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THE EXTENSION OF p-ADIC
COMPACT OPERATORS

N. DE GRANDE-DE KIMPE AND C. PEREZ-GARCIA

ABSTRACT. This paper is devoted to study the non-
Archimedean locally convex spaces X having the following
property: For all non-Archimedean locally convex spaces Z ⊃
Y , every compact operator T : Y → X has an extension to a
compact operator T : Z → X. The results obtained depend
strongly on the spherical completeness of the ground field.
On the other hand, the situation here is completely different
from its Archimedean counterpart. Our results also lead to
some new characterizations of spherically complete fields and
of discretely valued fields.

Introduction. In [16], the authors characterize the (real or com-
plex) Banach spaces X having the following property:

(∗) For all Banach spaces Z ⊃ Y every compact operator T : Y → X
has an extension to a compact operator T : Z → X.

They prove that X has property (∗) if and only if it is an L∞-space.

Our first goal was to study this property in the non-Archimedean
case. It turned out that not only was the situation completely different
here, but also that the answer was surprisingly simpler. We found,
indeed, that when the ground field K is spherically complete, then
every non-Archimedean Banach space X over K has property (∗), and
if K is not spherically complete, no X �= {0} has this property.

We therefore decided to look at the problem in the much more
general frame of non-Archimedean locally convex spaces and called the
property CEP (Definition 2.1). Here the situation is more complicated.
If K is not spherically complete, still there are no nontrivial locally
convex spaces over K with the CEP (Section 3). On the other hand, if
K is spherically complete, lots of spaces have the CEP but not all of
them (Section 4), and the situation is still different in the special case
when the valuation on K is discrete (Section 5).
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Our results also lead to some new characterizations of spherically
complete fields (Theorem 4.11) and of discretely valued fields (Theo-
rem 5.3). Finally it turns out that the CEP is related to a locally convex
version of the notion of weakly injective normed space introduced in
[23, Theorem 4.9].

1. Preliminaries. Throughout, K is a non-Archimedean nontriv-
ially valued field that is complete under the metric induced by its valua-
tion |.| : K → [0,∞). Let X be a K-vector space. By dimX we denote
the algebraic dimension of X and by X∗ its algebraic dual. A subset A
of X is called absolutely convex if A is a module over the valuation ring.
A set that is either empty or the translation of an absolutely convex set
is called a convex set. The linear hull of a set B ⊂ X is written [B], its
absolutely convex hull coB. If A is an absolutely convex subset of X,
we will denote by XA the vector space [A] equipped with the Minkowski
functional pA of A (i.e., for x ∈ [A], pA(x) = inf {|λ| : x ∈ λA}). If p
is a (non-Archimedean) seminorm on X, we denote by Xp the normed
space X/Ker p endowed with the norm given by ‖πp(x)‖ = p(x), x ∈ X,
where πp : X → Xp is the canonical quotient map. We say that p is a
polar seminorm if p = sup{|f | : f ∈ X∗, |f | ≤ p}.

In the sequel X,Y, Z will be Hausdorff locally convex spaces over
K. PX will denote the family of all (non-Archimedean) continuous
seminorms on X. A complete metrizable locally convex space is called
a Fréchet space. X is called quasicomplete if every closed bounded
subset of X is complete. We say that X contains a copy of Y if X
contains a linear subspace X1 that is linearly homeomorphic to Y . If
there is a continuous linear projection from X onto X1, then we say
that X1 is complemented in X. If X ′ is the topological dual of X,
we denote by σ(X,X ′) the weak topology on X and by σ(X ′, X) the
weak∗-topology on X ′ associated with the natural dual pair 〈X,X ′〉.
The canonical map X → (X ′)∗ is denoted by JX . X is called polar if its
topology is defined by a family of polar seminorms. If K is spherically
complete, then every locally convex space X over K is polar and every
weakly convergent sequence in X is convergent for the original topology
(see [21]); in particular, X is weakly sequentially complete if and only
if X is sequentially complete.

A compactoid in X is a set B ⊂ X such that for each zero neigh-
borhood U in X, there is a finite set F ⊂ X such that B ⊂ U + coF .



p-ADIC COMPACT OPERATORS 107

An absolutely convex subset A of X is called c-compact if for every
collection C of closed convex subsets of A with the finite intersection
property we have ∩C �= ∅. If K is spherically complete and A is an
absolutely convex subset of X, then A is c-compact and bounded if
and only if A is compactoid and complete ([20, Theorem 9]). A linear
operator T : X → Y is called compact if there is a zero neighborhood
V in X such that T (V ) is compactoid in Y . We denote by C(X,Y ) the
set of the compact operators from X to Y . Clearly C(X,Y ) is a linear
subspace of L(X,Y ), the vector space of all continuous linear operators
from X to Y endowed with the canonical norm given by

‖T‖ = sup
{‖Tx‖

‖x‖ : x ∈ X,x �= 0
}
, T ∈ L(X,Y ).

A particularly interesting class of locally convex spaces is formed
by the perfect sequence spaces endowed with the associated normal
topology. Recall that a sequence space Λ is called perfect if Λ∗∗ = Λ,
where Λ∗ := {(bn)n ∈ KN : limn anbn = 0 for all (an)n ∈ Λ} is
the Köthe-dual of Λ. Also, the normal topology on Λ is the topology
n(Λ,Λ∗) defined by the family of seminorms {pb : b ∈ Λ∗}, where
for each b = (bn)n ∈ Λ∗, pb is defined by pb(a) = supn |anbn|,
a = (an)n ∈ Λ. Every a = (an)n ∈ Λ can be written uniquely as
a =

∑
n anen, where for each n, en is the sequence with 1 in the nth

place and zeros elsewhere. For a perfect sequence Λ, a (separating)
bilinear form on the dual pair (Λ,Λ∗) is defined by

〈a, b〉 =
∑

n

anbn, a = (an)n ∈ Λ, b = (bn)n ∈ Λ∗.

We shall denote by σ(Λ,Λ∗) the weak topology on Λ associated with
this dual pair. Since Λ is n(Λ,Λ∗)-complete, it follows that Λ is also
σ(Λ,Λ∗)-sequentially complete.

This kind of space plays an important role in the set-up of p-adic
quantum mechanics (see, e.g., [9], [10] and [14]). For instance, if B
is an infinite matrix consisting of strictly positive real numbers bkn,
n, k ∈ N, satisfying bkn ≤ bk+1

n for all n, k, then the non-Archimedean
Köthe space K(B) associated with the matrix B and defined by

K(B) = {(αn)n ∈ KN : lim
n

|αn|bkn = 0, for all k = 1, 2, . . . }
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is a perfect sequence space which is a Fréchet space (see [5]). For
bkn = kn, K(B) is the space of entire functions on K, which is needed
for the definition of a non-Archimedean Laplace transform in [9] and
[14], and for the definition of a non-Archimedean Fourier transform in
[10].

Now let (X, ‖.‖) be a normed space over K. By BX we denote the
closed unit ball of X, i.e., BX = {x ∈ X : ‖x‖ ≤ 1}. A sequence (xn)n

in X is called t-orthogonal (t ∈ (0, 1]) if

‖λ1x1 + · · · + λnxn‖ ≥ t max(‖λ1x1‖, . . . , ‖λnxn‖)

for all λ1, . . . , λn ∈ K, n ∈ N.

For terms that are still unexplained, see [21] and [23].

2. Definition and basic facts.

Definition 2.1. We say that X has the compact extension property
(CEP for short) if, for every pair of locally convex spaces Y, Z with
Y ⊂ Z and every T ∈ C(Y,X), there exists T ∈ C(Z,X) that extends
T .

We will see that in the above definition it is enough to assume that
Y and Z are normed spaces (Proposition 2.3). To this end, we need
the following lemma.

Lemma 2.2. If T ∈ C(Y,X), then there exist p ∈ PY and
Tp ∈ C(Yp, X) such that T = Tp ◦ πp.

Proof. There exists an absolutely convex zero neighborhood U in Y
such that T (U) is compactoid in X. Let p ∈ PY be the Minkowski
functional of U . Then Tp : Yp → X defined by Tp(πp(y)) = T (y),
y ∈ Y , satisfies the required conditions.

Proposition 2.3. If, for every pair of normed spaces E,F with
E ⊂ F and for every T ∈ C(E,X) there exists T ∈ C(F,X) that
extends T , then for every pair of locally convex spaces Y, Z with Y ⊂ Z
and every S ∈ C(Y,X), there exists S ∈ C(Z,X) that extends S. So,
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from now on when using Definition 2.1, we can restrict ourselves to
normed spaces Y, Z.

Proof. By Lemma 2.2, for every S ∈ C(Y,X), there exist p ∈ PY

and Sp ∈ C(Yp, X) such that S = Sp ◦ πp. We can assume that p
is the restriction to Y, q | Y for some q ∈ PZ . Consider the linear
isometry i : Yp → Zq, πp(y) �→ πq(y), y ∈ Y , and set Y p := i(Yp)
and Sp := Sp ◦ ī−1 where ī : Yp → Y p is the restriction of the map
i to its image. Then Sp ∈ C(Y p, X) and, by assumption, there is an
Sp ∈ C(Zq, X) extending Sp. It follows that S := Sp ◦ πq meets the
requirements.

It follows directly from Definition 2.1 and the properties of com-
pactoid sets (see [6]) that

Proposition 2.4. (i) If X has the CEP, then every locally convex
space linearly homeomorphic to X and every complemented subspace of
X has the CEP.

(ii) If {Xi}i∈I is a family of locally convex spaces having the CEP,
then

∏
i∈I Xi endowed with the product topology has the CEP.

Later (in Examples of Section 4) we will see that not every subspace
of a space with the CEP has the CEP.

3. The nonspherically complete case. The first goal of this
section is to prove that when K is not spherically complete, there are
no nontrivial locally convex spaces over K with the CEP (Theorem
3.3). For that we need some preliminary results.

Lemma 3.1. Let X,Y be locally convex spaces with X �= {0}. Then
C(Y,X) = {0} if and only if Y ′ = {0}.

Proof. We only have to prove the “if.” Assume that Y ′ = {0}.
Let T : Y → X be a compact linear operator and take q ∈ PX .
Then πq ◦ T ∈ C(Y,Xq) and, by Lemma 2.2 there exist p ∈ PY and
Tp ∈ C(Yp, Xq) such that πq ◦ T = Tp ◦ πp. Now, as Y ′ = {0}, we have
that (Yp)′ = {0} and hence, by [13, Theorem 2.3], Tp = 0. Therefore,
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πq ◦ T = 0 for all q ∈ PX . Since X is Hausdorff, it follows that T = 0.

Lemma 3.2. Suppose K is not spherically complete. Let X,Y be
locally convex spaces over K with X �= {0}. Then the following are
equivalent.

(i) For every locally convex space Z containing a copy Y1 of Y and
every T ∈ C(Y1, X), there exists a T ∈ C(Z,X) that extends T .

(ii) Y ′ = {0}.

Proof. The implication (ii) ⇒ (i) is a direct consequence of Lemma 3.1.

(i) ⇒ (ii). Since Y is Hausdorff, Y is the linearly homeomorphic to
a subspace Y1 of the locally convex space Z :=

∏
p∈PY

Y̆p where, for
each p ∈ PY , Y̆p is the spherical completion of Yp. Note that ([23,
Corollary 4.3]) (Y̆p)′ = {0} for all p ∈ PY and so Z ′ = {0}. By (i)
and Lemma 3.1, it follows that C(Y1, X) = {0} and, again applying
Lemma 3.1, we conclude that Y ′ = {0}.

Theorem 3.3. If K is not spherically complete, then no locally
convex space X �= {0} over K has the CEP.

Proof. Suppose X has the CEP. Then, apply Lemma 3.2 for Y = K.
This gives K′ = {0}, a contradiction.

One could weaken the CEP by making smaller the category of locally
convex spaces in which it is defined, considering only normed or Banach
spaces. The new goal would be to find out whether for these weaker
conditions we obtain nontrivial spaces satisfying them. But, as it is
shown in Proposition 2.3, this does not have any effect at all.

We now consider the CEP in the category of polar spaces (we call
it p-CEP). Then again for K nonspherically complete, there are no
nontrivial examples of spaces with the p-CEP. We have indeed:

Theorem 3.4. If there exists a polar space X �= {0} over K with
the p-CEP, then K is spherically complete.
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Proof. Let X �= {0} be as above, and take x ∈ X \ {0}. By [23,
Theorem 4.15], we have to prove that every S ∈ L(c0, [x]) has an
extension S ∈ L(l∞, [x]).

So take S ∈ L(c0, [x]). If i : [x] → X is the canonical inclusion from
[x] into X, then T := i ◦ S is a compact linear operator from c0 to X.
By assumption, T has an extension T ∈ C(l∞, X). Also, by polarity
of X and [11, Lemma 2.2], there exists a continuous linear projection
P : X → [x]. Then S := P ◦ T satisfies the required conditions.

Hence, a polar space X has the p-CEP if and only if X has the CEP.

Also observe that in this case (using the polar counterpart of Propo-
sition 2.3) we can, in the definition of the p-CEP, restrict ourselves to
Y, Z polar normed spaces.

On the other hand, in the polar case, the local behavior for the CEP
stated in Lemma 3.2 does not hold anymore as it is shown in the next
example.

Example. Suppose K is not spherically complete. Let X be any
locally convex space (over K) and take Y = l∞. Clearly Y is a polar
space with nontrivial dual.

Let Z be a polar locally convex space containing a copy Y1 of Y , and
let T : Y1 → X be a compact linear operator. By [19, Lemma 4.6],
Y1 is complemented in Z and so T admits a compact linear extension
T : Z → X.

4. The spherically complete case. In this section we assume
that K is spherically complete.

Theorem 4.1. Every metrizable locally convex space X over K has
the CEP.

Proof. First assume thatX is a normed space, and let Y, Z be normed
spaces with Y ⊂ Z and T ∈ C(Y,X). There exists a sequence (fn)n

in Y ′ and a t-orthogonal sequence (xn)n in X(t ∈ (0, 1)) such that
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‖fn‖‖xn‖ tends to zero, and

T (y) =
∞∑

n=1

fn(y)xn, y ∈ Y

([13, Theorem 2.3]). Since K is spherically complete, every fn has
an extension gn ∈ Z ′ with ‖gn‖ = ‖fn‖. Then T : Z → X,
z ∈ Z �→ ∑∞

n=1 gn(z)xn ∈ X is, again by [13, Theorem 2.3], a compact
linear operator which clearly extends T .

Now assume that X is a metrizable locally convex space, and let
Y, Z and T ∈ C(Y,X) be as above. There exists an absolutely convex
bounded subset B of X such that T (BY ) ⊂ B and the topologies
induced by X and XB on T (BY ) coincide ([2, p. 121]), which implies
that T (BY ) is compactoid in XB. Hence, TB : Y → XB, y ∈ Y �→
T (y) ∈ XB is a compact linear operator. Since the normed space XB

has the CEP, we derive the existence of TB ∈ C(Z,XB) that extends
TB. Set T := iB ◦ TB , where iB is the canonical inclusion XB → X.
Then T is a compact linear operator from Z to X that extends T .

Therefore, in the category of normed spaces, we have that if K is
spherically complete, then every normed space over K has the CEP
(Theorem 4.1) and that when K is not spherically complete there are no
nontrivial normed spaces over K with the CEP (Theorem 3.3). These
facts show that the non-Archimedean situation is in sharp contrast with
the classical one for Banach spaces over R or C. Indeed, it was proved
in [16, Theorem 4.1] that a real or complex Banach space has the CEP
in the category of Banach spaces if and only if it is an L∞-space.

Another interesting class of locally convex spaces with the CEP is
formed by the (weakly) sequentially complete locally convex spaces
with an “orthogonal” basis (Theorem 4.2).

Recall ([3]) that a sequence (xn)n in a locally convex space X is
a Schauder basis for X if every x ∈ X can be written uniquely as
x =

∑∞
n=1 λnxn where the coefficient functionals fn : x ∈ X �→ λn ∈ K

are continuous. If in addition the topology of X is defined by a family
PX of non-Archimedean seminorms satisfying the condition

if x =
∞∑

n=1

λnxn, then p(x) = max
n
p(λnxn) for all p ∈ PX ,
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then (xn)n is said to be an “orthogonal” basis in X. Every Fréchet
space with a Schauder basis is (weakly) sequentially complete and its
Schauder basis is “orthogonal.” For this last class of spaces we have

Theorem 4.2. Every (weakly) sequentially complete locally convex
space X over K with an “orthogonal” basis has the CEP.

Proof. Let (xn)n be an “orthogonal” basis of X with associated
coefficient functionals fn ∈ X ′. Let Y, Z be normed spaces with Y ⊂ Z
and T ∈ C(Y,X). By using Theorem 5.2 of [7], we deduce the existence
of an a ∈ X such that T (BY ) ⊂ â where â = {x ∈ X : |fn(x)| ≤
|fn(a)| for all n}.

For each n ∈ N, let gn := fn ◦ T ∈ Y ′. Then ‖gn‖ ≤ |π| |fn(a)| for
all n, where π ∈ K with |π| > 1. Also, for y ∈ Y , T (y) =

∑
n gn(y)xn.

Since K is spherically complete, every gn has an extension hn ∈ Z ′

with ‖hn‖ = ‖gn‖. Then T : Z → X, z ∈ Z → ∑∞
n=1 hn(z)xn ∈ X is

a well-defined (by sequential completeness of X) linear extension of T
satisfying

T (BZ) ⊂ {x ∈ X : |fn(x)| ≤ |π| |fn(a)| for all n},

from which ([7, Theorem 5.2]) it follows that T (BZ) is compactoid in
X and hence that T is compact.

It follows directly that every perfect sequence space endowed with
the normal topology has the CEP. Even more,

Proposition 4.3. Let X be a locally convex space with a Schauder
basis. If X is quasicomplete and (X ′, σ(X ′, X)) is sequentially com-
plete, then X has the CEP.

Proof. IfX satisfies the above conditions, thenX can be algebraically
identified with a perfect sequence space Λ while X ′ = Λ∗. Also, if τΛ
denotes the topology on Λ associated with the original topology on X,
we have σ(Λ,Λ∗) ≤ τA ≤ n(Λ,Λ∗) (see [18, Section 3]). Now it is
enough to prove that if Y is a normed space over K and T : Y → Λ
is a linear operator, then T is τΛ-compact if and only if T is n(Λ,Λ∗)-
compact. To see this, observe that since τΛ ≤ n(Λ,Λ∗) it is clear
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that T n(Λ,Λ∗)-compact implies T τΛ-compact. To prove the converse,
assume that T is τΛ-compact. By τΛ-quasicompleteness of Λ, T (BY )

τΛ

is τΛ-c-compact. Since τΛ and n(Λ,Λ∗) have the same topological
dual, it follows from [1, Proposition 3] that T (BY )

τΛ is c-compact and
bounded in (Λ, n(Λ,Λ∗)) which implies that T : Y → Λ is n(Λ,Λ∗)-
compact.

Remark. In Proposition 4.3 the quasicompleteness of X cannot be
weakened by considering only (weakly) sequential completeness for X.
As an example, take X = (c0, σ(c0, l∞)) as in the set of examples at
the end of this section.

To obtain more spaces with the CEP we introduce the following
continuous version of the CEP.

Definition 4.4. We say that X is weakly injective if for every pair
of locally convex spaces Y, Z with Y ⊂ Z and every T ∈ L(Y,X) there
exists T ∈ L(Z,X) that extends T .

The next result shows that this definition is an extension to locally
convex spaces of the concept of weakly injective normed space given in
[23, p. 106].

Proposition 4.5 (Compare with Proposition 2.3). Let X be a
normed space. If, for every pair of normed spaces E,F with E ⊂ F
and every T ∈ L(E,X), there exists T ∈ L(F,X) that extends T , then
for every pair of locally convex spaces Y, Z with Y ⊂ Z and every
S ∈ L(Y,X), there exists S ∈ L(Z,X) that extends S.

Proof. Following the same proof as in Lemma 2.2, changing “com-
pactoid” into “bounded,” for every S ∈ L(Y,X), there exist p ∈ PY

and Sp ∈ L(Yp, X) such that S = Sp ◦ πp. The rest follows as in the
proof of Proposition 2.3.

Also, among the different characterizations of weakly injective normed
spaces given in [23, Theorem 4.12], the only one making sense for ar-
bitrary locally convex spaces also works in this more general context,
as the following result shows.
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Proposition 4.6. X is weakly injective if and only if for every locally
convex space Y that contains a copy X1 of X, X1 is complemented in
Y . In particular, every weakly injective space is complete.

Proof. To prove the “if,” observe that since X is Hausdorff, X is
linearly homeomorphic to a subspace X1 of the locally convex space
Y :=

∏
p∈PX

X̆p, where for each p ∈ PX , X̆p is the spherical completion
of Xp. By assumption, X1 is complemented in Y . On the other hand,
it follows from [23, Theorem 4.12.ii)] and Proposition 4.5 that each X̆p

is weakly injective, implying that Y is also weakly injective and so the
same is true for X1 (and hence for X) by complementation of X1 in Y .

Conversely, suppose X is weakly injective. Let Y be a locally convex
space that contains a copy X1 of X. Since X1 is weakly injective, the
identity map on X1 extends to a continuous linear projection from Y
onto X1.

In contrast to Proposition 2.3, we have that Proposition 4.5 is not
true in general for an arbitrary locally convex space X. This will be a
consequence of the following.

Proposition 4.7. (X,σ(X,X ′)) is complete if and only if X =
(X ′)∗. In particular, if X is a normed space, then (X,σ(X,X ′)) is
weakly injective if and only if dimX <∞.

Proof. First observe that, since K is spherically complete, the
canonical map JX : X → (X ′)∗ is injective. In this case we identify X
and JX(X) and, applying [15, 20.9.(20)], we obtain that the completion
of (X,σ(X,X ′)) is ((X ′)∗, σ((X ′)∗, X ′)) from which the conclusion
follows.

Corollary 4.8. Let G be an infinite dimensional weakly injective
normed space over K (e.g., take G = l∞). Then, X := (G, σ(G,G′))
is a nonweakly injective locally convex space satisfying that for every
pair of normed spaces E,F with E ⊂ F , every T ∈ L(E,X) has an
extension T ∈ L(F,X).

Proof. By Proposition 4.7, we clearly have that X is not weakly
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injective. For the rest of the proof, observe that since K is spherically
complete, G and X have the same bounded sets ([21, Theorem 7.5])
and so L(E,X) = L(E,G) for every normed space E over K.

Theorem 4.9. Every weakly injective locally convex space X over
K has the CEP.

Proof. Since X is Hausdorff, X is linearly homeomorphic to a sub-
space X1 of the product space E :=

∏
p∈PX

Xp which, by Theorem 4.1
and Proposition 2.4 (ii), has the CEP. Also, weakly injectivity of X
together with Proposition 4.6 imply that X1 is complemented in E.
By Proposition 2.4 (i) we deduce that X has the CEP.

The converse is not true in general. Take any non-complete metriz-
able space and apply Theorem 4.1 and Proposition 4.6.

Remark. Other classes of locally convex spaces with the CEP.
1. Every compactoid regular inductive limit of a sequence of metrizable
spaces has the CEP. Indeed, let X be a compactoid regular inductive
limit of a sequence (Xn)n of metrizable spaces (i.e., X = ∪nXn, X is
endowed with the finest locally convex topology on X making all the
inclusions Xn → X continuous and, for every compactoid subset A of
X, there is an n such that A ⊂ Xn and A is compactoid in Xn, see [8]).
Let Y, Z be normed spaces with Y ⊂ Z, and let T ∈ C(Y,X). There is
an n ∈ N such that T (BY ) ⊂ Xn and is compactoid in Xn. It follows
that T (Y ) ⊂ Xn, and the map Tn : Y → Xn, y ∈ Y �→ Ty ∈ Xn is
a compact linear operator. By hypothesis and Theorem 4.1, Tn has a
compact linear extension Tn : Z → Xn and, composing Tn with the
canonical inclusion Xn → X, we obtain T : Z → X, a compact linear
extension of T .

This fact in conjunction with Theorem 3.1.7 of [8] imply that if X is
the semicompact inductive limit of a sequence (Xn)n of Banach spaces
(i.e., for each n = 1, 2, . . . the inclusion Xn → Xn+1 is compact), then
X has the CEP. In particular, the space of germs of analytic functions
at zero endowed with the usual inductive limit topology (see [8]) has
the CEP. These spaces play a central role for the definition of a non-
Archimedean Laplace transform in [9] and [14] and for the definition
of a non-Archimedean Fourier transform in [10].
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Now let W be a Hausdorff locally compact, σ-compact and zero-
dimensional topological space. Consider in the space Cc(W ) of all the
continuous functions W → K having compact support, the canonical
inductive limit topology (see [8]). Then the associated inductive
sequence is a (non-semicompact) compactoid regular one. Hence, the
space Cc(W ) has the CEP. In the classical theory, the elements of the
complex space Cc(W )′ are the well-known Radon measures. In the non-
Archimedean case, the elements of Cc(W )′ are precisely the integrals
defined by Monna and Springer in [17].

2. Every locally convex space X in which all the compactoid sets are
finite dimensional, in particular every K-vector space equipped with the
finest locally convex topology, has the CEP. Indeed, if T : Y → X is a
compact linear operator from a locally convex space Y to X, then its
range R(T ) is finite dimensional. Then apply Theorem 4.1.

But not every locally convex space over K has the CEP, as we are
going to show now.

Proposition 4.10. Let X �= {0} be a normed space over K. Then
Xσ := (X,σ(X,X ′)) has the CEP if and only if X is weakly injective.

Proof. One has just to apply Proposition 4.5 and to observe that, if
K is spherically complete, the weakly bounded and the bounded sets
of X coincide ([21, Theorem 7.5]) and hence L(Y,X) = C(Y,Xσ) for
every normed space Y over K.

As an application we obtain

Examples (of locally convex spaces without the CEP).
1. Suppose the valuation of K is dense. It follows from [23, Corollary
5.19] that c0 is not weakly injective. So, by using Proposition 4.10, we
obtain that the CEP is not satisfied for X := (c0, σ(c0, l∞)).

2. Let c00 be the linear subspace of c0 consisting of all finitely nonnull
sequences in K. This space is not complete, and hence it is not weakly
injective, so we again can apply Proposition 4.10 to conclude that
X := (c00, σ(c00, l∞)) does not have the CEP.

Observe that these spaces are linearly homeomorphic to a subspace of
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KI for some set I ([22, Theorem 2.(δ)]). Also, by Proposition 2.4 (ii),
we have that KI has the CEP. Hence, these examples also show that a
subspace of a space with the CEP does not always have the CEP.

To finish this section, we give some applications of the previous results
to characterize spherical completeness of a field K.

Theorem 4.11. For a non-Archimedean valued field K, the following
properties are equivalent.

(i) K is spherically complete.

(ii) For every pair of normed spaces Y, Z with Y ⊂ Z and every
sequence (fn)n in Y ′ with limn ‖fn‖ = 0, there exists a sequence (gn)n

in Z ′ with limn ‖gn‖ = 0 and gn|Y = fn for all n.

(iii) For every pair of normed spaces Y, Z with Y ⊂ Z and every
compactoid sequence (fn)n in Y ′, there exists a compactoid sequence
(gn)n in Z ′ such that gn | Y = fn for all n.

(iv) For every pair of normed spaces Y, Z with Y ⊂ Z and every
bounded sequence (fn)n in Y ′, there exists a bounded sequence (gn)n in
Z ′ such that gn | Y = fn for all n.

Proof. By Proposition 2.3 and [4, Lemma 2], respectively [12, Lemma
3.2], property (ii), respectively (iii), means that c0, respectively l∞, has
the CEP which, by Theorems 3.3 and 4.1, is equivalent to spherical
completeness of K.

Analogously, by Proposition 4.5 and [12, Lemma 3.2], property (iv)
means that l∞ is weakly injective, which happens if and only if K is
spherically complete [23, 4.A].

Remark. Observe that the equivalences (i) ⇔ (ii) and (i) ⇔ (iii) of
Theorem 4.11 can also be proved directly by using the Hahn-Banach
theorem for normed spaces over spherically complete fields (see [23]).

The special case when the valuation of K is discrete will be studied
in the next section.

5. The case when the valuation of K is discrete. Recall [8]
that a locally convex space X is locally complete if and only if, for
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every absolutely convex closed bounded set A in X, the normed space
XA is complete.

Theorem 5.1. Every locally complete, hence every (weakly) sequen-
tially complete, locally convex space X over a discretely valued field K
has the CEP.

Proof. Let Y, Z be normed spaces with Y ⊂ Z, and let T ∈ C(Y,X).
Then T (Y ) ⊂ XA, where A = T (BY ). Local completeness of X implies
that XA is a Banach space and so it is weakly injective because the
valuation of K is discrete ([23, p. 181]). Then the continuous linear
operator S : Y → XA, x �→ Tx can be extended to a continuous linear
operator S : Z → XA. Now composing S with the compact inclusion
XA → X, we obtain the desired compact extension T of T .

Lots of examples of locally complete, respectively (weakly) sequen-
tially complete, spaces can be found in [8] and [21].

Remark. Note that if the valuation of K is discrete and X is a
(weakly) sequentially complete space over K, then X and Xσ :=
(X,σ(X,X ′)) have the CEP. The converse is true if X is a normed
space (apply Propositions 4.6 and 4.10). However, this converse is not
always true as we show in the next example. For that, we need the
following, easily proved, general result.

Lemma 5.2. Let X be a K-vector space and τ1, τ2 two locally convex
topologies on X such that (X, τ1) and (X, τ2) have the same compactoid
sets. Then

(X, τ1) has the CEP ⇐⇒ (X, τ2) has the CEP.

Example. Let (E, τ ) be a Köthe sequence space in which every
bounded set is compactoid (examples of such spaces can be found
in [8]). Take for X a proper dense subspace of E. Clearly X
is not (weakly) sequentially complete. By metrizability of X and
Theorem 4.1, X has the CEP. Now apply the previous lemma for
τ1 = σ(X,X ′) and τ2 = τ to have the CEP for Xσ.
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To finish, we state some characterizations of discretely valued fields.

Theorem 5.3. For a non-Archimedean valued field K, the following
are equivalent.

(i) The valuation of K is discrete.

(ii) Every locally complete space of K has the CEP.

(iii) Every (weakly) sequentially complete space over K has the CEP.

(iv) (c0, σ(c0, l∞)) has the CEP.

(v) For every pair of normed spaces Y, Z with Y ⊂ Z and every
bounded sequence (fn)n in Y ′ with limn fn = 0 in σ(Y ′, Y ), there
exists a bounded sequence (gn)n in Z ′ with limn gn = 0 in σ(Z ′, Z)
and gn | Y = fn for all n.

Proof. For (i) ⇒ (ii) ⇒ (iii), see Theorem 5.1.

(iii) ⇒ (iv) because c0 is a perfect sequence space and so it is (weakly)
sequentially complete.

Also, for (iv) ⇒ (i), see Theorem 3.3 and the last examples of the
previous section.

Finally, property (v) is the formulation in terms of sequences of the
fact that c0 is weakly injective ([4, Lemma 2]), which happens if and
only if the valuation of K is discrete (see [23]).
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