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GROWTH AND COEFFICIENT ESTIMATES
FOR UNIFORMLY LOCALLY UNIVALENT

FUNCTIONS ON THE UNIT DISK

YONG CHANG KIM AND TOSHIYUKI SUGAWA

ABSTRACT. In this note we shall give a sharp distortion
estimate for a uniformly locally univalent holomorphic func-
tion on the unit disk in terms of the norm of pre-Schwarzian
derivative. As applications, we shall investigate the growth of
coefficients and integral means of such a function and mention
a connection with Hardy spaces. We also give norm estimates
for typical classes of univalent functions.

1. Introduction. We will say that a holomorphic function f on
the unit disk D is uniformly locally univalent if f is univalent on each
hyperbolic disk D(a, ρ) = {z ∈ D; |(z − a)/(1 − āz)| < tanh ρ} with
radius ρ and center a ∈ D for a positive constant ρ. In particular, a
holomorphic universal covering map of a plane domain D is uniformly
locally univalent if and only if the boundary of D is uniformly perfect,
see [18] or [22]. Also it is well known, cf. [24], that a holomorphic
function f on the unit disk is uniformly locally univalent if and only
if the pre-Schwarzian derivative (or nonlinearity) Tf = f ′′/f ′ of f is
hyperbolically bounded, i.e., the norm

‖Tf‖ = sup
z∈D

(1− |z|2)|Tf (z)|

is finite. This quantity can be regarded as the Bloch semi-norm of
the function log f ′. We remark that a holomorphic function f is
locally univalent at the point z if and only if Tf = f ′′/f ′ is a well-
defined holomorphic function near z. Roughly speaking, the quantity
Tf measures the deviation of f from orientation-preserving similarities
(nonconstant linear functions). In the following it is sometimes essential
to consider the semi-norm

‖Tf‖0 = lim
|z|→1−0

(1− |z|2)|Tf (z)| = 2 lim
|z|→1−0

(1− |z|)|Tf (z)|
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instead of ‖Tf‖. Also, it is usually much easier to calculate ‖Tf‖0

than ‖Tf‖. We note that ‖Tf‖0 ≤ ‖Tf‖ always holds. A nonconstant
analytic function f on the unit disk is said to be almost uniformly locally
univalent if ‖Tf‖0 < ∞. For general properties of almost uniformly
locally univalent functions, the reader may consult the lecture note
[25] written by Yamashita.

In this note we will investigate the growth of various quantities
for a uniformly locally univalent function in terms of the norm of
pre-Schwarzian derivative. Because Tf is invariant under the post-
composition by a nonconstant linear function, we may assume that a
holomorphic function f on the unit disk is normalized so that f(0) = 0
and f ′(0) = 1. We denote by A the set of such normalized holomorphic
functions on the unit disk. Also we denote by B the set of normalized
uniformly locally univalent functions: B = {f ∈ A; ‖Tf‖ < ∞}. The
space B has a structure of nonseparable complex Banach spaces under
the Hornich operation [23].

For a nonnegative real number λ, we set

B(λ) = {f ∈ A; ‖Tf‖ ≤ 2λ},

here the factor 2 is due to only some technical reason. The functions
in B(λ) can be characterized as the following.

Proposition 1.1. Let a nonnegative constant λ be given. A locally
univalent function f ∈ A belongs to B(λ) if and only if for any pair of
points z1, z2 in D the inequality

(1.1) |g(z1)− g(z2)| ≤ 2λdD(z1, z2)

holds, where g(z)=log f ′(z) and dD(z1, z2)=tanh−1 |(z1−z2)/(1−z̄1z2)|
stands for the hyperbolic distance between z1 and z2 in the unit disk D.

Proof. First of all note that we can take a holomorphic branch
g of log f ′ for a locally univalent holomorphic function f on the
unit disk. The “only if” part is shown by integrating the inequality
|g′(z)| = |Tf (z)| ≤ 2λ/(1 − |z|2) along the hyperbolic geodesic joining
z1 and z2. The “if” part directly follows from the observation:

lim
z′→z

|g(z′)− g(z)|
dD(z′, z)

= (1− |z|2)|g′(z)|.
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The following theorem is significant in connection with univalent
function theory.

Theorem A (Becker and Pommerenke [3], [4]). The set S of nor-
malized univalent holomorphic functions on the unit disk is contained
in B(3) and contains B(1/2). The result is sharp.

We note that the Schwarzian derivative Sf of f can be written as
Sf = (Tf )′ − (Tf )2/2. Thus the space B has a close connection with
(the Bers embedding of) the universal Teichmüller space T , which
is defined as the set of Schwarzian derivatives of those functions in
S which can be quasiconformally extended to the Riemann sphere.
Note that T is a contractible bounded domain in the complex Banach
space B2 consisting of all holomorphic functions ϕ in the unit disk
with finite norm ‖ϕ‖B2 = supz∈D(1 − |z|2)2|ϕ(z)| and that {ϕ ∈
B2; ‖ϕ‖B2 < 2} ⊂ T ⊂ {ϕ ∈ B2; ‖ϕ‖B2 < 6}. Thus, one expects
that investigating the pre-Schwarzian derivatives is to be effective when
considering the Bers boundary of the Teichmüller spaces because the
quantity Tf is easier to treat than Sf in some cases. In fact, the
space T1 := {Tf ; f ∈ S has a quasiconformal extension to the Riemann
sphere} can be regarded as a model of the universal Teichmüller space,
cf. [1] and [27]. By the relation between Sf and Tf , we have the
estimate ‖Sf‖B2 ≤ C‖Tf‖+‖Tf‖2/2, where C is an absolute constant.
At least, we can take C = 4, see [10]. On the other hand, as is stated
in [7], the inequality ‖Tf‖ ≤ ‖Sf‖B2 holds for a strongly normalized
function f in the Nehari class, i.e., for a function f ∈ A with f ′′(0) = 0
such that ‖Sf‖B2 ≤ 2 (see also [6]).

However, the pre-Schwarzian derivative Tf has the disadvantage that
‖Tf‖ is not invariant under Möbius transformations in contrast with
the case of Sf . Therefore, the space T1 is sometimes called “poor man’s
model” of the universal Teichmüller space. In this respect, it is often
advantageous to consider the quantity

Uf (z) =
1
2
(1− |z|2)Tf (z)− z̄,

because this satisfies the relation Uf◦ω = Uf ◦ω·ω′/|ω′| for ω ∈ Aut (D).
The quantity supz∈D |Uf (z)| is sometimes called the order of function
f and was extensively investigated by Pommerenke [16], see also [12].
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Note that ‖Tf‖ − 2 ≤ 2 supz∈D |Uf (z)| ≤ ‖Tf‖ + 2. However, the
quantity Uf (z) is not holomorphic in z and hence is somewhat difficult
to treat.

Here, as a result in connection with the Teichmüller space, we mention
the following.

Corollary. For a constant k ∈ [0, 1), let Sk be the subset of
S consisting of those functions which can be extended to k-quasi-
conformal self-mappings of the Riemann sphere Ĉ. Then we have

B(k/2) ⊂ Sk.

In particular, we have ∪0<λ<1/2B(λ) ⊂ T1.

This implication is easily obtained by the λ-lemma, see, for example,
[19, p. 121]. This already appeared (implicitly) in the paper [3] of
Becker.

Now we briefly explain the structure of this note. In Section 2,
we state sharp distortion, growth and covering theorems for the class
B(λ). Those are simple analogues of the results of their paper [6],
in which Chuaqui and Osgood obtained sharp distortion, growth and
covering theorems and an estimate of Hölder continuity for normalized
functions in the Nehari class in terms of the Nehari norm of Schwarzian
derivatives. (Further developments in this direction can be found in
[8].) One of the special natures of our class B is the fact that the
condition ‖Tf‖ < 2 implies boundedness of the function f . We shall
investigate boundedness criteria in more detail.

As applications of those theorems, Section 3 discusses the growth of
coefficients and integral means for the class B(λ).
Section 4 is devoted to explicit estimates of the norm of pre-

Schwarzian derivatives for typical classes of univalent functions. To
this end, we will employ the subordination method. We will be con-
vinced that the estimate of norm of pre-Schwarzian is easier than that
of Schwarzian, in general.
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2. Growth estimate for the class B(λ). In the class B(λ) for
0 ≤ λ <∞, the function

(2.1) Fλ(z) =
∫ z

0

(
1 + t
1− t

)λ

dt

is extremal as we shall see later. We remark that Fλ ∈ A can be
defined for any complex number λ and satisfies TFλ

= 2λ(1 − z2)−1,
thus ‖TFλ

‖ = 2|λ|. Fλ may provide an example of a function with
small pre-Schwarzian norm which does not belong to typical classes of
univalent functions when λ is sufficiently small and λ /∈ R. In practice,
it is important to know the mapping property of Fλ for a real λ. We
state a few results about the nature of Fλ.

Lemma 2.1. For a nonnegative real number λ, the function Fλ is
univalent in the unit disk if and only if 0 ≤ λ ≤ 1.

Proof. First, we compute the Schwarzian derivative SFλ
of Fλ. Then

we have

sup
z∈D

(1− |z|2)2|SFλ
(z)| = sup

z∈D
(1− |z|2)2 2λ|2z − λ|

|1− z2|2 = 2λ(λ+ 2).

In particular, if 1 < λ, then 2λ(λ + 2) > 6; thus, the Nehari-Kraus
theorem implies that Fλ is not univalent.

On the other hand, if 0 ≤ λ ≤ 1, we have ReF ′
λ(z) > 0 in the unit

disk; hence, the Noshiro-Warschawski theorem ensures the univalence
of Fλ in this case.

Lemma 2.2. For each λ > 0, the function Fλ never takes the value
Fλ(−1) in the unit disk, i.e., Fλ(−1) /∈ Fλ(D).

Remark. This result is not trivial for λ > 1 because Fλ(−1) is an
isolated boundary point of Fλ(D) in that case.

Proof. Set

g(z) = Fλ(z)− Fλ(−1) =
∫ z

−1

(
1 + t
1− t

)λ

dt.
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We consider the family of circular arcs

γα(t) =
−ieiαt

sinα
+ i cotα, −1 ≤ t ≤ 1,

which connect −1 and 1 in the unit disk, where α are real numbers
with 0 < |α| < π/2. Note the relation

1 + γα(t)
1− γα(t)

= e−iα sin( 1+t
2 α)

sin( 1−t
2 α)

.

Then we calculate

g(γα(t)) = e−iαλ α

sinα

∫ t

−1

(
sin( 1+s

2 α)
sin( 1−s

2 α)

)λ

eiαs ds.

Since cos(αs) ≥ cosα for −1 ≤ s ≤ 1, we have

Re {eiαλg(γα(t))} ≥ α

tanα

∫ t

−1

(
sin( 1+s

2 α)
sin( 1−s

2 α)

)λ

ds > 0.

Hence, g(γα(t)) �= 0 for −1 < t < 1. Since the curve family γα sweeps
out the unit disk, we obtain the desired conclusion.

The following result is elementary, but we shall include the proof
because of its importance for our aim.

Theorem 2.3 (Distortion theorem). Let λ be a nonnegative real
number. For an f ∈ B(λ), we have

(2.2) F ′
λ(−|z|) =

(
1− |z|
1 + |z|

)λ

≤ |f ′(z)| ≤
(
1 + |z|
1− |z|

)λ

= F ′
λ(|z|)

and

(2.3) |f(z)| ≤ Fλ(|z|)

in the unit disk. Furthermore, if f is univalent, then

(2.4) −Fλ(−|z|) ≤ |f(z)| ≤ Fλ(|z|).
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If equality occurs in any of the above inequalities at some point z0 �= 0,
then f must be a rotation of Fλ, i.e., f(z) = µ̄Fλ(µz) for a unimodular
constant µ.

Proof. Applying Proposition 1.1 to the case z1 = z and z2 = 0, we
see

(2.5) | log f ′(z)| ≤ λ log
1 + |z|
1− |z| .

Taking the real part of log f ′, we obtain (2.2). Furthermore, the
integration of (2.2) yields (2.3). Inequality (2.4) can be shown by the
same method as in the proof of the Koebe distortion theorem. Equality
cases are obvious.

Corollary 2.4 (Growth and covering theorem). For λ > 1, any
f ∈ B(λ) satisfies the growth condition

f(z) = O(1− |z|)1−λ

as |z| → 1. On the other hand, for λ < 1, any function f ∈ B(λ) is
bounded with the uniform bound Fλ(1).

For all λ > 0, the image f(D) contains the disk {|z| < −Fλ(−1)} for
f ∈ B(λ). Furthermore, minw∈∂f(D) |w| = −Fλ(−1) if and only if f is
a rotation of the function Fλ.

Proof. The former part can be directly deduced by integrating
inequality (2.2). We now prove the latter part. Let f ∈ B(λ). Choose
a boundary point w0 of f(D) so that |w0| ≤ |w1| for all w1 ∈ ∂f(D).
Let γ be the connected component of f−1([0, w0)) which contains the
origin. Note that γ is a properly embedded analytic arc in D and that
f is injective on γ since f is locally biholomorphic. Therefore, by (2.2),
we obtain

|w0| ≥
∫

f(γ)

|dw| =
∫

γ

|f ′(z)| |dz| ≥
∫

γ

(
1− |z|
1 + |z|

)λ

|dz|

≥
∫ 1

0

(
1− t
1 + t

)λ

dt = −Fλ(−1).
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If equality holds, then obviously f must be a rotation of Fλ. On
the other hand, when f = Fλ, we can see that equality holds from
Lemma 2.2.

By the same method, we have a similar conclusion to the first half
in the above for a function f ∈ A with ‖Tf‖0 ≤ 2λ. In particular, if
‖Tf‖0 < 2, then f is bounded.

We note again that, for λ ≤ 1/2, the function f ∈ B(λ) must be
univalent. We also note that, for 0 ≤ λ ≤ 1, we have −Fλ(−1) ≥
−F1(−1) = 2 log 2 − 1 = 0.38629 . . . , therefore the result above is an
improvement of the Koebe one-quarter theorem.

Remark. The function Fλ can be expressed in terms of the incomplete
beta function or the Gauss hypergeometric function. The incomplete
beta function Bz(p, q) is defined and expressed by

Bz(p, q) =
∫ z

0

tp−1(1− t)q−1 dt =
zp

p
F (1− q, p; p+ 1; z)

for z ∈ C with 0 < Re z < 1, where F (α, β; γ;x) denotes the Gauss
hypergeometric function, see [20].

Now, by the change of variable s = (1 + t)/2 in (2.1), we have

Fλ(z) = 2
∫ (1+z)/2

1/2

sλ(1− s)−λ ds.

Thus we have the expression

Fλ(z) = 2[B(1+z)/2(1 + λ, 1− λ)−B1/2(1 + λ, 1− λ)]

=
1

(1 + λ)2λ

[
(1 + z)1+λF

(
λ, λ+ 1;λ+ 2;

1 + z
2

)

− F (λ, λ+ 1;λ+ 2;
1
2

)]
.

In particular, we have

−Fλ(−1) =
1

2λ(λ+ 1)
F (λ, λ+ 1;λ+ 2; 1/2),



GROWTH AND COEFFICIENT ESTIMATES 187

which may also be rewritten in terms of the Digamma function [20,
p. 489]:

−Fλ(−1) = λ

[
ψ

(
λ+ 1
2

)
− ψ

(
λ

2

)]
− 1, ψ(z) :=

Γ′(z)
Γ(z)

.

Similarly, we have Fλ(1) = λ[ψ(−λ/2)− ψ((1− λ)/2)]− 1. It may be
useful to note the following elementary estimate:

1
(λ)2λ

< −Fλ(−1) <
1

λ+ 1
.

In Corollary 2.4, the case λ = 1 is critical. In this case, by Theorem
2.3, we can see that, for f ∈ B(1),

|f(z)| ≤ F1(|z|) = 2 log
1

1− |z| − |z|.

In particular, a function in B(1) need not be bounded (for instance,
F1). The next proposition gives a boundedness criterion for functions
in B(1).

Proposition 2.5. If a holomorphic function f on the unit disk
satisfies that

(2.6) β(f) := lim
|z|→1−0

{(1− |z|2)|Tf (z)| − 2} log 1
1− |z|2 < −2,

then f is bounded. Here the constant −2 on the righthand side is sharp.

Proof. By assumption, there exists a β < −2 such that the lefthand
side in (2.6) is less than β. Thus, for some 0 < r0 < 1, (1−|z|2)|Tf (z)|−
2 ≤ β/ log(1/(1− |z|2)), i.e.,

(2.7) |Tf (z)| ≤
2

1− |z|2 +
β

(1− |z|2) log(1/(1− |z|2))

for any z ∈ C with r0 < |z| < 1. Here we may choose r0 sufficiently
close to 1 so that 1 − r20 < e−1. Integrating inequality (2.7), we see
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that, for |z| > r0,

| log f ′(z)| ≤ log
1 + |z|
1− |z| +

∫ |z|

r0

β dt

(1− t2) log 1
1−t2

+ C1

≤ log
1 + |z|
1− |z| +

∫ |z|

r0

β dt

2(1− t) log 1
2(1−t)

+ C1

= log
1− |z|
1 + |z| +

β

2
log log

1
2(1− |z|) + C2,

where C1 and C2 are constants depending only on f and r0. In
particular, we have

|f ′(z)| ≤ eC2
1 + |z|
1− |z|

(
log

1
2(1− |z|)

)β/2

.

Since β1/2 < −1, the function ((1 + t)/(1− t))(log(1/(2(1− t))))β/2 is
integrable on the interval [r0, 1). Thus f is bounded.

The sharpness follows from the example below.

Example 2.1. Let a constant β < 0 be given. Choose a constant
c > 0 so that cβ + 2 ≥ 0. Now we consider the function f ∈ A
determined by

f ′(z) =
K

1− z

(
1 + c log

2
1− z

)β

,

where K = (1 + c log 2)−β. Then this function satisfies that ‖Tf‖ = 2.
Moreover, f is bounded in the unit disk if and only if β < −1.

In fact, first observe that

Tf (z) =
1

1− z +
cβ

(1− z)(1 + c log 2
1−z )

=
1

1− z

[
1 +

β
1
c + log 2

1−z

]
.

By the fact that Re (2/(1 − z)) > 1, one can conclude that Rew >
1/c ≥ −β/2 and |Imw| < π/2, where w = 1/c + log(2/(1 − z)).
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Noting that |1 + β/w|2 = 1 + β(2Rew + β)/|w|2 ≤ 1, one can see
that |Tf (z)| ≤ 1/|1 − z| ≤ 1/(1 − |z|). In particular, it holds that
(1−|z|2)|Tf (z)| ≤ 1+ |z| < 2. On the other hand, it is easy to see that
limx→1−0(1− x2)|Tf (x)| = 2, thus ‖Tf‖ = 2.

Next we shall show that β(f) = 2β. Since |1+β/w| = [1+β(2Rew+
β)/|w|2]1/2 ∼ 1+β(Rew+β/2)/|w|2 ∼ 1+β/Rew ∼ 1−β/ log |1− z|
as z → 1 and, since the function t(1 + β/ log t) of t is monotonically
increasing for sufficiently large t, we have

β(f) = lim
D�z→1

{(1− |z|2)|Tf (z)| − 2} log 1
1− |z|2

= lim
D�z→1

{
(1− |z|2)
|1− z|

(
1 +

β

log 1/|1− z|

)
− 2

}
log

1
1− |z|2

= lim
D�z→1

{
(1 + |z|)

(
1 +

β

log 1/(1− |z|)

)
− 2

}
log

1
1− |z|2

= lim
x→1−0

{
− (1− x) log 1

1− x2
+ (1 + x)β

log 1
1−x2

log 1
1−x

}
= 0 + 2β.

In particular, we can conclude that f is bounded if β < −1 by
Proposition 2.5.

On the other hand, noting that
∫ 1

r0
(1/(1− x))[log(1/(1− x))]β = ∞,

in the case that β ≥ −1, we can directly see limx→1−0 f(x) = +∞;
thus f is unbounded.

We conclude this section with the Hölder continuity of functions
in B(λ). Recall the following fundamental fact due to Hardy and
Littlewood.

Theorem B (cf. [9]). Let α be a constant such that 0 < α ≤ 1.
A holomorphic function f on the unit disk is Hölder continuous of
exponent α if and only if f ′(z) = O(1− |z|)α−1 as |z| → 1.

Combining this with Theorem 2.3, we have

Theorem 2.6. Let 0 ≤ λ < 1. Then any function f ∈ B(λ) is
Hölder continuous of exponent 1− λ on the unit disk.
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Remarks. 1. We can directly see that |f(z1) − f(z2)| ≤ C(1 −
λ)|z1 − z2|1−λ for any pair of points z1, z2 ∈ D, where C is an
absolute constant owing to the estimate

∫ s

r
((1 + t)/(1 − t))λ dt ≤

2λ(1 − λ)−1((1 − r)1−λ − (1 − s)1−λ) ≤ 2λ(1 − λ)−1(s − r)1−λ for
0 < r < s < 1.

2. Chuaqui and Osgood proved in [6] that a strongly normalized
function f in the Nehari class is Hölder continuous of exponent

√
1− λ

where ‖Sf‖B2 = 2λ. Their result is better than that obtained by
combining the estimate ‖Tf‖ ≤ ‖Sf‖B2 with the above theorem.

3. Coefficient estimate for the class B(λ). Let f(z) = z+a2z
2+

· · · ∈ B(λ). Then, by definition, |Tf (0)| ≤ 2λ, which implies |a2| ≤ λ.
Of course, this is sharp because equality holds for the function Fλ.
But, a function in B(λ) essentially different from Fλ may attain this
maximum. For instance, consider the function f(z) = (e2λz − 1)/2λ.

As for the growth of coefficients of a holomorphic function f(z) =
a0 + a1z + a2z

2 + · · · in the unit disk, it is convenient to consider the
integral mean of exponent p ∈ R:

Ip(r, f) =
1
2π

∫ 2π

0

|f(reiθ)|p dθ.

For a function f(z) = z+a2z
2+ · · · in B(λ), by Theorem 2.3 we have

I1(r, f ′) = O(1−r)−λ so that I1(r, f) = O(1−r)−λ+1. Then, for n > 1
and r = 1− 1/n, the Cauchy integral formula implies

|an| =
∣∣∣∣ 1
2π

∫ 2π

0

f(reiθ)(reiθ)−n dθ

∣∣∣∣ ≤ r−nI1(r, f) ≤Mr−n(1− r)−λ+1

=M

(
1− 1

n

)−n

nλ−1 <
eMn

n− 1
nλ−1.

Hence |an| = O(nλ−1) as n → ∞. Moreover, if λ < 1 and if f is
univalent, then f is bounded by Corollary 2.4, so

Area (f(D)) = π

(
1 +

∞∑
n=2

n|an|2
)
<∞.

By this simple observation we have an = o(n−1/2) as n→ ∞.



GROWTH AND COEFFICIENT ESTIMATES 191

But we can improve the exponents in these order estimates. We now
explain this.

For λ > 0, we set

α(λ) =
√
1 + 4λ2 − 1

2
.

Noting α(λ) = 2λ2/(
√
1 + 4λ2 + 1), then we have

λ2

λ+ 1
< α(λ) < min

{
λ2,

2λ2

2λ+ 1

}
≤ min{λ2, λ}.

We also note that

α(λ) = λ− 1
2
+

1
8λ

+O
(

1
λ3

)
, λ→ ∞.

For this number, we have the next result.

Theorem 3.1. Let f(z) = z+a2z
2+a3z

3+· · · be in B(λ). Then, for
any ε > 0 and a real number p, we have Ip(r, f ′) = O(1− r)−α(|p|λ)−ε,
in particular, an = O(nα(λ)−1+ε).

This immediately follows from the next result.

Theorem C [17, Lemma 5.3]. Let h be a holomorphic function in
the unit disk such that

(1− |z|)
∣∣∣∣h

′(z)
h(z)

∣∣∣∣ ≤ c, r0 ≤ |z| < 1,

for constants c > 0 and r0 < 1. Then Ip(r, h) = O(1 − r)−β where
β = (

√
1 + 4p2c2 − 1)/2 and p ∈ R.

We note that this is a consequence of the differential inequality of
Fuchsian type:

I ′′p (r, h) ≤
p2

2π

∫ 2π

0

|h(z)|p
∣∣∣∣h

′(z)
h(z)

∣∣∣∣
2

dθ ≤ p2c2

(1− r)2 Ip(r, h).
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Moreover, if f is univalent, we may have a better growth estimate for
the coefficients. First we remind the reader of the following result due
to Littlewood, Paley, Clunie, Pommerenke and Baernstein II (see [2],
[19, Theorem 8.8] and [13, Theorem 3.7]).

Theorem D. Suppose that f(z) = z+a2z
2+ · · · ∈ S satisfies f(z) =

O(1 − |z|)−α. If 0.491 < α ≤ 2, then
∫ 2π

0
|f ′(reiθ)| dθ = O(1 − r)−α

and an = O(nα−1). If α = 0, in other words if f is bounded, then∫ 2π

0
|f ′(reiθ)| dθ = O(1− r)−0.491 and an = O(n0.491−1).

In view of Corollary 2.4, we have the following result:

Theorem 3.2. Let f(z) = z + a2z
2 + · · · ∈ S. If f ∈ B(λ) with

1.491 < λ ≤ 3, then it holds that an = O(nλ−2) as n→ ∞. This order
estimate is best possible.

In order to see the sharpness, we may consider the function f(z) =
(1−z)1−λ = 1+a1z+a2z

2+· · · for 1 < λ. We note that f is univalent in
the unit disk if 1 < λ ≤ 3. For this function we can see that ‖Tf‖ = 2λ
and an = Γ(λ + n − 1)/n!Γ(λ − 1) ∼ nλ−2 as n → ∞ by Stirling’s
formula.

On the other hand, in the case that f is univalent with ‖Tf‖ < 3,
the situation seems rather complicated. Given a holomorphic function
f(z) = z + a2z

2 + · · · in the unit disk, let γ(f) denote the infimum of
exponents γ such that an = O(nγ−1) as n→ ∞, i.e.,

γ(f) = lim
n→∞

log n|an|
log n

.

Also, for a subset X of A, we denote by γ(X) the supremum of
{γ(f); f ∈ X}. As for γ(Sb), where Sb denotes the class of normal-
ized bounded univalent functions in the unit disk, it has been shown
([5] and [14]) that 0.24 < γ(Sb) < 0.4886 and conjectured by Carleson
and Jones that γ(Sb) = 0.25. We also remark that the growth of co-
efficients seems to involve the irregularity of boundary of image under
f when f is bounded and univalent (see [19, Chapter 10]) and, re-
cently, Makarov and Pommerenke observed a remarkable phenomenon
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of phase transition of the functional γ(f) with respect to the Minkowski
dimension of the boundary curve [14].

Now we turn to our case. Theorem 3.1 implies γ(B(λ)) ≤ α(λ).
The above example (1 − z)1−λ (or − log(1 − z) when λ = 1) shows
λ−1 ≤ γ(B(λ)). By standard calculations, we can see that the extremal
function Fλ also satisfies γ(Fλ) = λ− 1.

To construct an analytic function with curious boundary behavior,
the Hadamard gap series is often used, e.g., [19, Section 8.6]. Here we
present a simple example of such a kind to improve the above lower
estimate of γ(B(λ)).

Example 3.1 (Gap series construction). Let q be a fixed integer
greater than 1. We consider the function

g(z) = z + zq + zq2
+ zq3

+ · · ·

in the unit disk, which can be characterized by the functional equation
g(z) = z + g(zq) with the initial condition g(0) = 0. We note that
this is a Bloch function satisfying ‖g′‖ ≤ q/(q − 1), cf. [19, Section
8.6]. Let t > 0 be a constant. Then the function h(z) = etg(z) =
b0 + b1z + b2z

2 + · · · obeys the functional equation h(z) = etzh(zq).
Thus the coefficients bn are all positive and calculated by the relations

bkq+m =
k∑

l=0

clq+mbk−l,

where cn = tn/n!. Lettingm = 0, we have bkq = c0bk+· · ·+ckqb0 > bk.
In particular, we know bqk > bqk−1 > · · · > b1 = t. Therefore, we have
lim log bn/ log n ≥ 0.

On the other hand, the function f ∈ A determined by f ′ = h satisfies
Tf = tg′; therefore, ‖Tf‖ can be made arbitrarily small by letting t be
sufficiently small. This shows γ(B(λ)) ≥ 0 for any λ > 0.

Summarizing these observations, we have the next result.

Theorem 3.3. For any λ ∈ (0,∞), we have

(3.1) max{0, λ− 1} ≤ γ(B(λ)) ≤ α(λ) =
√
1 + 4λ2 − 1

2
.
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In particular, γ(B(λ)) = O(λ2) as λ→ 0.

Remarks. 1. Recently, Chuaqui, Osgood and Pommerenke [7] proved
γ(B(λ)) ≥ cλ2 for some positive constant c when λ is sufficiently small.
Their construction is fairly technical and complicated, so our simple
Example 3.1 still seems meaningful to be mentioned here.

2. More generally, by Theorem C, for any f ∈ A we have the estimate

γ(f) ≤ 1
2

(√
1 + ‖Tf‖2

0 − 1
)
.

3. For 0 < λ ≤ 1/2, we note that α(λ) ≤ λ2 − 2λ4/3 ≤ 5/24 =
0.2083 . . . because

√
1 + x < 1+x/2−x2/(6+4

√
2) < 1+x/2−x2/12

for 0 < x ≤ 1. We remark again that B(1/2) ⊂ Sb.

Now we mention a connection with integral means for univalent
functions. For a univalent function f ∈ S and a real number p, we
set

βf (p) = lim
r→1−0

log
∫ 2π

0
|f ′(reiθ)|p dθ
log 1

1−r

= lim
r→1−0

log Ip(r, f ′)
log 1

1−r

.

The Brennan conjecture asserts that βf (−2) ≤ 1 for every univalent
holomorphic function f , cf. [19, Chapter 8].

For f ∈ B(λ), as a corollary of Theorem 3.1, we have the next

Theorem 3.4. For f ∈ B(λ) and p ∈ R, the inequality

βf (p) ≤ α(|p|λ) =
√
1 + 4p2λ2 − 1

2

holds. In particular, the Brennan conjecture is true for any univalent
function f with ‖Tf‖ ≤

√
2.

A similar statement can be found in [19, Exercise 8.3.4].

4. Subordination principles for norm estimate of pre-
Schwarzian derivative. First we state general and useful principles
for estimation of the norm of Tf . A holomorphic function fon the unit
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disk is said to be weakly subordinate to another g if f can be written
as f = g ◦ ω, where ω is a holomorphic self-mapping of the unit disk.
Furthermore, if ω can be taken so as to satisfy ω(0) = 0, the function
f is said to be subordinate to g.

We remark that the Schwarz-Pick lemma states that any holomorphic
self-mapping ω of the unit disk satisfies

(4.1)
|ω′(z)|

1− |ω(z)|2 ≤ 1
1− |z|2

for any point z ∈ D.

We also note that if g ∈ S, then f is weakly subordinate to g if and
only if f(D) ⊂ g(D).

The following always generates a sharp result for fixed g. The idea is
due to Littlewood.

Theorem 4.1 (Subordination principle I). Let g ∈ B be given. For
a holomorphic function f in the unit disk, if f ′ is weakly subordinate
to g′, then we have ‖Tf‖ ≤ ‖Tg‖. In particular, f is uniformly locally
univalent on the unit disk.

Proof. By assumption, a holomorphic function ω : D → D exists
such that f ′ = g′ ◦ ω. Therefore, Tf = Tg ◦ ω · ω′. Thus (4.1) implies
the following:

(1− |z|2)|Tf (z)| = (1− |z|2)|Tg(ω)||ω′| ≤ (1− |ω|2)|Tg(ω)| ≤ ‖Tg‖,

which leads to the conclusion.

The analogous statement does not follow for the semi-norm ‖ · ‖0;
however, the following form can be proved.

Proposition 4.2. There exists an absolute constant c0 > 0 such that
for any g ∈ B the inequality

c0‖Tg‖ ≤ sup
f

‖Tf‖0 ≤ ‖Tg‖
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holds, where the supremum is taken over all holomorphic functions f
on D for which f ′ are weakly subordinate to g′.

Proof. Actually, a single ω is sufficient. Take the holomorphic
function f in the unit disk satisfying f ′ = g′ ◦ ω, where ω(z) =
exp[−(1 + z)/(1 − z)] is a holomorphic universal covering map of the
punctured disk D \ {0}. The preimage of the circle |w| = e−a under ω
is a horocircle, say Ca, tangent to ∂D at 1. Since (1− |z|2)|ω′(z)|/(1−
|ω(z)|2) = a/ sinh a along the horocircle, we know

lim
Ca�z→1

(1− |z|2)|Tf (z)| =
a

sinh a
max

|w|=e−a
(1− |w|2)|Tg(w)| = 2ae−aMa,

where Ma = max|w|=e−a |Tg(w)|. In particular, we have

2ae−aMa ≤ lim
z→1

(1− |z|2)|Tf (z)| ≤ ‖Tf‖0.

When a ≥ 1, we have (1− e−2a)Ma ≤Ma ≤M1 ≤ (e/2)‖Tf‖0. When
a < 1, we have (1 − e−2a)Ma ≤ (sinh a/a)‖Tf‖0 ≤ sinh 1‖Tf‖0 ≤
(e/2)‖Tf‖0. Therefore, we have ‖Tg‖ = supa>0(1 − e−2a)Ma ≤
(e/2)‖Tf‖0.

As a typical application of the subordination principle, we exhibit the
following.

Example 4.1 (Nunokawa [15]). If f ∈ A satisfies Re f ′ > 0 on the
unit disk, then ‖Tf‖ ≤ 2. The bound is sharp.

Proof. The condition Re f ′ > 0 is equivalent to the assertion that f ′

is subordinate to the function F ′
1(z) = (1 + z)/(1 − z). Thus we have

‖Tf‖ ≤ ‖TF1‖ = 2.

This result remains true if we allow f ′ to be a Gelfer function where
an analytic function g on the unit disk with g(0) = 1 is called Gelfer
when g(z) + g(w) �= 0 for all z, w ∈ D. In fact, this follows directly
from the estimate (1− |z|2)|g′(z)/g(z)| ≤ 2 for a Gelfer function g, see
[26].
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The next is a variant of the subordination principle.

Theorem 4.3 (Subordination principle II). Let g ∈ B be given. For
f ∈ A, if zf ′(z)/f(z) is subordinate to g′, then we have

‖Tf‖ ≤ sup
z∈D

(1− |z|2)
(∣∣∣∣g

′(z)− 1
z

∣∣∣∣ + |Tg(z)|
)

(4.2)

≤ sup
z∈D

(1− |z|2)
∣∣∣∣g

′(z)− 1
z

∣∣∣∣ + ‖Tg‖.(4.3)

Proof. By assumption, a holomorphic function ω : D → D exists with
ω(0) = 0 such that zf ′(z)/f(z) = g′(ω(z)). By taking the logarithmic
derivative, we have the following formula.

Tf =
f ′

f
− 1
z
+
g′′(ω)
g′(ω)

ω′ =
ω

z

g′(ω)− 1
ω

+ Tg(ω)ω′.

From this, we can easily have the desired estimate.

The following is a simple application of this principle.

Theorem 4.4. If f ∈ A satisfies |zf ′(z)/f(z)−1| < 1, then we have
the estimate ‖Tf‖ ≤ 2.25. Equality holds if and only if f is a rotation
of the function zez.

Remark. In this case f satisfies Re zf ′(z)/f(z) > 0; thus, f is starlike,
in particular, univalent in the unit disk.

Proof. We only have to apply estimate (4.2) with g(z) = z + z2/2.
Then we have ‖Tf‖ ≤ sup(2+ |z|− |z|2) = 9/4, where the supremum is
attained only by |z| = 1/2. Thus if ‖Tf‖ = 9/4, then |ω| must be the
constant 1, whence f is a rotation of zez . Conversely, it is clear that
the function f(z) = zeµz with |µ| = 1 satisfies ‖Tf‖ = 9/4.

Finally we consider uniformly convex functions

UCV =
{
f ∈ S; Re

(
1 + (z − ζ)f

′′(z)
f ′(z)

)
≥ 0, ∀ z, ∀ ζ ∈ D

}
.
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For the geometric meaning of this class, see [11]. Rønning gave a simple
characterization for this class.

Theorem E (Rønning [21]). A function f ∈ A is uniformly convex
if and only if zTf (z) ∈ W for any z ∈ D where W is the domain
{w = u+ iv; v2 < 2u+ 1}.

We note that a conformal map g : D →W with g(0) = 0 is given by

(4.4) g(z) =
2
π2

(
log

1 +
√
z

1−
√
z

)2

=
8z
π2

(
1 +

z

3
+
z2

5
+
z3

7
+ · · ·

)2

.

Therefore, f ∈ A is uniformly convex if and only if zTf (z) is subordi-
nate to the function g, i.e., a holomorphic function ω : D → D exists
with ω(0) = 0 such that zTf (z) = g(ω(z)). Since g has positive Taylor
coefficients, we see that |zTf (z)| ≤ g(|ω(z)|) ≤ g(|z|). Hence, we have

‖Tf (z)‖ ≤ sup
0<x<1

(1− x2)
g(x)
x

= sup
0<t<∞

h(t),

where

h(t) =
8t2

π2

cosh t
sinh2 t

and (1 +
√
x)/(1 −

√
x) = et. By the logarithmic differentiation, we

have
h′(t)
h(t)

=
2 sinh 2t− t(cosh 2t+ 3)

t sinh 2t
=

N(t)
t sinh 2t

.

Since N ′′(t) = 4(tanh 2t − t)/ cosh 2t has the unique zero t0 in (0,∞),
the function N ′(t) = 3(cosh 2t− 1)− 2t sinh 2t attains its maximum at
t0. Since N ′(0) = 0 and N ′(t) → −∞ as t → ∞, the function N ′(t)
has the unique zero t1 > t0 in (0,∞). For exactly the same reason, the
function N(t) has the unique zero t2 > t1 in (0,∞). Thus, h(t) assumes
its maximum at the point t = t2. By a numerical calculation, we have
t2 = 1.6061152988 . . . , and h(t2) = 0.94774221287 . . . . Therefore, we
summarize as follows.

Theorem 4.5. If f ∈ A is uniformly convex, then we have

‖Tf‖ ≤ h(t2) = 0.94774 . . . ,
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where equality occurs only when f is a rotation of the function F ∈ A
determined by TF (z) = g(z)/z, where g is given by (4.4).
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