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FURTHER CONSEQUENCES OF
A SEXTUPLE PRODUCT IDENTITY

JOHN A. EWELL

ABSTRACT. Presented here are representations of values of
the sum-of-divisors function σ at odd arguments. A corollary
giving necessary conditions for primality of these arguments
is then presented.

1. Introduction. In [2, p. 1287] the author presented the following
sextuple product identity, which is valid for each triple of complex
numbers a, b, x such that a �= 0, b �= 0 and |x| < 1.

(1.1)

∞∏
(1− x2n)2(1 + abx2n−1)(1 + a−1b−1x2n−1)

· (1 + ab−1x2n−1)(1 + a−1bx2n−1)

=
∞∑
−∞

x2m2
a2m

∞∑
−∞

x2n2
b2n

+ x

∞∑
−∞

x2m(m+1)a2m+1
∞∑
−∞

x2n(n+1)b2n+1.

In fact, it was demonstrated there that this identity is an easy and
straightforward consequence of the classical Gauss-Jacobi triple prod-
uct identity:

(1.2)
∞∏
1

(1− x2n)(1 + tx2n−1)(1 + t−1x2n−1) =
∞∑
−∞

xn2
tn,

which is valid for each pair of complex numbers t, x such that t �= 0
and |x| < 1. Identity (1.1) was then used to derive two formulas for
representing numbers by sums of four triangular numbers and by sums
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of eight triangular numbers. In this paper we propose to derive two
further results of arithmetical interest. As these results involve several
arithmetical functions, we collect these in the following definition.

Definition 1.1. P := {1, 2, 3, . . . }, N := P ∪ {0} and Z :=
{0,±1,±2, . . . }. Then, for each n ∈ N,

t22(n) :=
∣∣∣∣
{
(j, k) ∈ N2 | n =

j(j + 1)
2

+
k(k + 1)
2

}∣∣∣∣
and

r2(n) := |{(j, k) ∈ Z2|n = j2 + k2}|.
For each k ∈ N and each n ∈ P, σk(n) : is the sum of the kth powers

of all positive divisors of n. For simplicity, σ(n) := σ1(n).

For each i ∈ {1, 3} and each n ∈ P,

di(n) :=
∑
d|n

d≡i (mod 4)

1.

Then, for each n ∈ P, δ(n) := d1(n)− d3(n).

We are now prepared to state our main result.

Theorem 1.2. For each m ∈ N,

(1.3) σ(4m+ 1) = δ(4m+ 1) + 4
m∑

k=1

δ(4m+ 1− 4k)δ(2k)

and

(1.4) σ(4m+ 3) = 4
m∑

k=0

δ(4m+ 3− 4k − 2)δ(2k + 1).

The counting functions t2(n) and r2(n), n ∈ N, arise naturally in the
proof of this result. They are eliminated in the final statement, owing
to the following formulas.

r2(n) = 4δ(n), n ∈ P,(1.5)
t2(n) = δ(4n+ 1), n ∈ N.(1.6)
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Of course, r2(0) = t2(0) = 1. Formula (1.5) is a classical result due to
Jacobi. For a proof, see [3, pp. 241 242]. For a proof of (1.6), see [1,
pp. 753 755].

2. Proofs. First of all we recall the following identity due to Gauss:
∞∏
1

1− x2n

1− x2n−1
=

∞∑
0

xn(n+1)/2, |x| < 1.

This is actually an easy special case of (1.2). Our proof then turns
on being able to express the infinite product x

∏∞
n=1(1 − x4n)6 in two

different ways. First we observe that the square of the righthand side
of Gauss’s identity generates the sequence t2(n), n ∈ N, i.e.,

{ ∞∑
n=0

xn(n+1)/2

}2

:=
∞∑

n=0

t2(n)xn, |x| < 1.

Hence we (i) square both sides of Gauss’s identity, (ii) let x → x4 and
(iii) multiply the resulting identity by x to get

x
∞∏

n=1

(1− x8n)2

(1− x8n−4)2
= x

( ∞∑
n=0

x2n(n+1)

)2

=
∞∑

n=0

t2(n)x4n+1.

Then, on the one hand, by the foregoing identity and (1.6), we get

x

∞∏
1

(1− x4n)6 =
∞∏
1

(1− x4n)4(1− x8n−4)4 · x
∞∏
1

(1− x8n)2

(1− x8n−4)2

=
∞∏
1

(1− x4n)4(1− x8n−4)4 ·
∞∑

n=0

t2(n)x4n+1

=
∞∏
1

(1− x4n)4(1− x8n−4)4 ·
∞∑

n=0

δ(4n+ 1)x4n+1.(2.1)

On the other hand,

(2.2) x

∞∏
1

(1−x4n)6 =
∞∏
1

(1−x2n)2(1−x4n−2)2
∞∑

n=0

σ(2n+ 1)x2n+1.
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To see this, we begin with the identity

x
∞∏
1

(1− x4n)4

(1− x4n−2)4
=

∞∑
0

σ(2n+ 1)x2n+1, |x| < 1.

For a proof, see [2, p. 1291]. Then, owing to the classical identity of
Euler ∞∏

1

(1 + xn)(1− x2n−1) = 1, |x| < 1,

we get
∞∏
1

(1− x2n)2(1−x4n−2)2 ·
∞∑

n=0

σ(2n+ 1)x2n+1

= x

∞∏
1

(1− x2n)2(1− x4n−2)2
(1− x4n)4

(1− x4n−2)4

= x

∞∏
1

(1− x2n)2(1 + x2n)2(1− x4n)4

= x
∞∏
1

(1− x4n)6.

This proves (2.2).

In (1.2) let t = 1 to get
∞∏

n=1

(1− x2n)(1 + x2n−1)2 =
∞∑
−∞

xn2
.

Note that the square of the righthand side of this identity generates
the sequence r2(n), n ∈ N, i.e.,{ ∞∑

−∞
xn2

}2

:=
∞∑

n=0

r2(n)xn, |x| < 1.

Hence, in the foregoing identity we (i) let x → x2 and (ii) square both
sides of the resulting identity to get

∞∏
1

(1− x4n)2(1 + x4n−2)4 =
{ ∞∑

−∞
x2n2

}2

=
∞∑

n=0

r2(n)x2n.
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Now between (2.1) and (2.2) we eliminate x
∏
(1−x4n)6 and divide the

resulting identity by the product
∏
(1− x2n)2(1− x4n−2)2 to get

∞∑
0

σ(2n+ 1)x2n+1 =
∞∏
1

(1− x4n)2(1 + x4n−2)4 ·
∞∑

n=0

δ(4n+ 1)x4n+1

=
∞∑

n=0

r2(n)x2n ·
∞∑

n=0

δ(4n+ 1)x4n+1

=
{
1 +

∞∑
n=1

r2(n)x2n

} ∞∑
n=0

δ(4n+ 1)x4n+1

=
{
1 + 4

∞∑
n=1

δ(n)x2n

} ∞∑
n=0

δ(4n+ 1)x4n+1.

(In the last two steps we’ve used r2(0) = 1 and (1.5).) Next we expand
the product of the two series and separate the terms according to
whether the exponents of the powers of x are congruent to 1 (mod 4)
or congruent to 3 (mod 4). Then, equating coefficients of like powers
of x, we prove our theorem.

Corollary 2.1. (i) For each n ∈ P, if n ≡ 1 (mod 4) and n is
prime, then

n − 1
4

=
(n−1)/4∑

k=1

δ(n − 4k)δ(2k).

(ii) For each n ∈ P, if n ≡ 3 (mod 4) and n is prime, then

n+ 1
4

=
(n−3)/4∑

k=0

δ(n − 4k − 2)δ(2k + 1).

Proof. (i) To see this, suppose that n = 4m+1 for some m ∈ P, and,
further, suppose that n is prime. Then σ(n) = σ(4m + 1) = 4m + 2
and δ(4m+ 1) = 2, whence the desired conclusion, owing to (1.3).

(ii) Suppose that n = 4m+3, for some m ∈ N and n is prime. Then
σ(n) = σ(4m + 3) = 4m + 4, whence the desired conclusion owing to
(1.4).
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