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CONGRUENCES FOR THE COEFFICIENTS WITHIN
A GENERALIZED FACTORIAL POLYNOMIAL

M.A. NYBLOM

1. Introduction. The Stirling numbers of first order, denoted by
s(n, k) can be defined for n > 0 as the coefficient of xk in the expansion
of the rising factorial polynomial

x(x + 1) · · · (x + n − 1) =
n∑

k=1

s(n, k)xk.

The many varied properties of this class of numbers have been exten-
sively studied, see, for example, [2]. Yet, in spite of this, congruences
for the Stirling numbers s(n, k) are apparently not well known. A few
congruences for prime moduli can be found in [2] and other texts, but
it has only been in recent times that certain papers have appeared deal-
ing specifically with the problem of Stirling number congruences (see
[1], [3]). Of these papers, the one of most interest to us here is due
to Howard, who found congruences (mod p) for s(n, k) and the associ-
ated Stirling numbers. We briefly list some of the main congruences as
follows:

s(p, k) ≡ 0 (mod p) for 2 ≤ k ≤ p − 1(1)
s(p − 1, k) ≡ 1 (mod p) for 1 ≤ k ≤ p − 1(2)
s(p − 2, k) ≡ (2p−k−1 − 1) (mod p) for 0 ≤ k ≤ p − 2(3)

s(hp+m, k) ≡
h∑

i=0

(
h

i

)
(−1)h−is(m, k − h − i(p−1)) (mod p)

(4)

for 0 ≤ m < p.

As an application of the above results, a complete examination of the
congruences (mod p) for s(n, k), where n ≥ p, was given in [3] for
the special cases p = 2, 3 and 5. In this paper we propose to extend
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the results of Howard to the coefficients φ(n, k) within the polynomial
expansion of a generalized factorial polynomial given by

(x)an
= (x + a1)(x + a2) · · · (x + an),

where an = a1 + (n − 1)d with a1, d ∈ Z. These coefficients, which
are essentially the symmetric function on n objects, will be shown
for all arithmetic progressions an ∈ Z to satisfy congruences similar
to those in (1) and (2) with the residue in the later result given by
(d − a1)p−k−1. The congruences in (3) and (4) will be generalized to
the case of those coefficients generated within the expansion of (x)an

,
where an = (n − 1)d and with d ∈ Z \ {0}. For these results we shall
see that the residues differ from those in (3) and (4) by a suitable
multiplicative factor. In this latter case, we shall find as in [3] all the
congruences (mod p) of φ(n, k) for n ≥ p and illustrate our method by
finding the residues when p = 2, 3 and 5. To conclude the paper an
alternate notion of the associated Stirling number is introduced and a
divisibility result is proved for these numbers which mirrors that which
was found by Howard in [3].

2. Elementary symmetric functions. For an arbitrary sequence
of reals {ai}n

i=1, one can define the elementary symmetric function
φ(n, k) in the n variables a1, . . . , an as the coefficient of xk in the
polynomial expansion

(5) (x)an
= (x + a1)(x + a2) · · · (x + an) =

n∑
k=0

φ(n, k)xk.

It follows from (5) that

φ(n, k) = anφ(n − 1, k) + φ(n − 1, k − 1)(6)

with

φ(n, 0) =
n∏

i=1

ai if n > 0,(7)

φ(n, n) = 1,(8)
φ(n, k) = 0 if k > n or k < 0.(9)
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Clearly φ(n, k) = s(n, k) in the case when an = n − 1. For later
convenience, we shall define s(0, k) = 0 for all k 
= 0 and s(0, 0) = 1.
In what follows, we shall study the congruences for prime moduli p,
of those symmetric functions φ(n, k) generated with respect to an
arbitrary sequence of integers in arithmetic progression, that is, for
an = a1 + (n − 1)d with a1, d ∈ Z and d 
= 0. We begin by
generalizing the well-known result (see [2], [3]) that s(p, k) ≡ 0 (mod p)
for k = 2, . . . , p − 1.

Theorem 2.1. If p is a prime number, then φ(p, k) ≡ 0 (mod p) for
k = 2, . . . , p − 1.

Proof. By making the substitution dX = (x + a1), observe from the
definition of (x)an

that

(x)an
= dX(dX + d) · · · (dX + d(n − 1)) = dn(X)n−1.

Expanding out the polynomial (X)n−1, one finds

(10)

(x)an
= dn

n∑
i=0

s(n, n − i)Xn−i

= dn
n∑

i=0

s(n, n − i)di−n
n−i∑
j=0

(
n − i

j

)
xn−i−jaj

1

=
n∑

i=0

s(n, n − i)di
n−i∑
j=0

(
n − i

j

)
xn−i−jaj

1.

Consequently, by collecting powers of xk in (10), we obtain a relation
between the Stirling numbers s(n, k) and φ(n, k) as follows

(11) φ(n, k) =
n−k∑
i=0

(
n − i

k

)
s(n, n − i)an−i−k

1 di.

Now, after setting n = p in (11), observe that p | s(p, p− i) for i =
1, 2, . . . , p−k, provided k = 2, . . . , p−1 while p | (p

k

)
for k = 1, 2, . . . , p−

1. Thus, all terms in the above summation will be divisible by p if we
restrict k = 2, . . . , p − 1.
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By making use of Theorem 2.1 and (6), we can now show that
φ(p − 1, k) ≡ (d − a1)p−k−1 (mod p), which extends the congruence
result s(p − 1, k) ≡ 1 (mod p) also obtained in [3].

Corollary 2.1. If a 
= d, then φ(p− 1, k) ≡ (d − a1)p−k−1 (mod p)
for k = 1, . . . , p−1. While φ(p−1, k) ≡ 0 (mod p) for k = 1, . . . , p−2
when a1 = d.

Proof. We first establish the result in the case a1 
= d via backward
induction on k. Clearly, the congruence holds for k = p − 1 as
φ(p − 1, p − 1) = 1 ≡ (d − a1)0 (mod p). Thus assume the result
holds for k = p− r where 1 ≤ r < p− 1; then, by (6) and Theorem 2.1,
p | {φ(p−1, p−r−1)+(a1−d)φ(p−1, p−r)}. However, by the inductive
assumption (a1−d)φ(p−1, p−r) ≡ −(d−a1)r (mod p). Consequently,
we deduce that

p | {φ((p − 1, p − r − 1)− (d − a1)r)}.
That is, φ(p− 1, p− r− 1) ≡ (d− a1)r (mod p) and so the result holds
for k = p − r − 1. In the case when a1 = d, we have from (6) that
φ(p − 1, l − 1) = φ(p, l)− pdφ(p − 1, l). Now the righthand side of this
equation is, by Theorem 2.1, clearly divisible by p for l = 2, . . . , p − 1
and so p |φ(p − 1, k) for k = 1, . . . , p − 2.

We see, in particular, from Corollary 2.1 for a1 = 0, d = 1, that
φ(p − 1, 1) = s(p − 1, 1) = (p − 2)! ≡ 1 (mod p). Thus, by multiplying
both sides of this congruence by p − 1, one finds (p − 1)! ≡ (p −
1) (mod p) which leads to the statement of Wilson’s theorem that is
(p − 1)! ≡ −1 (mod p). In order to generalize the result s(p − 2, k) ≡
(2p−k−1 − 1) (mod p), we shall restrict attention in the final corollary
to those symmetric functions φ(n, k) generated with respect to the
sequence an = (n − 1)d.

Corollary 2.2. If a1 = 0 and p > 2, then φ(p − 2, k) ≡
dp−k−2(2p−k−1 − 1) (mod p), for k = 1, . . . , p − 2.

Proof. We establish the result again via backward induction on k. As
before, the congruence holds trivially for k = p−2 as φ(p−2, p−2) = 1.
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Thus assume the result holds for k = p − r where 2 ≤ r < p − 1, then
by (6) and Corollary 2.1,

p | (φ(p− 2, p − r − 1)− 2dφ(p − 2, p − r)− dr−1).

However, by the inductive assumption−2dφ(p−2, p−r)≡−2dr−1(2r−1−
1) (mod p) . Consequently, we deduce that p | {φ(p − 2, p − r − 1) −
2dr−1(2r−1 − 1) − dr−1}. That is, φ(p − 2, p − r − 1) ≡ dr−1(2r − 1)
(mod p) and so the result holds for k = p − r − 1.

We now establish a more general result in connection with those
symmetric functions φ(n, k) which are again generated with respect
to an = (n − 1)d.

Theorem 2.2. If p is a prime number, h > 0 and 0 ≤ m < p, then

(12) φ(hp + m, k)

≡ dhp+m−k
h∑

i=0

(
h
i

)
(−1)h−is(m, k − h − i(p − 1)) (mod p).

Proof. Consider first the case h = 1. That is, we wish to establish
that for m ≥ 0,

(13) φ(p + m, k) ≡ dp+m−k(−s(m, k − 1) + s(m, k − p)) (mod p).

The proof of (13) is by induction on m. Recalling s(0, k) = 0 for k 
= 0
and s(0, 0) = 1 together with Wilson’s theorem, we clearly have (13)
holding for m = 0. Assume it is true for m = 0, 1, . . . , j − 1. Then,
again by (13),

φ(p + j, k) = d(p + j − 1)φ(p+ j − 1, k) + φ(p + j − 1, k − 1)

≡ (j − 1) dp+j−k[−s(j − 1, k − 1) + s(j − 1, k − p)]

+ dp+j−k[−s(j − 1, k − 2) + s(j − 1, k − p − 1)] (mod p)

= −dp+j−k[(j − 1) s(j − 1, k − 1) + s(j − 1, k − 2)]

+ dp+j−k[(j − 1) s(j − 1, k − p) + s(j − 1, k − p − 1)]

≡ dp+j−k(−s(j, k − 1) + s(j − 1, k − p)) (mod p),
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and so (13) holds for m = j. Let h ≥ 2 and suppose for r =
1, 2, . . . , h − 1 and all m that

φ(rp+m, k) ≡ drp+m−k
r∑

i=0

(
r

i

)
(−1)r−is(m, k − r − i(p−1)) (mod p).

Thus, by writing φ(hp+m, k) = φ((h− 1)p+(m+ p), k), observe from
the inductive assumption

(14)

φ(hp+m, k) ≡ dhp+m−k
h−1∑
i=0

(
h−1

i

)
(−1)h−1−i

· s(p+m, k − (h−1)− i(p−1)) (mod p).

Now, for each i, in the above summation we have, after setting d = 1
in (13), that

s(m+p, k− (h−1)− i(p−1))
≡ −s(m, k− h − i(p−1)) + s(m, k−(h−1)−i(p−1)−p) (mod p).

Consequently, by breaking up the summation in (14) and relabeling the
index variable in the resulting second summation from i to i − 1, one
has

φ(hp+ m, k)

≡ dhp+m−k
h−1∑
i=0

(
h−1

i

)
(−1)h−is(m, k − h − i(p−1))

+ dhp+m−k
h∑

i=1

(
h−1
i−1

)
(−1)h−is(m, k − h − i(p−1)) (mod p)

= dhp+m−k
[
(−1)hs(m, k − h)+

h−1∑
i=1

{(
h−1

i

)
+

(
h−1
i−1

) }
(−1)h−i

· s(m, k − h − i(p−1)) + s(m, k − hp)
]

≡ dhp+m−k
h∑

i=0

(
h
i

)
(−1)h−is(m, k − h − i(p − 1)) (mod p).



CONGRUENCES FOR COEFFICIENTS 377

Hence, (14) holds for r = h.

Recalling from (9) that s(n, k) = 0 for k > n or k < 0, one can
determine using Theorem 2.2 the congruences for prime moduli of
φ(hp+m, k) for all k in the special cases m = 0, 1, 2, p− 1 and p− 2 as
follows. Considering firstly m = 0, we have s(0, k − h− i(p− 1)) = 1 if
k = h+i(p−1) and s(0, k−h−i(p−1)) = 0 for all other k. Similarly, in
the case m = 1, we have s(1, k−h− i(p−1)) = 0 for h+1+ i(p−1) < k
and k < h+1+i(p−1) and s(1, k−h−i(p−1)) = 1 for k = h+1+i(p−1).
However, in the case m = 2, one again has s(2, k−h− i(p− 1)) = 0 for
k < h+ i(p− 1) or k > 2+ h+ i(p− 1), while s(2, k− h− i(p− 1)) = 1
either for k = 2+h+ i(p−1) or k = 1+h+ i(p−1) as s(2, 1) = 1. Thus
we have from (12) that for m = 0, 1, 2 and all h ≥ 1, φ(hp + m, k) ≡ 0
(mod p) except for the following: For i = 0, . . . , h

φ(hp + m, h + m + (p − 1)i)

≡ d(p−1)(h−i)

(
h
i

)
(−1)h−i (mod p) for m = 0, 1

and

φ(hp + 2, h + r + (p − 1)i)

≡ d(h−i)(p−1)+2−r

(
h
i

)
(−1)h−i (mod p), r = 1, 2.

In the case m=p−1 again s(p−1, k−h−i(p−1))=0 for k ≤ h+i(p−1)
or k > (p − 1)(i + 1) + h, and so for all i = 0, . . . , h, we have
s(p− 1, k−h− i(p− 1)) 
= 0 when h+ i(p− 1) < k ≤ (p− 1)(i+1)+h.
Thus, using the fact that s(p − 1, r) ≡ 1 (mod p) for r = 1, . . . , p − 1
and (12), we deduce for all h ≥ 1 that φ(hp + p − 1, k) ≡ 0 (mod p)
except for the following. For i = 0, . . . , h and t = 1, . . . , p − 1,

φ(hp+p−1, h+ t+ i(p−1)) ≡ d(p−1)(h−i+1)−t

(
h
i

)
(−1)h−i (mod p).

Finally, in the case m = p − 2 > 0, we similarly have s(p − 2, k − h −
i(p− 1)) 
= 0 for h+ i(p− 1) < k ≤ (p− 2) + h+ i(p− 1), and so using
the fact that s(p−2, r) ≡ (2p−r−1−1) (mod p) for r = 1, . . . , p−2 and
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(12), we find for all h ≥ 1 that φ(hp + p − 2, k) ≡ 0 (mod p), except
for the following: For i = 0, . . . , h and t = 1, . . . , p − 2,

φ(hp + p − 2), h + t + i(p − 1))

≡ d(p−1)(h−i+1)−t−1

(
h
i

)
(−1)h−i(2p−t−1 − 1) (mod p).

As a consequence, we note the following special cases. For p = 2, 3 or
5 and n ≥ p,

φ(n, k) ≡ 0 (mod p)

except for the following: For h ≥ 1 and i = 0, . . . , h,

φ(2h + r, h + r + i) ≡ dh−i

(
h
i

)
(−1)h−i (mod 2), r = 0, 1

together with

φ(3h, h + 2i) ≡ d2(h−i)

(
h
i

)
(−1)h−i (mod 3)

φ(3h + 1, h + 1 + 2i) ≡ d2(h−i)

(
h
i

)
(−1)h−i (mod 3)

φ(3h + 2, h + t + 2i) ≡ d2(h−i)−t

(
h
i

)
(−1)h−i (mod 3), t = 1, 2

and finally

φ(5h, h + 4i) ≡ d4(h−i)

(
h
i

)
(−1)h−i (mod 5)

φ(5h + 1, h + 1 + 4i) ≡ d4(h−i)

(
h
i

)
(−1)h−i (mod 5)

φ(5h + 2, h + t + 4i) ≡ d4(h−i)+2−t

(
h
i

)
(−1)h−i (mod 5), t = 1, 2

φ(5h + 3, h + t + 4i) ≡ d4(h−i+1)−t−1(24−t − 1)
(

h
i

)
(mod 5),

t = 1, . . . , 3,
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φ(5h + 4, h + t + 4i) ≡ d4(h−i+1)−t

(
h
i

)
(−1)h−i (mod 5),

t = 1, . . . , 4.

3. Generalized associated Stirling numbers of the first kind.
It is well known that s(n, n − k) is a polynomial in n of degree 2k.
Indeed,

s(n, n − k) =
k∑

i=0

d(2k − i, k − i)
(

n
2k − i

)
,

where d(n, k) is the associated Stirling number of the first kind (see
[2]). In a recent paper [4], the author showed that in the polynomial
expansion of (x)an

, where an = a1 + (n − 1)d with a1, d ∈ R, the
coefficients were given by

(15) φ(n, n − k) =
k+1∑
i=1

θ
(k)
i

(
n + k + 1− i
2k + 1− i

)

where θ
(k)
i satisfy for k = 2, . . . , n and i = 2, . . . , k the recurrence

(16) θ
(k)
i = θ

(k−1)
i−1 (d(i − k − 2) + a1) + θ

(k−1)
i (2k − i)d

with θ
(k)
1 = 1 · 3 . . . (2k − 1)d and θ

(k)
k+1 = (a1 − d)k. Clearly, when

a1, d ∈ Z, one has θ
(k)
i ∈ Z and in this instance we refer to the numbers

θ
(k)
i as the generalized associated Stirling numbers of the first kind.
In [3] a number of congruences (mod p) for d(n, k) were found, in
particular, d(p, k) ≡ 0 (mod p) for 2 ≤ k ≤ p. With this result in mind,
it is natural to question whether there exists an arithmetic progression
{an}⊆Z such that in general, p | θ(k)

i for some k and i. To help answer
this question, it will be convenient to arrange, for n ≥ 1, the set of
numbers θ

(k)
i for k = 1, . . . , n and i = 1, . . . , k as the elements of the

following lower triangular matrix

An =




θ
(0)
1 0 0 · · · 0

θ
(1)
1 θ

(1)
2 0 · · · 0

θ
(2)
1 θ

(2)
2 θ

(2)
3 · · · 0

...
...

...
. . .

...
θ
(n)
1 θ

(n)
2 θ

(n)
3 · · · θ

(n)
n+1




.
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Note, in An we set θ
(0)
1 ≡ 1 which by (15) is consistent with the

equality φ(n, n) = 1. We now establish, using the recurrence in (16)
and Theorem 2.1, the following divisibility result for the generalized
Stirling numbers of the first kind.

Theorem 3.1. Let p > 3 be a prime. Then, for any nonconstant
arithmetic progression {an} ⊆ Z, one has θ

[((p+1)/2)+i]
j ≡ 0 (mod p)

for i = 0, . . . , (p − 1)/2 and j = 1, . . . , i + 1.

Proof. Note, when (p + 1)/2 is even, the numbers in question can
equivalently be found as a subset of the components within the two
adjacent truncated column vectors of Ap+1 given here by

CT
2s−1 = (θ[((p+1)/2)+s−1]

2s−1 , θ
[((p+1)/2)+s]
2s−1 , . . . , θ

(p+1)
2s−1 )

and

CT
2s = (θ[((p+1)/2)+s−1]

2s , θ
[((p+1)/2)+s]
2s , . . . , θ

(p+1)
2s ),

for s = 1, . . . , (p + 1)/4. While if (p + 1)/2 is odd, then the numbers
are again found in the above column vectors, for s = 1, . . . , (p − 1)/4,
together with a subset of the array of components in CT

(p+1)/2. We
shall prove here a stronger result than required, namely, that all
the components of CT

2s−1,C
T
2s are divisible by p for the values of s

indicated. Considering first the case when (p + 1)/2 is even, it will
suffice to demonstrate via the following inductive argument on the
index, s ∈ [1, (p + 1)/4], that the components of CT

2s−1 and CT
2s are

divisible by p. When s = 1, it is clear from the definition of θ
(i)
1 that

p | θ[((p+1)/2)+r]
1 for r = 0, 1, . . . , (p+1)/2. However, for the components

of CT
2 it will first be convenient to show p | θ[(p+1)/2]

2 as one can then
easily deduce via repeated application of

θ
[((p+1)/2)+r]
2 = θ

[((p+1)/2)+r−1]
1

(
a1 − d

(p + 1
2

+ r
))

+ θ
[((p+1)/2)+r−1]
2 (p + 2r − 1)d,

that p | θ[((p+1)/2)+r]
2 for r = 1, 2, . . . , (p + 1)/2. To this end, consider

the coefficient φ(p, p−k) in the polynomial expansion of (x)ap
given in
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(15). Setting k = (p − 1)/2, observe, after some simplification of the
binomial coefficients, that

φ(p, p − k) = θ
[(p+1)/2]
1

(
p + k − 1

p + 1

)
+ θ

[(p+1)/2]
2

(
p + k

p

)

+
p−k+1∑

l=3

θ
[(p+1)/2]
l

(
2p − k + 1− l
2p − 2k + 1− l

)
.

Now the p − k − 1 binomial coefficients in the above are equal to
(k!)−1

∏k−1
i=0 (2p − k + 1 − l − i), with 2p − k + 1 − l − i = p when

i = p−k+1− l with 0 ≤ i ≤ p−k−2 = k−1. Moreover, as (p, k!) = 1,
one can deduce that

p
∣∣∣

p−k+1∑
l=3

θ
[(p+1)/2]
l

(
2p − k + 1− l
2p − 2k + 1− l

)
.

However, by Theorem 2.1, p |φ(p, p− (p+1)/2), but as p | θ[(p+1)/2]
1 and

p �
(

p+k

p

)
, we can conclude that p | θ[(p+1)/2]

2 as required. Suppose

now that the components of CT
2s−1 and CT

2s are divisible by p for all
s = 1, . . . , m, where 1 ≤ m ≤ [(p + 1)/4]− 1 = (p − 3)/4. Considering
the column vector CT

2m+1, we see again from (16) that

(17)
θ
[((p+1)/2)+r]
2m+1 = θ

[((p+1)/2)+r−1]
2m

(
d
(
2m − p + 1

2
− r − 1

)
+ a1

)

+ θ
[((p+1)/2)+r−1]
2m+1 (p + 2r − 2m)d,

for r = m, . . . , (p+1)/2. Observe, after setting r = m in (17), that the
coefficient of θ

[((p+1)/2)+m−1]
2m+1 is a multiple of p, thus, via the inductive

assumption, p | θ[((p+1)/2)+m]
2m+1 . Now again, by repeated application of

(17) together with the inductive assumption, we further deduce that
p | θ[((p+1)/2)+r]

2m+1 , for r = m + 1, . . . , (p + 1)/2. For the components of
CT

2m+2, it will be necessary to first show that p | θ[((p+1)/2)+m]
2m+2 as one

can then deduce via the inductive assumption and repeated application
of

θ
[((p+1)/2)+r]
2m+2 = θ

[((p+1)/2)+r−1]
2m+1

(
d
(
2m − p + 1

2
− r

)
+ a1

)

+ θ
[((p+1)/2)+r−1]
2m+2 (p + 2r − 2m − 1),
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that p | θ[((p+1)/2)+r]
2m+2 for r = m+1, . . . , (p+1)/2. To this end, consider

now the coefficient of φ(p, p − ((p + 1)/2) − m) in the polynomial
expansion of (x)ap

, which is equal to

2m+1∑
l=1

θ
[((p+1)/2)+m]
l

(
p + k + m + 2− l
p + 2m + 2− l

)
+ θ

[((p+1)/2)+m]
2m+2

(
p + k − m

p

)

+
k+m+2∑
l=2m+3

θ
[((p+1)/2)+m]
l

(
p + k + m + 2− l
p + 2m + 2− l

)
,

where again k = (p − 1)/2. Now ((p + 1)/2) + m ≤ (3p − 1)/4 and
(3p − 1)/4 ≤ p − 2 for p ≥ 7; however, as the smallest prime p > 3
for which (p + 1)/2 is even is 7, we can conclude from Theorem 2.1
that p |φ(p, p− ((p+1)/2)−m). Furthermore, as previously, the k−m

binomial coefficients in the above are equal to ((k−m)!)−1
∏k−m−1

i=0 (p+
k+m+2− l− i) with p+ k+m+2− l− i = p when i = k+m+2− l
with 0 ≤ i ≤ k − m − 1. Consequently, as (p, (k − m)!) = 1, one can
deduce that

p
∣∣∣

k+m+2∑
l=2m+3

θ
[((p+1)/2)+m]
l

(
p + k + m + 2− l
p + 2m + 2− l

)
.

In addition, as θ
[((p+1)/2)+m]
r is a component ofCT

r for r = 1, 2, . . . , 2m+
1, we also have

p
∣∣∣

2m+1∑
l=1

θ
[((p+1)/2)+m]
l

(
p + k + m + 2− l
p + 2m + 2− l

)
.

Combining the above with the fact that p does not divide
(

p+k−m

p

)
yields the required result, that p | θ[((p+1)/2)+m]

2m+2 . Hence, the components
of CT

2m+1 and CT
2m+2 are all divisible by p.

Considering now the case when (p+1)/2 is odd, we first establish via
induction on s = 1, . . . , (p − 1)/4 that the components of CT

2s−1 and
CT

2s are divisible by p. This argument, however, follows precisely in
the same manner as above with the exception of one detail within the
inductive step which we attend to as follows. If one assumes that the
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components of CT
2s−1 and CT

2s are divisible by p for al s = 1, . . . , m,
where 1 ≤ m ≤ ((p − 1)/4) − 1 = (p − 5)/4, then when considering
the coefficient φ(p, ((p− 1)/2)− m), to show that p | θ[((p+1)/2)+m]

2m+2 , we
must have that p |φ(p, ((p − 1)/2) − m). To establish this, first note
that ((p + 1)/2) + m ≤ (3p − 3)/4 and (3p − 3)/4 ≤ p − 2 for p ≥ 5;
however, the smallest prime p > 3 for which (p + 1)/2 is odd is 5,
thus, as before, one need now only invoke Theorem 2.1 to deduce the
required divisibility condition. Considering finally the column vector
CT

(p+1)/2, we have from (16)

(18)
θ
[((p+1)/2)+r]
(p+1)/2 = θ

[((p+1)/2)+r−1]
[((p+1)/2)−1] (a1 − d(r + 2))

+ θ
[((p+1)/2)+r−1]
(p+1)/2

(p + 1
2

+ 2r
)
d,

for r = (p − 1)/4, . . . , (p + 1)/2. Observe, after setting r = (p −
1)/4 in (18), that the coefficient of θ

[((p+1)/2)+r−1]
(p+1)/2 is a multiple of

p. Moreover, as θ
[(3p−3)/4]
[((p+1)/2)−1] ∈ CT

[((p+1)/2)−1], one can deduce that

p | θ[((p+1)/2)+((p−1)/4)]
[(p+1)/2] . Now by repeated application of (18), we can

further conclude that p | θ[((p+1)/2)+r]
(p+1)/2 for r = ((p − 1)/4) + 1, . . . , (p +

1)/2. Hence the components of CT
(p+1)/2 are all divisible by p.
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