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NORMAL HYPERBOLICITY FOR FLOWS
AND NUMERICAL METHODS

MING-CHIA LI

ABSTRACT. In this paper we prove that normally hyper-
bolic invariant manifolds persist between flows and numerical
methods in both directions. This means that normal hyper-
bolicity of flows is preserved under numerical methods and
that normally hyperbolicity for numerical methods is inher-
ited by flows.

1. Definitions and statement of theorems. Let M be a
smooth complete Riemannian manifold with a distance d arising from
the Riemannian metric and Diff (M) be the set of diffeomorphisms
on M with the strong topology and distance dC1 . A flow is a map
ϕ : R×M → M that satisfies the group property: ϕs(ϕt(x)) = ϕs+t(x).

Definition 1. For p ≥ 1, let ϕ be a Cp+1 flow onM . A Cp+1 function
N : R×M → M is called a numerical method of order p for ϕt if there
are positive constants K and h0 such that d(ϕh(x), Nh(x)) ≤ Khp+1,
for all h ∈ [0, h0] and x ∈ M . Here h stands for a stepsize of N . We
denote the i-th iterate of Nh(x) by (Nh)i(x).

Numerical methods arise from computer simulation and numerical
approximation. For instance, both explicit and implicit Runge-Kutta
methods satisfy the above conditions (see [1]).

It is well known that the time-h map of the flow and the numerical
method of stepsize h are C1 close polynomially in terms of h.

Lemma 1 [6]. Let N be a numerical method of order p for a Cp+1

flow ϕ on a compact manifold M . Then there is a constant K1 such
that dC1(ϕh, Nh) ≤ K1h

p for all sufficiently small h. Moreover, given
T > 0, there is a constant K2 such that dC1(ϕT , (NT/n)n) ≤ K2n

1−p

for all large positive integers n.
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We formulate normal hyperbolicity by making an adaptation of the
cone-field argument used in [17].

Definition 2. We say that Λ is a compact invariant manifold of a
diffeomorphism f onM if it is a C1 compact boundaryless submanifold
of M satisfying f(Λ) = Λ. We say that Λ is normally hyperbolic for f
if there exists a splitting TM |Λ = Es ⊕TΛ⊕Eu and constants α > 0,
K > 0 and 0 < µ < 1 < λ such that, for all x ∈ Λ and n ∈ N,

dim (Es
x), dim (TxΛ), and dim (Eu

x ) are constants,
Df−1

x (Cs
x) ⊂ Cs

f−1(x), Dfx(Cu
x ) ⊂ Cu

f(x),

|Dfn
x v| ≤ Kµn|v|, for all v ∈ Cs

x,

|Df−n
x v| ≤ Kλ−n|v|, for all v ∈ Cu

x ,

where

Cs
x = {(vs, vcu) ∈ Es

x × (TxΛ× Eu
x ) : |vuc| ≤ α|vs|},

Cu
x = {(vsc, vu) ∈ (Es

x × TxΛ)× Eu
x : |vsc| ≤ α|vu|}.

Let ϕt be a flow on M and Λϕ be a compact invariant manifold of
the time-T map ϕT of the flow. We say that ϕt is normally hyperbolic
on Λϕ if ϕT is normally hyperbolic on Λϕ.

Let N be a numerical method for a flow on M satisfying that Nh

has a compact invariant manifold Λh for all sufficiently small h > 0.
We say that N is normally hyperbolic on {Λh} if each individual Nh

is normally hyperbolic on Λh with respect to the constants α,K, µ and
λ independent of h. We say that {Λh} is isolated if there exists a
neighborhood U , independent of h, of Λh such that Λh ⊂ int (U) and
Λh = ∩∞

n=−∞(Nh)n(U).

The following proposition derives general conditions for a closed
submanifold to be normally hyperbolic for numerical methods.

Proposition 1. Let Λ be a normally hyperbolic invariant manifold
for a diffeomorphism f on M . Then, for each x ∈ Λ, there exist
unique subspaces Es

x ⊂ Cs
x and Eu

x ⊂ Cu
x such that the splitting

TxM | Λ = Es
x ⊕ TxΛ ⊕ Eu

x is Df-invariant and varies continuously
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with x, and for all n ≥ 0,

‖Dfn | Es
x‖ ≤ Kµn, ‖Df−n | Eu

x‖ ≤ Kλ−n,

‖Dfn | Es
x‖ · ‖Df−n | Tfn(x)Λ‖ ≤ Kµn,

‖Df−n | Eu
x‖ · ‖Dfn | Tfn(x)Λ‖ ≤ Kλ−n.

For a proof of the proposition, refer to [17] and [18].

The following theorem states normally hyperbolic invariant manifold
of flows persists under numerical methods.

Theorem 1. Let p ≥ 2, ϕt be a Cp+1 flow on M , and N be a
numerical method of order p for ϕt. If ϕt has a C1 compact normally
hyperbolic invariant manifold Λϕ, then for all sufficiently small h > 0,
there exists a normally hyperbolic invariant manifold Λh for Nh.

The persistence of hyperbolic periodic orbits is shown early in [3], and
later in [2] and [5] for one-step methods, in [4] for multistep methods,
and in [19] for general numerical methods. The case of stable normally
hyperbolic tori is investigated in [14]. Our theorem is a generalized
version of the above results.

For many local properties of flows persisted by numerical methods,
refer to the extensive volume of Stuart and Humphries [22] and the
long bibliography therein. For structural stability results of flows under
numerical methods, see our previous works [10], [11], [12] and [13].

Next, we consider the converse of Theorem 1, that is, normal hyper-
bolicity of a numerical method is inherited by the flow.

Theorem 2. Let p ≥ 2, ϕt be a Cp+1 flow on M , and let N be a
numerical method of order p for ϕt. If Nh has a C1 compact invariant
manifold Λh for all sufficiently small h > 0, N is normally hyperbolic
on {Λh}, and {Λh} is isolated with respect to a common neighborhood
U . Then there is a normally hyperbolic invariant manifold Λϕ for ϕt.

In [7], Hagen assumes that a numerical method has a smooth compact
normally hyperbolic invariant manifold Λ independent of stepsize h
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and showed the existence of a compact invariant manifold for the
flow. In our result, we allow the invariant manifolds for the numerical
method varies with the stepsize, which is more practical for numerical
computations.

2. Proof of Theorem 1. The proof presented here relies on the
proof of the stable manifold theorem. We make modifications from the
method developed by Conley as given in McGehee [15] and Moser [16]
for the two-dimensional case, the approach given in Hirsch and Pugh
[8] for the high dimensional case, and the proof given in Hirsch, Pugh
and Shub [9] for normal hyperbolicity. See also [21].

Because Λϕ is normally hyperbolic, the tangent bundle of M along
Λϕ splits as the sum of three bundles TM | Λϕ = Es ⊕ TΛϕ ⊕ Eu.
We want the normal bundle η of ϕt to be smooth. It is no loss
of generality to make a convenient choice of η: let ηs and ηu be
smooth subbundles of TM | Λϕ with approximating Es and Eu so
that TM | Λϕ = ηs ⊕ TΛϕ ⊕ ηu, and choose η = ηs ⊕ ηu. Let
ηδ(r) = {v ∈ ηδ : |v| ≤ r}, for δ = s, u, be the r disk bundles and
η(r) = ηs(r)⊕ ηu(r). Let πs : η → ηs be a projection along ηu onto ηs

and πu : η → ηu be a projection along ηs onto ηu.

We want to view a tubular neighborhood of Λϕ, as a bundle not
over Λϕ, but over some higher dimensional manifold. Let exp be
the exponential map from tangent space to the manifold and set
X = exp ηs(r0), where r0>0 is small enough so that X(r) is a manifold
(with boundary). It is clear that TX | Λϕ = ηs ⊕ ηc. For every point
x ∈ Λ, affinely translate ηu

x(r) from the origin to all points in ηs
x.

Therefore we have an extension of ηu(r) to X near Λϕ, still denoting it
ηu. Exponentiating the extension down to the manifold gives a tubular
neighborhood Y (r) of X in M . Let ηsc be a differentiable extension of
TX to the neighborhood Y (r) of Λϕ.

For convenience, we change the Riemannian norm of M so that the
time-T map ϕT of the flow is normally hyperbolic with respect to
the constants α = K = 1. For x ∈ Y (r), let Cu

x = {(vsc, vu) ∈
ηsc

x × ηu
x : |vsc| ≤ |vu|}. If r > 0 is small enough, then for all x ∈ Y (r),

DϕT
x (C

u
x ) ⊂ Cu

f(x).

For x ∈ X, let Du
0 = exp(ηu

x). Then let Du
0 be a disk in the tubular

neighborhood Y (r) satisfying: (i) Du
0 has the same dimension as ηu

x ,
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(ii) the tangent space TxD
u
0 is contained in the cone Cu

x , (iii) the
boundary of D0 is in the boundary of Y (r), and (iv) Du

0 goes all the
way across Y (r). In local coordinates we could assume that Du

0 is the
graph of a function form ηu

x into ηsc
x . Because of the invariance of the

bundles under ϕT , (ϕT )n(Du
0 )∩Y (r) is a disk with the same properties

as above for all n ≥ 0. And Du
n = (ϕT )−n((ϕT )n(Du

0 ) ∩ Y (r)) ⊂ Du
0

is a nested set of disks which converges to a single point. This point
is the unique point in Du

0 which stays in Y (r) for all forward iterates.
Let

W sϕ
r =

⋃

x∈X

⋂

n≥0

(ϕT )−n((ϕT )n(exp(ηu
x)) ∩ Y (r)).

Then the stable manifold W sϕ
r consists of all points whose forward

ϕT orbits never leave Y (r). Applying this result to ϕ−T produces the
unstable manifold Wuϕ

r . Thus Λϕ =Wuϕ
r (Λϕ) ∩W sϕ

r (Λϕ).

By Lemma 1, we have (NT/n)n → ϕT in the C1 topology as n → ∞.
Take n sufficiently large so that DNT/n

x (Cu
x ) ⊂ Cu

NT/n(x)
. If DuN

0 is a

disk of the same type as above, then ∩n≥0(NT/n)−n((NT/n)n(DuN
0 ) ∩

Y (r)) is a single point. Thus the set

W sN
r =

⋃

x∈X

⋂

n≥0

(NT/n)−n((NT/n)n(exp(ηu
x)) ∩ Y (r))

consists of all points which stays in Y (r) for all forward NT/n-iterates.
Similarly, we can get the unstable manifold WuN

r when applying this
result to (NT/n)−n. The stable and unstable manifolds, W sN

r and
WuN

r , are of C1 and transverse to each other; therefore there exists
ΛT/n = WuN

r ∩W sN
r which is NT/n-invariant and is of C1. Consider

T/n = h, then Λh is Nh-invariant. By the C1 persistence of Dϕh-
invariant splitting TxM | Λϕ = Es

x ⊕ TxΛh ⊕ Eu
x, there exists a DNh-

invariant splitting TxM = EsN
x ⊕TxΛh ⊕EuN

x of which Nh is normally
hyperbolicity.

3. Proof of Theorem 2. We shall apply the abstract invariant
manifold theorems in Theorem 4.1 of [9] and Theorem 3.1 of [20] to
construct the local unstable and stable manifolds for points in Λh. Then
consider the time-h map of the flow as a C1 perturbation of Nh, and
construct its local unstable and stable manifolds. The graph transform
method is essential.
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By Proposition 1, Λh has normally hyperbolic DNh-invariant split-
ting TM | Λh = Es ⊕ TΛh ⊕ Eu. For r > 0, let X(r) = expEu(r).
Fix r0 > 0 so small that X(r0) ⊂ U is a compact manifold. Let
ηu and ηs be smooth and trivial subbundles of TM | X(r0) with ap-
proximating Eu and Es so that TM | X(r0) = ηu ⊕ TΛh ⊕ ηs, and
choose η = ηu ⊕ ηs. Set η(r) = ηu(r) ⊕ ηs(r). For δ = u, s, let
ηδ(r) = {v ∈ ηδ : |v| ≤ r} and πδ : η → ηδ be a natural projec-
tion. If σ : ηu(r) → η is a section, then we can define the slope of
σ at vx ∈ ηu(r) to be lim supvy→vx

(|s(vx)− s(vy)|s/du(vx, vy)), where
σ(vx) = (vx, s(vx)) ∈ ηu × ηs, | · |s is the norm on ηs and du is the
Finsler metric on ηu. Let Σ(1, r) = {section σ : ηu(r)→ η(r) such that
slope (σ) ≤ 1} be a complete metric space with the C0 sup norm.

For r > 0 small, x ∈ X(r) and vx ∈ η(r), we define a bundle map F
by

F (vx) = exp−1
Nh(x)

◦Nh ◦ exp vx.

Then F is a C1 bundle map on η(r). One can take 0 < r1 ≤ r0 small so
that, for σ∈Σ(1, r1) and x∈X(r1), πu ◦F ◦ σ : ηu(r) |X(r1)→ ηu |X(r1)

is invertible. We denote its inverse by g : ηu(r)|X(r1) → ηu. We define
a graph transform F# of F over X(r1) by

F#(σ)x = F ◦ σ ◦ gx for x ∈ X(r1).

Then F# is a contraction on Σ(1, r1) and has a unique fixed point
σuNh∈Σ(1, r1). For 0< r≤ r1, let WuNh

r (x)= expσuNh

x (ηu
x(r)). Simi-

larly, we get stable manifolds for Nh by W sNh

r (x)=WuNh

r (x, (Nh)−1).
Let W σNh

r (Λh) = ∪x∈Λh
W σNh

r (x) for σ = u, s. Then Λh =
WuNh

r (Λh) ∩W sNh

r (Λh).

By Lemma 1, we have that ϕh is O(hp)-close toNh in the C1 topology
with p ≥ 2. By Theorem 4.1 of [9], see also Theorem 2 of [19], one
can take h > 0 sufficiently small so that the bundle map Gh defined
by Gh(vx) = exp−1

Nh(x)
◦ϕh ◦ exp vx has a well-defined graph transform

Gh# = Gh ◦ σ ◦ g′, where g′ is a right inverse of πu ◦Gh ◦ σ. Moreover,
Gh# is a contraction of Σ(1, r), so has a fixed point σuϕ. That is, we
can construct for ϕh a manifoldWuϕ

r = σuϕ(X(r)). These results when
applied to the inverse of ϕh produce W sϕ

r . Let Λϕ = Wuϕ
r ∩W sϕ

r . By
backward and forward invariance ofWuϕ

r andW sϕ
r , Λϕ is ϕh-invariant.

Since Λh is normally hyperbolic and isolated, one can take h > 0 small



NORMAL HYPERBOLICITY 355

enough so that ϕh is normally hyperbolic on Λϕ and Λϕ is locally
maximal in the sense that there is a neighborhood V of Λϕ such that
any ϕh-invariant set contained entirely in V is a subset of Λϕ. By
uniqueness, we have that ϕt is normally hyperbolic on Λϕ.
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19. C. Pugh and M. Shub, Cr stability of periodic solutions and solution schemes,
Appl. Math. Lett. 1 (1988), 281 285.

20. C. Robinson, Structural stability of C1 diffeomorphisms, J. Differential
Equations 22 (1976), 28 73.

21. , Dynamical systems: Stability, symbolic dynamics, and chaos, 2nd
ed., CRC Press, Boca Raton, FL, 1999.

22. A.M. Stuart and A.R. Humphries, Dynamical systems and numerical analy-
sis, Cambridge University Press, Cambridge, 1996.

Department of Mathematics, National Changhua University of Educa-

tion, 1 Chinde Road, Changhua 500, Taiwan

E-mail address: mcli@math.ncue.edu.tw


