∣

We continue this process. We multiply the third row by (si/s0) and
subtract it from the (i+3)rd row for 1 ≤ i ≤ N − 2. Then we multiply
the resulting fourth row by (si/s0) and subtract it from the (i + 4)th
row for 1 ≤ i ≤ N − 3, etc. We find that

SN =

∣∣∣∣∣∣∣∣∣∣

s0 0 0 · · · 0
(.) −t2s0 −t3s0 · · · −tN+1s0
(.) −t3s0 −t4s0 · · · −tN+2s0
...

...
...

. . .
...

(.) −tN+1s0 −tN+2s0 · −t2Ns0

∣∣∣∣∣∣∣∣∣∣
= sN+1

0 (−1)NTN .

Theorem 2. Let Sn, Tn and the sequences sn and tn be as in the
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previous theorem and define

SN (x) =
1

SN−1

∣∣∣∣∣∣∣∣∣∣

s0 s1 · · · sN

s1 s2 · · · sN+1

...
...

. . .
...

sN−1 sN · · · s2N−1

1 x · · · xN

∣∣∣∣∣∣∣∣∣∣
.

Let

τn(x) =
n∑

j=0

tn−jx
j .

Then

SN (x) =
1

TN−1

∣∣∣∣∣∣∣∣∣∣

t2 t3 · · · tN+1

t3 t4 · · · tN+2

...
...

. . .
...

tN tN+1 · · · t2N−1

τ1(x) τ2(x) · · · τN (x)

∣∣∣∣∣∣∣∣∣∣
.

Proof. We proceed with the O-reduction, as in Theorem 1. We carry
out the column operations first:

SN (x) =
1

SN−1

∣∣∣∣∣∣∣∣∣∣∣∣

s0 t1s0 + t0s1 · · · ∑N
j=0 tN−jsj

s1 t1s1 + t0s2 · · · ∑N
j=0 tN−jsj+1

...
...

. . .
...

sN−1 t1sN−1 + t0sN · · · ∑N
j=0 tN−jsj+N−1

1 t1 + x · · · ∑N
j=0 tN−jx

j

∣∣∣∣∣∣∣∣∣∣∣∣
.

We now modify the row operations in the O-reduction by leaving the
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last row unaltered. We only treat the first N rows. We find

SN (x) =
1

SN−1

∣∣∣∣∣∣∣∣∣∣

s0 0 · · · 0
(.) −t2s0 · · · −tN+1s0
...

...
. . .

...
(.) −tNs0 · · · −t2N−1s0
(.) τ1(x) · · · τN (x)

∣∣∣∣∣∣∣∣∣∣

=
1

SN−1
sN
0 (−1)N−1

∣∣∣∣∣∣∣∣∣∣

t2 t3 · · · tN+1

t3 t4 · · · tN+2

...
...

. . .
...

tN tN+1 · · · t2N−1

τ1(x) τ2(x) · · · τN (x)

∣∣∣∣∣∣∣∣∣∣

=
1

TN−1

∣∣∣∣∣∣∣∣∣∣

t2 t3 · · · tN+1

t3 t4 · · · tN+2

...
...

. . .
...

tN tN+1 · · · t2N−1

τ1(x) τ2(x) · · · τN (x)

∣∣∣∣∣∣∣∣∣∣
by Theorem 1.

Note. Strictly speaking, in the above definition we have to assume
that N > 0, but here and in what follows, we adopt the convention
that S0(x) = 1.

3. Some facts about the little q-Jacobi polynomials. A
fairly full account of these polynomials is given in [3, pages 166 168].
Their moment generating function is given in [2, pages 32 33]. A nice
summary of their properties and their relationships to other orthogonal
polynomials of hypergeometric type is contained in the reference [4].

The original polynomials were not monic, but we prefer to deal with
the monic polynomials, so we normalize them accordingly:

p̄(x; a; b; q) =
n∑
j

[
n
j

]
(aqj+1; q)n−j

(bqn+j ; q)n−j
xjq

(n− j
2

)
(−1)n−j .

These polynomials are orthogonal with respect to a discrete distribu-
tion, consisting of weights ωi at the points qi, i = 0, 1, 2, . . . , 0 < q < 1,
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with

ωi =
aiqi(qi+1; q)∞
(bqi/a; q)∞

.

The nth moment of this distribution is

(q; q)∞(bq; q)∞
(b/a; q)∞(aq; q)∞

· (aq; q)n
(bq; q)n

.

We define a slightly modified moment by

µn(a, b) =
(aq; q)n
(bq; q)n

,

and

Mn(a, b) =

∣∣∣∣∣∣∣∣

µ0(a, b) µ1(a, b) · · · µn(a, b)
µ1(a, b) µ2(a, b) · · · µn+1(a, b)
...

...
. . .

...
µn(a, b) µn+1(a, b) · · · µ2n(a, b)

∣∣∣∣∣∣∣∣
.

We may then represent the p̄ in terms of these moments as follows:

p̄n(x; a; b; q) =
1

Mn−1(a, b)

∣∣∣∣∣∣∣∣∣∣

µ0(a, b) µ1(a, b) · · · µn(a, b)
µ1(a, b) µ2(a, b) · · · µn+1(a, b)
...

...
. . .

...
µn−1(a, b) µn(a, b) · · · µ2n−1(a, b)

1 x · · · xn

∣∣∣∣∣∣∣∣∣∣
.

We shall now apply our knowledge of the Little q-Jacobi polynomials,
plus Theorems 1 and 2, to the special case

t∑∞
n=0

tn(a;q)n

(b;q)n
− 1

=
1∑∞

n=1
tn(a;q)n+1
(b;q)n+1

:=
∞∑

n=0

snt
n.

Thus
s0 =

1− b

1− a
,

and from the definition
n∑

j=0

µj(a, b)sN−j =
{
s0 N = 0;
0 N > 0.
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Thus, Theorems 1 and 2 are applicable with sn, as above, and tn =
µn(a, b).

We apply Theorem 2 to obtain a useful representation of SN (x) :

SN (x) =
1

TN−1

∣∣∣∣∣∣∣∣∣∣

µ2(a, b) µ3(a, b) · · · µN+1(a, b)
µ3(a, b) µ4(a, b) · · · µN+2(a, b)
...

...
. . .

...
µN (a, b) µN+1(a, b) · · · µ2N−1(a, b)
τ1(x) τ2(x) · · · τN (x)

∣∣∣∣∣∣∣∣∣∣

=
(1− aq)N−1(1− aq2)N−1

TN−1(1− bq)N−1(1− bq2)N−1

×

∣∣∣∣∣∣∣∣∣∣

µ0(aq2, bq2) µ1(aq2, bq2) · · · µN−1(aq2, bq2)
µ1(aq2, bq2) µ2(aq2, bq2) · · · µN (aq2, bq2)

...
...

. . .
...

µN−2(aq2, bq2) µN−1(aq2, bq2) · · · µ2N−3(aq2, bq2)
τ1(x) τ2(x) · · · τN (x)

∣∣∣∣∣∣∣∣∣∣

=
(1− aq)N−1(1− aq2)N−1

TN−1(1− bq)N−1(1− bq2)N−1
MN−2(aq2, bq2)

×
N−1∑
j=0

[
N − 1
j

]
(aqj+3; q)N−1−j

(bqN+1+j ; q)N−1−j
τj+1(x)

× q

(N − 1− j
2

)
(−1)N−1−j .

Finally, we note that

TN−1 =

∣∣∣∣∣∣∣∣

t2 t3 · · · tN
t3 t4 · · · tN+1

...
...

. . .
...

tN tN+1 · · · t2N−2

∣∣∣∣∣∣∣∣



q-ORTHOGONAL POLYNOMIALS 437

=

∣∣∣∣∣∣∣∣

µ2(a, b) µ3(a, b) · · · µN (a, b)
µ3(a, b) µ4(a, b) · · · µN+1(a, b)
...

...
. . .

...
µN (a, b) µN+1(a, b) · · · µ2N−2(a, b)

∣∣∣∣∣∣∣∣
=
(1− aq)N−1(1− aq2)N−1

(1− bq)N−1(1− bq2)N−1
MN−2(aq2, bq2).

We have proved

Theorem 3.

SN (x) =
N−1∑
j=0

[
N − 1
j

]
(aqj+3; q)N−1−j

(bqN+1+j ; q)N−1−j
τj+1(x)

× q

(N − 1− j
2

)
(−1)N−1−j , N > 0,

where

τn(x) =
n∑

s=0

(aq; q)n−s

(bq; q)n−s
xs.

Note. Recall our convention S0(x) = 1.

It follows from the work in [4] and the definition in Theorem 2 that
the polynomials SN (x) are orthogonal with respect to a distribution,
namely, the one giving the moments sn. This distribution will be
complex. In fact, the polynomials are orthogonal with respect to the
distribution defined by

L(h(z)) =
1
2πi

∮
h(z)

(
f(1/z)
z

)
dz,

where
f(t) =

1∑∞
n=0

tn(a;q)n+1
(b;q)n+1

,

and the path of integration is a simple closed curve encircling the
origin which lies outside all singularities of the integrand. Thus the
polynomials satisfy a three-term recurrence relation,

SN+1(x) = (x+BN )SN (x)− CNSN−1(x).



438 G. ANDREWS AND J. WIMP

Our goal is to compute BN and CN . In order to do this, we must
compute αN and βN in

SN (x) = xN + αNx
N−1 + βNx

N−2 + · · · .

Comparing coefficients of xN gives

BN = αN+1 − αN ,

and comparing coefficients of xN−1 in the recurrence gives

βN+1 = βN + βNαN − CN ,

so
CN = βN − βN+1 + βNαN .

We have

SN (x) = τN (x)−
[
N − 1
N − 2

]
(1− aqN+1)
(1− bq2N−1)

τN−1(x)

+
[
N − 1
N − 3

]
(1− aqN )(1− aqN+1)

(1− bq2N−2)(1− bq2N−1)
τN−2(x)q + · · ·

=
{
xN +

(1− aq)
(1− bq)

xN−1 +
(1− aq)
(1− bq)

(1− aq2)
(1− bq2)

xN−2 + · · ·
}

−
[
N − 1
1

]
(1− aqN+1)
(1− bq2N−1)

{
xN−1 +

(1− aq)
(1− bq)

xN−2 + · · ·
}

+
[
N − 1
2

]
(1− aqN )
(1− bq2N−2)

(1− aqN+1)q
(1− bq2N−1)

xN−2 + · · · ,

thus

αN =
(1− aq)
(1− bq)

−
[
N − 1
1

]
(1− aqN+1)
(1− bq2N−1)

.

Returning to our expansion immediately above for SN (x), we see that

βN =
(1− aq)(1− aq2)
(1− bq)(1− bq2)

−
[
N − 1
1

]
(1− aq)(1− aqN+1)
(1− bq)(1− bq2N−1)

+
[
N − 1
2

]
(1− aqN )(1− aqN+1)q
(1− bq2N−2)(1− bq2N−1)

.
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Using these expressions in the formulas for BN and CN and doing some
fearsome algebraic rearranging and simplification give

Theorem 4. In the three-term recurrence

SN+1(x) = (x+BN )SN (x)− CNSN−1(x),

we have

BN =
−qN−1(1− aqN+1)(1− bqN+1)− q2(a− bqN−2)(1− qN )

(1− bq2N−1)(1− bq2N+1)
;

CN =
q2N−1(1− qN−1)(1− aqN+1)(1− bqN )(a− bqN−2)

(1− bq2N−2)(1− bq2N−1)2(1− bq2N )
, N > 1;

C1 = − (1− aq)(1− aq2)
(1− bq)(1− bq2)

.

Note. SN (x) gives an explicit evaluation of these polynomials. The
formula for C1 is obtained by a direct computation.

Corollary 1. Let

f(t) =
t∑∞

n=0
tn(a)n

(b)n
− 1

=
t

2F1(a, 1; b; t)− 1 =
∞∑

n=0

snt
n,

where we have used the standard notation for the symbol (A)n and the
Gaussian hypergeometric function 2F1. Then the coefficients in the
recurrence relation satisfied by the polynomials in Theorem 4 are given
by

BN = − (a+ 1)(b+ 1) + 2N(N + b)
(b+ 2N − 1)(b+ 2N + 1)

;

CN =
(N − 1)(a+N + 1)(b+N)(N + b− a− 2)

(b+ 2N − 2)(b+ 2N − 1)2(b+ 2N) , N > 1;

C1 = − (a+ 1)(a+ 2)
(b+ 1)(b+ 2)

.



440 G. ANDREWS AND J. WIMP

Proof. In Theorem 4 we let a → qa, b → qb, and take the limit as
q → 1.

Corollary 2. Let

f(t) =
t

1F1(1, ν + 1; t)− 1 =
∞∑

n=0

snt
n.

Then the polynomials SN (x) satisfy a three term recurrence with

BN = − (ν + 2)
2(ν + 2N)(ν + 2N + 2)

;

CN = − (N − 1)(ν +N + 1)
(ν + 2N − 1)(ν + 2N)2(ν + 2N + 1)

, N > 1;

C1 = − 1
(ν + 2)(ν + 3)

.

Proof. In the previous corollary, we replace t by t/a and let a → ∞.
To obtain the formula for SN , we use the fact that

|a−i−jsi+j |i,j=0...n = a−n(n+1)|si+j |i,j=0...n.

Finally, we let b = ν + 1.

Corollary 3. Let

f(t) =
t

et − 1 =
∞∑

n=0

snt
n,

so that
sn =

Bn

n!
,

the Bn denoting the Bernoulli numbers in the standard notation. Then
the polynomials

SN (x) =
1

SN−1

∣∣∣∣∣∣∣∣∣∣

B0 B1/1! · · · BN/N !
B1/1! B2/2! · · · BN+1/(N + 1)!

...
...

. . .
...

BN−1/(N − 1)! BN/N ! · · · B2N−1/(2N − 1)!
1 x · · · xN

∣∣∣∣∣∣∣∣∣∣
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are orthogonal with respect to the distribution defined by

L(h(z)) =
∮
h(z)

(
z−2

e1/z − 1
)
dz,

the path of integration being a circle with center 0, radius > (1/2π),
and the coefficients in the recurrence are given by

BN = − 1
2N(N + 1)

; CN = − N2 − 1
4N2(4N2 − 1) , N > 1; C1 = −1

6
.

Furthermore,

SN =

∣∣∣∣∣∣∣∣

B0 B1/1! · · · BN/N !
B1/1! B2/2! · · · BN+1/(N + 1)!

...
...

. . .
...

BN/N ! BN+1/(N + 1)! · · · B2N/(2N)!

∣∣∣∣∣∣∣∣

=
(
1
6

)N

(−1)N(N+1)/2
N∑

j=2

[
j2 − 1

4j2(4j2 − 1)
]N+1−j

.

Proof. We put ν = 0 in the previous corollary and use the formula
for SN in Section 1.

We make no claims that the above expression for the Hankel determi-
nant of Bernoulli numbers is new, since it seems that almost any fact
about the Bernoulli numbers can be found somewhere in the literature.
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