THE GENERAL STABLE RANK IN NONSTABLE K-THEORY

YIFENG XUE

Abstract

In this paper we show that for every C^{*} algebra \mathcal{A} the natural homomorphism $i_{\mathcal{A}}: U(\mathcal{A}) \rightarrow K_{1}(\mathcal{A})$ is injective if and only if $S \mathcal{A}$ has 1-cancellation and $i_{M_{n}(\mathcal{A})}$ is injective for any $n \geq 1$ if and only if $\operatorname{gsr}(S \mathcal{A})=1$. These results improve $[\mathbf{1 2}]$. As applications, we figure out the value of $\operatorname{gsr}(S \mathcal{A})$ or $\operatorname{gsr}(\Omega(\mathcal{A}))$ when the unital C^{*}-algebra \mathcal{A} is of real rank zero or purely infinite simple; we also investigate the manner of $i_{\mathcal{A} \otimes \mathcal{B}}$ for certain infinite C^{*}-algebra \mathcal{A} and any nuclear C^{*}-algebra \mathcal{B}. We have proven that if \mathcal{B} is a nonunital purely infinite simple C^{*}-algebra or a certain stable corona algebra, then $i_{\mathcal{A} \otimes \mathcal{B}}$ is always an isomorphism.

0. Introduction. For the unital C^{*}-algebra \mathcal{A}, we write $\mathcal{U}(\mathcal{A})$, respectively $\mathcal{U}_{0}(\mathcal{A})$, to denote the unitary group of \mathcal{A}, respectively the connected component of the unit in $\mathcal{U}(\mathcal{A})$. The quotient group $U(\mathcal{A})=\mathcal{U}(\mathcal{A}) / \mathcal{U}_{0}(\mathcal{A})$ whose multiplication is given by $[u][v]=[u v]$ is called the U-group of \mathcal{A}, where $[u]$ stands for the equivalence class of u in $\mathcal{U}(\mathcal{A})$. If \mathcal{A} has no unit, we put $U(\mathcal{A})=U\left(\mathcal{A}^{+}\right)$, where \mathcal{A}^{+}is \mathcal{A} obtained by unit adjointed. For any unital C^{*}-algebra \mathcal{A}, we denote by $M_{n}(\mathcal{A})$ the matrix algebra of $n \times n$ over \mathcal{A}. $\operatorname{Set} \mathcal{U}_{1}(\mathcal{A})=\mathcal{U}(\mathcal{A})$, respectively $\mathcal{U}_{1}^{0}(\mathcal{A})=\mathcal{U}_{0}(\mathcal{A})$ and

$$
\mathcal{U}_{n}(\mathcal{A})=\mathcal{U}\left(M_{n}(\mathcal{A})\right), \mathcal{U}_{n}^{0}(\mathcal{A})=\mathcal{U}_{0}\left(M_{n}(\mathcal{A})\right), U_{n}(\mathcal{A})=\mathcal{U}_{n}(\mathcal{A}) / \mathcal{U}_{n}^{0}(\mathcal{A})
$$

For the C^{*}-algebra \mathcal{A}, we set $\Omega(\mathcal{A})=C\left(S^{1}, \mathcal{A}\right), S \mathcal{A}=C_{0}(0,1) \otimes \mathcal{A}$, the suspension of \mathcal{A}. We notice that $(S \mathcal{A})^{+}$can be expressed as

$$
\left.\left.\begin{array}{rl}
(S \mathcal{A})^{+} \cong\left\{f \in C_{0}([0,1], \mathcal{A}) f(0)=\right. & f(1)
\end{array}\right)=\lambda 1, ~ 子(t)=\lambda 1+x_{t}, \lambda \in \mathbf{C}, x_{t} \in \mathcal{A}\right\} .
$$

[^0]Y. XUE

Let \mathcal{A} be a C^{*}-algebra with unit 1 . We view \mathcal{A}^{n} as the set of all $n \times 1$ matrices over \mathcal{A}. According to [11] and [12], the topological stable rank, the connected stable rank and the general stable rank of \mathcal{A} are defined respectively as follows:

$$
\begin{aligned}
\operatorname{tsr}(\mathcal{A})= & \min \left\{n \in \mathbf{N} \mid \mathcal{A}^{m} \text { is dense in } L g_{m}(\mathcal{A}), \forall m \geq n\right\} \\
\operatorname{csr}(\mathcal{A})= & \min \left\{n \in \mathbf{N} \mid \mathcal{U}_{m}^{0}(\mathcal{A})\right. \text { acts transitively on } \\
& \left.S_{m}(\mathcal{A}), \forall m \geq n\right\} \\
\operatorname{gsr}(\mathcal{A})= & \min \left\{n \in \mathbf{N} \mid \mathcal{U}_{m}(\mathcal{A})\right. \text { acts transitively on } \\
& \left.S_{m}(\mathcal{A}), \forall m \geq n\right\},
\end{aligned}
$$

where $S_{n}(\mathcal{A})=\left\{\left(a_{1}, \ldots, a_{n}\right)^{T} \in \mathcal{A}^{n} \mid \sum_{i=1}^{n} a_{i}^{*} a_{i}=1\right\}$ and
$L g_{n}(\mathcal{A})=\left\{\left(a_{1}, \ldots, a_{n}\right)^{T} \in \mathcal{A}^{n} \mid \exists\left(b_{1}, \ldots, b_{n}\right)^{T} \in \mathcal{A}^{n} \ni \sum_{i=1}^{n} b_{i} a_{i}=1\right\}$.
If no such integer exists, we set $\operatorname{tsr}(\mathcal{A})=\infty, \operatorname{csr}(\mathcal{A})=\infty$, or $\operatorname{gsr}(\mathcal{A})=\infty$, respectively.

According to [1, Section 9], there is a natural homomorphism $i_{\mathcal{A}}$: $U(\mathcal{A}) \rightarrow K_{1}(\mathcal{A})$ for any C^{*}-algebra \mathcal{A} where $K_{0}(\mathcal{A}), K_{1}(\mathcal{A})$ are the K-groups defined in [1]. Under what conditions is $i_{\mathcal{A}}$ injective? When is $i_{\mathcal{A}}$ surjective? These two problems are very important in computing K-groups in terms of $U(\mathcal{A})$ or $U(S \mathcal{A})$.

Rieffel has found that these problems are closely connected to the $\operatorname{csr}(\cdot)$ and $\operatorname{gsr}(\cdot)$. He showed that, for any $n \geq \max (\operatorname{gsr}(\Omega(\mathcal{A})), \operatorname{csr}(\mathcal{A}))$, $i_{M_{n-1}(\mathcal{A})}: U_{n-1}(\mathcal{A}) \rightarrow K_{1}(\mathcal{A})$ is an isomorphism [12, Theorem 2.9]. Using different approaches, Cuntz showed that if \mathcal{A} is a unital purely infinite simple C^{*}-algebra, $i_{\mathcal{A}}$ is an isomorphism [3, Theorem 1.9] and Lin proved that if \mathcal{A} is a unital C^{*}-algebra with real rank zero, then $i_{\mathcal{A}}$ is injective [5, Lemma 2.2]. Besides, Thomsen showed that there is a natural isomorphism between quasi-unitary group of \mathcal{A} and $K_{1}(\mathcal{A})$ for certain C^{*}-algebra \mathcal{A}, cf. [14, Theorems 4.3, 4.5]. Although many results have been obtained up to now, the problems seem far from being solved.

In this paper we will be concerned with the problem when $i_{\mathcal{A}}$ is a monomorphism. We give an equivalent description of the problem, that is, $i_{\mathcal{A}}$ is injective if and only if $S \mathcal{A}$ has 1-cancellation. Using this
result, we prove that $i_{M_{n}}(\mathcal{A})$ is injective for all $n \geq 1$ if and only if $\operatorname{gsr}(S \mathcal{A})=1$. As a result, we get that $\operatorname{gsr}(\Omega(\mathcal{A}))=\operatorname{gsr}(\mathcal{A})$ if \mathcal{A} is a unital C^{*}-algebra with $R R(\mathcal{A})=0$ and, moreover, if \mathcal{A} is a purely infinite simple C^{*}-algebra with unit $1_{\mathcal{A}}$ such that $\left[1_{\mathcal{A}}\right]$ is torsion-free, respectively has torsion, in $K_{0}(\mathcal{A})$, then $\operatorname{gsr}(\Omega(\mathcal{A}))=2$, respectively $\operatorname{gsr}(\Omega(\mathcal{A}))=\infty$. We also prove that if \mathcal{A} is a nonunital purely infinite simple C^{*}-algebra or a certain stable corona algebra and \mathcal{B} is a nuclear C^{*}-algebra, then $i_{\mathcal{A} \otimes \mathcal{B}}$ is an isomorphism.

1. The 1-cancellation of C^{*}-algebras. Let p, q be two projections in the C^{*}-algebra \mathcal{A}. We say that p is equivalent to q, denoted $p \sim q$, if there is a $u \in \mathcal{A}$ such that $p=u^{*} u, q=u u^{*}$. We write $[p]$ to denote the equivalence class of p with respect to " \sim."

Borrowing ideas from [4, Theorem 1.5] and [11, Corollary 10.7], we establish the following notation.

Definition 1.1. Let \mathcal{A} be a C^{*}-algebra with unit $1 . \mathcal{A}$ is said to have 1-cancellation if for any projection p in $M_{2}(\mathcal{A})$ with $\operatorname{diag}\left(p, 1_{k}\right) \sim$ $\operatorname{diag}\left(p_{1}, 1_{k}\right)$ in $M_{k+2}(\mathcal{A})$ for some $k \geq 1$, we have $p \sim p_{1}$ where $p_{1}=\operatorname{diag}(1,0) \in M_{2}(\mathcal{A})$ and 1_{k} is the unit of $M_{k}(\mathcal{A})$. If \mathcal{A} has no unit, we work with \mathcal{A}^{+}.

Obviously if the unital C^{*}-algebra \mathcal{A}^{+}has cancellation or if $\operatorname{gsr}(\mathcal{A}) \leq$ 2 , then \mathcal{A} has 1 -cancellation, cf. [1] and [11, Proposition 10.5].

Now let $\phi: \mathcal{A} \rightarrow \mathcal{B}$ be a $*$ homomorphism between two C^{*}-algebras \mathcal{A} and \mathcal{B}. We denote by ϕ_{n} the induced $*$ homomorphism of ϕ on $M_{n}(\mathcal{A})$ and let ϕ_{*} denote the induced homomorphism of ϕ on $U(\mathcal{A})$ or $K_{0}(\mathcal{A})$ and $K_{1}(\mathcal{A})$. We also let $\rho: \mathcal{A}^{+} \rightarrow \mathbf{C}$ denote the canonical homomorphism.

Definition 1.2. Let \mathcal{A} be a C^{*}-algebra. A projection e in $M_{2}\left((S \mathcal{A})^{+}\right)$is called to a 1 -projective loop if $e(0)=e(1)=p_{1}$ and $\rho_{2}(e(t))=p_{1}$ for all $t \in[0,1]$.

Let $\operatorname{PL}(\mathcal{A})$ denote the set of all 1-projective loops in $M_{2}\left((S \mathcal{A})^{+}\right)$.

Lemma 1.1. Let \mathcal{A} be a C^{*}-algebra.
(1) If \mathcal{A} has 1-cancellation, then $\mathcal{U}_{2}\left(\mathcal{A}^{+}\right)$acts transitively on $S_{2}\left(\mathcal{A}^{+}\right)$;
(2) Assume that for any projection e in $\operatorname{PL}(\mathcal{A})$ with $\operatorname{diag}\left(p, 1_{k}\right) \sim$ $\operatorname{diag}\left(p_{1}, 1_{k}\right)$ in $M_{k+2}\left((S \mathcal{A})^{+}\right)$for some $k \geq 1$, we have $p \sim p_{1}$ in $M_{2}\left((S \mathcal{A})^{+}\right)$. Then $S \mathcal{A}$ has 1-cancellation.

Proof. (1) Let $\left(a_{1}, a_{2}\right)^{T} \in S_{2}\left(\mathcal{A}^{+}\right)$. Then the projection $p=$ $\left[\begin{array}{ll}a_{1} & 0 \\ a_{2} & 0\end{array}\right]\left[\begin{array}{cc}a_{1}^{*} & a_{2}^{*} \\ 0 & 0\end{array}\right]$ is equivalent to the projection $p_{1}=\left[\begin{array}{cc}a_{1}^{*} & a_{2}^{*} \\ 0 & 0\end{array}\right]\left[\begin{array}{cc}a_{1} & 0 \\ a_{2} & 0\end{array}\right]$ in $M_{2}\left(\mathcal{A}^{+}\right)$. Thus there is a $z \in \mathcal{U}_{4}\left(\mathcal{A}^{+}\right) \operatorname{such}$ that $\operatorname{diag}(p, 0)=$ $z^{*} \operatorname{diag}\left(p_{1}, 0\right) z$ in $M_{4}\left(\mathcal{A}^{+}\right)$, and consequently,

$$
\operatorname{diag}\left(1_{2}-p, 1_{2}\right)=z^{*} \operatorname{diag}\left(1_{2}-p_{1}, 1_{2}\right) z \sim \operatorname{diag}\left(p_{1}, 1_{2}\right)
$$

Since \mathcal{A} has 1-cancellation, we have $1_{2}-p \sim p_{1} \sim 1_{2}-p_{1}$ in $M_{2}\left(\mathcal{A}^{+}\right)$. Therefore there is a $v \in \mathcal{U}_{2}\left(\mathcal{A}^{+}\right)$such that $p=v p_{1} v^{*}$ by $[\mathbf{1}]$. Set

$$
c=\left[\begin{array}{ll}
c_{11} & c_{12} \tag{1.1}\\
c_{21} & c_{22}
\end{array}\right]=\left[\begin{array}{cc}
a_{1}^{*} & a_{2}^{*} \\
0 & 0
\end{array}\right] v\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

Then by simple computation we obtain that

$$
\begin{equation*}
c_{12}=c_{21}=c_{22}=0 \quad \text { and } \quad c_{11}^{*} c_{11}=c_{11} c_{11}^{*}=1 \tag{1.2}
\end{equation*}
$$

So, combining (1.1) with (1.2), we get that
$p_{1}=v^{*} p v p_{1}=v^{*}\left[\begin{array}{ll}a_{1} & 0 \\ a_{2} & 0\end{array}\right]\left[\begin{array}{cc}a_{1}^{*} & a_{2}^{*} \\ 0 & 0\end{array}\right] v\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]=v^{*}\left[\begin{array}{ll}a_{1} & 0 \\ a_{2} & 0\end{array}\right]\left[\begin{array}{cc}c_{11} & 0 \\ 0 & 0\end{array}\right]$, and hence $\left(a_{1}, a_{2}\right)^{T}=\left(v \operatorname{diag}\left(c_{11}^{*}, c_{11}\right)\right)(1,0)^{T}$.
(2) Let p be a projection in $M_{2}\left((S \mathcal{A})^{+}\right)$such that

$$
\begin{equation*}
\operatorname{diag}\left(p, 1_{k}\right) \sim \operatorname{diag}\left(p_{1}, 1_{k}\right) \quad \text { in } M_{k+2}\left((S \mathcal{A})^{+}\right) \tag{1.3}
\end{equation*}
$$

for some k. Put $q(t)=\rho_{2}(p(t)), t \in[0,1]$. Then by (1.3) we have $q \sim p_{1}$ in $M_{2}\left(\left(C_{0}(0,1)\right)^{+}\right) \cong M_{2}\left(C\left(S^{1}\right)\right)$ for $\operatorname{tsr}\left(M_{2}\left(C\left(S^{1}\right)\right)\right)=1$. Thus there exists $u \in \mathcal{U}_{2}\left(\left(C_{0}(0,1)\right)^{+}\right)$by [1] such that $q=u^{*} p_{1} u$. Put $e(t)=u(t) p u^{*}(t), t \in[0,1]$. Then $\rho_{2}(e(t))=p_{1}, t \in[0,1]$, and

$$
e(0)=e(1)=u(0) p(0) u^{*}(0)=u(0) q(0) u^{*}(0)=p_{1}
$$

for we always identify $q(0)=q(1)=p(0)=p(1)$, and $\operatorname{diag}\left(e, 1_{k}\right) \sim$ $\operatorname{diag}\left(p_{1}, 1_{k}\right)$ in $M_{n+k}\left((S \mathcal{A})^{+}\right)$by (1.3). Therefore, by assumption, $e \sim p_{1}$ in $M_{2}\left((S \mathcal{A})^{+}\right)$, i.e., $p \sim p_{1}$ in $M_{2}\left((S \mathcal{A})^{+}\right)$.

Inspired by Lemma 1.1 (1) and [12], we define the integer $\operatorname{Gsr}(\mathcal{A})$ for each unital C^{*}-algebra \mathcal{A} by

$$
\begin{aligned}
\operatorname{Gsr}(\mathcal{A})=\min \{n \in \mathbf{N} \mid & \mathcal{U}_{2}\left(M_{m}(\mathcal{A})\right) \\
& \text { acts transitively on } \left.S_{2}\left(\left(M_{m}(\mathcal{A})\right)\right) \forall m \geq n\right\} .
\end{aligned}
$$

If no such integer exists we set $\operatorname{Gsr}(\mathcal{A})=\infty$. If \mathcal{A} has no unit, we set $\operatorname{Gsr}(\mathcal{A})=\operatorname{Gsr}\left(\mathcal{A}^{+}\right)$. The following proposition characterizes the Gsr (•).

Proposition 1.1. Let \mathcal{A} be a unital C^{*}-algebra. Then we have
(1) $\operatorname{gsr}(\mathcal{A})-1 \leq \operatorname{Gsr}(\mathcal{A}) \leq \max \{\operatorname{gsr}(\mathcal{A})-1,1\}$;
(2) $\operatorname{Gsr}\left(M_{n}(\mathcal{A})\right) \leq\{\operatorname{Gsr}(\mathcal{A}) / n\}$, where $\{x\}$ stands for the least integer which is greater than or equal to x.

Proof. (1) For each $k \geq \max \{1, \operatorname{gsr}(\mathcal{A})-1\}$, and hence $2 k \geq \operatorname{gsr}(\mathcal{A})$, let $A=\left(a_{i j}\right)_{k \times k}, B=\left(b_{i j}\right)_{k \times k} \in M_{k}(\mathcal{A})$ with $A^{*} A+B^{*} B=1_{k}$. So

$$
\left(a_{1 j}, \ldots, a_{k j}, b_{1 j}, \ldots, b_{k j}\right)^{T} \in S_{2 k}(\mathcal{A})
$$

$1 \leq j \leq k$ and $\sum_{t=1}^{k}\left(a_{t i}^{*} a_{t j}+b_{t i}^{*} b_{t j}\right)=0, i \neq j$. Therefore there is a $u^{(1)} \in \mathcal{U}_{2 k}(\mathcal{A})$ such that

$$
\begin{aligned}
u^{(1)}\left(a_{11}, \ldots, a_{k 1}, b_{11}\right. & \left., \ldots, b_{k 1}\right)^{T} \\
& =(1,0, \ldots, 0)^{T} u^{(1)}\left(a_{1 j}, \ldots, a_{k j}, b_{1 j}, \ldots, b_{k j}\right)^{T} \\
& =\left(0, a_{2 j}^{(1)}, \ldots, a_{k j}^{(1)}, b_{2 j}^{(1)}, \ldots, b_{k j}^{(1)}\right)^{T}, \quad 2 \leq j \leq k
\end{aligned}
$$

By the same argument as above, we can find $u^{(2)}, \ldots, u^{(k)}$ in $\mathcal{U}_{2 k}(\mathcal{A})$ such that

$$
u^{(k)} \cdots u^{(1)}(A, B)^{T}=\left(1_{k}, 0\right)^{T} \quad \text { in } S_{2}\left(M_{k}(\mathcal{A})\right)
$$

On the other hand, suppose that $k \geq \operatorname{Gsr}(\mathcal{A})$ and $\left(a_{1}, \ldots, a_{k+1}\right)^{T} \in$ $S_{k+1}(\mathcal{A})$. Set $A=\left[a O_{k \times(k-1)}\right]$ and $B=\operatorname{diag}\left(a_{k+1}, 1_{k-1}\right) \in M_{k}(\mathcal{A})$,
where $a=\left(a_{1}, \ldots, a_{k}\right)^{T}$. Then $(A, B)^{T} \in S_{2}\left(M_{k}(\mathcal{A})\right)$. Since $k \geq$ $\operatorname{Gsr}(\mathcal{A})$, it follows that there is a $u \in \mathcal{U}_{2 k}(\mathcal{A})$ such that $(A, B)^{T}=$ $u\left(1_{k}, 0\right)^{T}$. We write u as the form $u=\left[\begin{array}{cc}A & C \\ B & D\end{array}\right]$, where $C, D \in M_{k}(\mathcal{A})$. Thus we deduce from $u \in \mathcal{U}_{2 k}(\mathcal{A})$ that D has the form $D=\left[\begin{array}{c}d \\ O_{(k-1)} \times k\end{array}\right]$ and $W=\left[\begin{array}{cc}a & C \\ a_{k+1} & d\end{array}\right] \in \mathcal{U}_{k+1}(\mathcal{A})$, where $d=\left(d_{1}, \ldots, d_{k}\right)$. Therefore $\left(a_{1}, \ldots, a_{k+1}\right)^{T}=W(1,0, \ldots, 0)^{T}$.
(2) Suppose that $\operatorname{Gsr}(\mathcal{A})<\infty$ and $k \geq\{\operatorname{Gsr}(\mathcal{A}) / n\}$. Then $\operatorname{Gsr}(\mathcal{A}) \leq k n$. Noting that $M_{k}\left(M_{n}(\mathcal{A})\right) \cong M_{k n}(\mathcal{A})$, we obtain that $\mathcal{U}_{2}\left(M_{k}\left(M_{n}(\mathcal{A})\right)\right)$ acts transitively on $S_{2}\left(M_{k}\left(M_{n}(\mathcal{A})\right)\right)$. The assertion follows.

Corollary 1.1. Let \mathcal{A} be a C^{*}-algebra with unit 1 . Then $M_{n}(\mathcal{A})$ has 1 -cancellation for all $n \geq 1$ if and only if $\operatorname{gsr}(\mathcal{A}) \leq 2$.

Proof. That $M_{n}(\mathcal{A})$ has 1-cancellation for each $n \geq 1$ shows that $\mathcal{U}_{2}\left(M_{n}(\mathcal{A})\right)$ acts transitively on $S_{2}\left(M_{n}(\mathcal{A})\right)$ by Lemma 1.1 (1). Thus we have $\operatorname{Gsr}(\mathcal{A})=1$ and hence $\operatorname{gsr}(\mathcal{A}) \leq 2$ by Proposition 1.1.

Conversely, since every projection in $M_{n}(\mathcal{A})$ corresponds uniquely to a finitely generated projective \mathcal{A}-module, it follows from $[\mathbf{1 1}]$ that $M_{n}(\mathcal{A})$ has 1-cancellation for each $n \geq 1$.

2. The proof of the main result.

Lemma 2.1. Let \mathcal{A} be a C^{*}-algebra and $e \in P L(\mathcal{A})$. Then there is a continuous map $v_{t}:[0,1] \rightarrow \mathcal{U}_{2}\left(\mathcal{A}^{+}\right)$such that $v_{0}=1_{2}, \rho_{2}\left(v_{t}\right)=1_{2}$ and $e_{t}=v_{t}^{*} p_{1} v_{t}$.

Proof. Put $g_{s}(t)=e(16 s(1-s) t(1-t)), 0 \leq s, t \leq 1$. Then $g_{s} \in \mathrm{PL}(\mathcal{A})$ is a path from p_{1} to p_{1}. Using the same method as in the proof of $[\mathbf{1}]$, we can find a continuous map $v_{s}:[0,1] \rightarrow \mathcal{U}_{2}\left((S \mathcal{A})^{+}\right)$ with $v_{0}(t)=1_{2}, v_{s}(0)=v_{s}(1)=1_{2}$ and $\rho_{2}\left(v_{s}(t)\right)=1_{2}$ such that $g_{s}=v_{s}^{*} p_{1} v_{2}$ for all $s, t \in[0,1]$.

Now take $s=(1-\sqrt{1-t}) / 2, u_{t}=v_{s}(1 / 2), 0 \leq t \leq 1$. Then $u_{0}=\rho_{2}\left(u_{t}\right)=1_{2}$ and $e_{t}=u_{t}^{*} p_{1} u_{t}$ for all $t \in[0,1]$.

For a C^{*}-algebra \mathcal{A} and a closed two-side ideal \mathcal{J} of \mathcal{A}, we have the following exact sequence:

$$
\begin{equation*}
0 \longrightarrow \mathcal{J} \xrightarrow{j} \mathcal{A} \xrightarrow{\pi} \mathcal{B} \longrightarrow 0 \tag{2.1}
\end{equation*}
$$

where $j: \mathcal{J} \rightarrow \mathcal{A}$ is the inclusive map and $\pi: \mathcal{A} \rightarrow \mathcal{B}=\mathcal{A} / \mathcal{J}$ is a quotient map.
Let $\partial: K_{1}(\mathcal{B}) \rightarrow K_{0}(\mathcal{J})$ denote the index map of (2.1) which is defined in [1, Definition 8.3.1] and put $\eta=\partial \circ i_{\mathcal{B}}: U(\mathcal{B}) \rightarrow K_{0}(\mathcal{J})$. Then η has the form

$$
\begin{equation*}
\eta([u])=\left[w p_{1} w^{*}\right]-\left[p_{1}\right], \quad \forall u \in \mathcal{U}\left(\mathcal{B}^{+}\right) \tag{2.2}
\end{equation*}
$$

where $w \in \mathcal{U}_{2}\left(\mathcal{A}^{+}\right)$with $\pi_{2}(w)=\operatorname{diag}\left(u, u^{*}\right)$.
Borrowing some techniques from [1, Proposition 8.3.3], we can prove the following useful lemma.

Lemma 2.2. Let $\mathcal{J}, \mathcal{A}, \mathcal{B}$ be as above, and suppose that \mathcal{J} has 1cancellation. Then we have the following exact sequence of groups.

$$
\begin{equation*}
U(\mathcal{J}) \xrightarrow{j_{*}} U(\mathcal{A}) \xrightarrow{\pi_{*}} U(\mathcal{B}) \xrightarrow{\eta} K_{0}(\mathcal{J}) \tag{2.3}
\end{equation*}
$$

Proof. Since $\pi\left(\mathcal{U}_{0}\left(\mathcal{A}^{+}\right)\right)=\mathcal{U}_{0}\left(\mathcal{B}^{+}\right)$and $\pi \circ i=0$, it follows that $\operatorname{Im} i_{*}=\operatorname{Ker} \pi_{*}$. We will prove $\operatorname{Im} \pi_{*}=\operatorname{Ker} \eta$ in the following.
It is easy to check that $\operatorname{Im} \pi_{*} \subset \operatorname{Ker} \eta$. Now let v be in $\mathcal{U}\left(\mathcal{B}^{+}\right)$with $\eta([v])=0$. Then there is a $w \in \mathcal{U}_{2}\left(\mathcal{A}^{+}\right)$with $\pi_{2}(w)=\operatorname{diag}\left(v, v^{*}\right)$ such that $\left[\begin{array}{ll}w & p_{1} \\ w^{*}\end{array}\right]=\left[p_{1}\right]$ in $K_{0}(\mathcal{J})$ by (2.2). Since \mathcal{J} has 1-cancellation, it follows from the definition of $K_{0}(\mathcal{J})$ that $u \in \mathcal{U}_{4}\left(\mathcal{J}^{+}\right)$exists such that

$$
\begin{equation*}
u \operatorname{diag}\left(w p_{1} w^{*}, 0\right) u^{*}=\operatorname{diag}\left(p_{1} .0\right) \tag{2.4}
\end{equation*}
$$

Assume that $a=\pi_{4}(u) \in \mathcal{U}_{4}\left(\mathcal{B}^{+}\right)$and set $w_{0}=a^{*} u \operatorname{diag}\left(w, 1_{2}\right)$. Then $\pi_{4}\left(w_{0}\right)=\operatorname{diag}\left(v, v^{*}, 1_{2}\right)$ and w_{0} commutes with $\operatorname{diag}\left(p_{1}, 0\right)$ by (2.4). Therefore w_{0} has the form $\operatorname{diag}\left(w_{1}, w_{2}\right)$ where $w_{1} \in \mathcal{U}\left(\mathcal{A}^{+}\right)$, $w_{2} \in \mathcal{U}_{3}\left(\mathcal{A}^{+}\right)$. This indicates that $[v]=\pi_{*}\left(\left[w_{1}\right]\right)$.

Remark 2.1. Lemma 2.2 somewhat generalizes Theorem 2 of [8]. We should notice that, if (2.1) is split exact, we can deduce that j_{*}
is injective and π_{*} is surjective in (2.3) by means of [$\left.\mathbf{1}\right]$, without the hypothesis that \mathcal{J} has 1-cancellation.

We now present our main result of the paper as follows.

Theorem 2.1. For the C^{*}-algebra $\mathcal{A}, i_{\mathcal{A}}$ is injective if and only if SA has 1-cancellation.

Proof. \Leftarrow. Since $C \mathcal{A}=C_{0}([0,1), \mathcal{A})$ is contractible and $S \mathcal{A}$ has 1cancellation, applying Lemma 2.2 to the exact sequence of C^{*}-algebras

$$
\begin{equation*}
0 \longrightarrow S \mathcal{A} \longrightarrow C \mathcal{A} \xrightarrow{\pi} \mathcal{A} \longrightarrow 0 \tag{2.5}
\end{equation*}
$$

we obtain that $\eta: U(\mathcal{A}) \rightarrow K_{0}(S \mathcal{A})$ is injective, where $\pi(f)=f(1)$ for all $f \in C \mathcal{A}$. Noting that $\eta=\partial \circ i_{\mathcal{A}}$ and $\partial: K_{1}(\mathcal{A}) \rightarrow K_{0}(S \mathcal{A})$ is the natural isomorphism given in [1, Theorem 8.2.2], we obtain that $i_{\mathcal{A}}$ is injective.
\Rightarrow. By Lemma 1.1 (2), we only need to prove that if $e \in P L(\mathcal{A})$ with $\operatorname{diag}\left(e, 1_{k}\right) \sim \operatorname{diag}\left(p_{1}, 1_{k}\right)$ in $M_{k+2}\left((S \mathcal{A})^{+}\right)$for some k, then $e \sim p_{1}$ in $M_{k}\left((S \mathcal{A})^{+}\right)$.
Applying Lemma 2.1 to the above 1-projective loop e, we obtain that there is a continuous map $u_{t}:[0,1] \rightarrow \mathcal{U}_{2}\left(\mathcal{A}^{+}\right)$such that $u_{0}=1_{2}=\rho_{2}\left(u_{t}\right)$ and $e_{t}=u_{t}^{*} p_{1} u_{t}$. Therefore, u_{1} has the form $\operatorname{diag}(a, b)$ where $a, b \in \mathcal{U}\left(\mathcal{A}^{+}\right)$with $\rho(a)=\rho(b)=1$. Since $i_{\mathcal{A}}$ is injective and

$$
\left[\operatorname{diag}\left(a^{*}, b^{*}, 1\right)\right]=\left[\operatorname{diag}\left(a^{*}, b^{*}\right) \operatorname{diag}\left(b^{*}, b\right)\right]=\left[u_{1}^{*}\right]=\left[1_{2}\right]
$$

in $K_{1}(\mathcal{A})$, we get that there is a path s_{t} from 1 to $a^{*} b^{*}$ in $\mathcal{U}\left(\mathcal{A}^{+}\right)$with $\rho\left(s_{t}\right)=1,0 \leq t \leq 1$. Put $w_{t}=\operatorname{diag}\left(1, s_{t}\right) u_{t}$. Then $w_{0}=1_{2}=\rho_{2}\left(w_{t}\right)$, $0 \leq t \leq 1$ and w_{t} is a path from 1_{2} to $\operatorname{diag}\left(a, a^{*}\right)$ in $\mathcal{U}_{2}\left(\mathcal{A}^{+}\right)$such that

$$
\begin{equation*}
e_{t}=u_{t}^{*} p_{1} u_{t}=w_{t}^{*} p_{1} w_{t} \quad \forall t \in[0,1] \tag{2.6}
\end{equation*}
$$

Now applying (2.2) to (2.5) and (2.6), we get that

$$
\eta([\alpha])=\partial \circ i_{\mathcal{A}}([a])=[e]-\left[p_{1}\right]=0 \quad \text { in } K_{0}(S \mathcal{A})
$$

for $\operatorname{diag}\left(e, 1_{k}\right) \sim \operatorname{diag}\left(p_{1}, 1_{k}\right)$ in $M_{2+k}\left((S \mathcal{A})^{+}\right)$and $\pi_{2}(w)=w_{1}=$ $\operatorname{diag}\left(a, a^{*}\right)$. Thus $i_{\mathcal{A}}([a])=0$ in $K_{1}(\mathcal{A})$ and $a \in \mathcal{U}_{0}\left(\mathcal{A}^{+}\right)$because
$i_{\mathcal{A}}$ is injective by assumption. Let a_{t} be a path in $\mathcal{U}_{0}\left(\mathcal{A}^{+}\right)$with $\rho\left(a_{t}\right)=1$ from 1 to a, and put $c_{t}=w_{t}^{*} \operatorname{diag}\left(a_{t}, a_{t}^{*}\right), 0 \leq t \leq 1$. Then $c \in \mathcal{U}_{2}\left((S \mathcal{A})^{+}\right)$with $\rho\left(c_{t}\right)=1_{2}$ such that $c_{t}^{*} e(t) c_{t}=p_{1}, 0 \leq t \leq 1$, i.e., $e \sim p_{1}$ in $M_{2}\left((S \mathcal{A})^{+}\right)$.

Theorem 2.4 yields the following important results.

Corollary 2.1. Let \mathcal{A} be a C^{*}-algebra. Then $i_{M_{n}(\mathcal{A})}$ is injective for all $n \geq 1$ if and only if $\operatorname{gsr}(S \mathcal{A})=1$.

Proof. \Rightarrow. By Theorem 2.4, $\left(S\left(M_{n}(\mathcal{A})\right)\right)^{+}$has 1-cancellation for all $n \geq 1$. Thus $\mathcal{U}_{2}\left(\left(S\left(M_{n}(\mathcal{A})\right)\right)^{+}\right)$acts transitively on $S_{2}\left(\left(S\left(M_{n}(\mathcal{A})\right)\right)^{+}\right)$ by Lemma 1.1 (1). Now, from the split exact sequence of C^{*}-algebras,

$$
\begin{equation*}
0 \longrightarrow S\left(M_{n}(\mathcal{A})\right) \longrightarrow M_{n}\left((S \mathcal{A})^{+}\right) \xrightarrow{\rho_{n}} M_{n}(\mathbf{C}) \longrightarrow 0 \tag{2.7}
\end{equation*}
$$

we get that $\mathcal{U}_{2}\left(M_{n}\left((S \mathcal{A})^{+}\right)\right)$acts transitively on $S_{2}\left(M_{n}\left((S \mathcal{A})^{+}\right)\right)$. Thus $\operatorname{gsr}(S \mathcal{A}) \leq 2$ by Proposition $1.1(1)$. Since $(S \mathcal{A})^{+}$is a finite C^{*}-algebra, we have $\operatorname{gsr}(S \mathcal{A})=1$.
\Leftarrow. By Corollary 1.5, $M_{n}\left((S \mathcal{A})^{+}\right)$has 1-cancellation for all $n \geq 1$. So, by (2.7), $\left(S\left(M_{n}(\mathcal{A})\right)\right)^{+}$has 1-cancellation for all $n \geq 1$. Consequently, we have $i_{M_{n}(\mathcal{A})}$ is injective by Theorem 2.1. $\quad \square$

Corollary $2.2\left[12\right.$, Theorem 2.9]. Let \mathcal{A} be a unital C^{*}-algebra, and

$$
r=\max \{\operatorname{gsr}(\Omega(\mathcal{A})), \operatorname{csr}(\mathcal{A})\}
$$

Then for all $n \geq \max (2, r), i_{M_{n-1}(\mathcal{A})}$ is an isomorphism.

Proof. By [11, Theorem 10.10], $i_{M_{n-1}(\mathcal{A})}$ is surjective for any $n \geq \operatorname{csr}(\mathcal{A})$. Since it is a routine to check that $\operatorname{gsr}(\Omega(\mathcal{A}))=$ $\max \{\operatorname{gsr}(S \mathcal{A}), \operatorname{gsr}(\mathcal{A})\}$ from the split exact sequence of C^{*}-algebras

$$
0 \longrightarrow S \mathcal{A} \longrightarrow \Omega(\mathcal{A}) \longrightarrow \mathcal{A} \longrightarrow 0
$$

we have $\operatorname{gsr}(S \mathcal{A}) \leq n$. Thus $\operatorname{Gsr}\left(M_{n-1}\left((S \mathcal{A})^{+}\right)\right)=1$ by Proposition 1.1. It follows from (2.7) and Theorem 2.1 that $i_{M_{n-1}(\mathcal{A})}$ is injective. The proof is completed.
3. Some applications. A projection p in the C^{*}-algebra \mathcal{A} is called to be infinite if there is a $v \in \mathcal{A}$ such that $v v^{*}<v^{*} v=p$. A simple C^{*}-algebra \mathcal{A} is said to be purely infinite if $\overline{x \mathcal{A} x}$, the closure of $x \mathcal{A} x$ in \mathcal{A}, contains an infinite projection for any positive element $x \in \mathcal{A}$, cf. [3]. Recall that a C^{*}-algebra \mathcal{A} has the property $R R(\mathcal{A})=0$ if every self-adjoint element in \mathcal{A} can be approximated by a self-adjoint element with finite spectra in \mathcal{A}, cf. [2].

Proposition 3.1. Let \mathcal{A} be a C^{*}-algebra with unit 1 .
(1) If $R R(\mathcal{A})=0$, then $\operatorname{gsr}(\Omega(\mathcal{A}))=\operatorname{gsr}(\mathcal{A})$;
(2) Assume that \mathcal{A} is purely infinite simple. If [1] is torsion-free in $K_{0}(\mathcal{A})$, then $\operatorname{gsr}(\Omega(\mathcal{A}))=2$; if [1] has torsion, then $\operatorname{gsr}(\Omega(\mathcal{A}))=\infty$.

Proof. (1) Since $R R(\mathcal{A})=0$ indicates that $R R\left(M_{n}(\mathcal{A})\right)=0$ for all n by [$\mathbf{2}$, Theorem 2.10], it follows from [5, Lemma 2.2] that $i_{M_{n}(\mathcal{A})}$ is injective. Therefore, by Corollary 2.1, $\operatorname{gsr}(S \mathcal{A})=1$ and hence $\operatorname{gsr}(\Omega(\mathcal{A}))=\operatorname{gsr}(\mathcal{A})$.
(2) By [16, Theorem 1.3] and assertion $(1), \operatorname{gsr}(S \mathcal{A})=1$. If [1] is torsion-free in $K_{0}(\mathcal{A})$ we have $\operatorname{csr}(\mathcal{A})=2$ by [15, Theorem 1$]$. Thus $\operatorname{gsr}(\mathcal{A}) \leq \operatorname{csr}(\mathcal{A})=2$. Since \mathcal{A} contains an isometry, we have $\operatorname{gsr}(\mathcal{A})=2$. Therefore $\operatorname{gsr}(\Omega(\mathcal{A}))=2$.
If $k \geq 1$ is the order of $[1]$ in $K_{0}(\mathcal{A})$, then for any integer n with $n \equiv 1 \bmod k$, we can find n isometries S_{1}, \ldots, S_{n} in \mathcal{A} such that $\sum_{i=1}^{n} S_{i} S_{i}^{*}=1$ by the proof of [3, Lemma 1.8]. Clearly, $\left(S_{1}^{*}, \ldots, S_{n}^{*}\right)^{T} \in S_{n}(\mathcal{A})$ and $\left(S_{1}^{*}, \ldots, S_{n}^{*}\right)^{T} \neq u(1,0, \ldots, 0)^{T}$ for any $u \in \mathcal{U}_{n}(\mathcal{A})$. Thus we have $\operatorname{gsr}(\mathcal{A})=\infty$ and hence $\operatorname{gsr}(\Omega(\mathcal{A}))=\infty$.

In the following we will consider the $i_{\mathcal{A} \otimes \mathcal{B}}$ when \mathcal{A} is purely infinite simple C^{*}-algebra or is a stable corona algebra and \mathcal{B} is a nuclear C^{*} algebra.

Proposition 3.2. Suppose that \mathcal{A} is a nonunital purely infinite simple C^{*}-algebra and \mathcal{B} is a nuclear C^{*}-algebra. Then $i_{\mathcal{A} \otimes \mathcal{B}}$ is an isomorphism.

Proof. We first prove that, for any $\left(a_{1}, \ldots, a_{n}\right)^{T} \in \mathcal{A}^{n}$ and any $\varepsilon>0$ there are a nonunital hereditary C^{*}-subalgebra \mathcal{D} of \mathcal{A} and $\left(b_{1}, \ldots, b_{n}\right)^{T} \in \mathcal{D}^{n}$ such that $\left\|a_{i}-b_{i}\right\| \leq(4 \varepsilon / 5), 1 \leq i \leq n$.

In fact, since \mathcal{A} is nonunital, purely infinite and simple, it follows from $[\mathbf{6}$, Condition (ii)] and $[\mathbf{2}$, Theorem 2.6] that there is a projection r in \mathcal{A} such that

$$
\begin{equation*}
\left\|\sum_{i=1}^{n}\left(a_{i}^{*} a_{i}+a_{i} a_{i}^{*}\right)(1-r)\right\|<\frac{\varepsilon^{2}}{25} \tag{3.1}
\end{equation*}
$$

Since $(1-r) \mathcal{A}(1-r)$ is purely infinite simple by $[\mathbf{1 6}$, Theorem 1.3], we can find a sequence of pairwise orthogonal projections $\left\{R_{i}\right\}$ in \mathcal{A} with $R_{i}<1-r$. Set $x=\sum_{i=1}^{\infty} 2^{-i} R_{i}$. Then $0 \leq x<1-r$ and $\overline{x \mathcal{A} x}$ has no unit and, furthermore, $\mathcal{D}=\overline{(r+x) \mathcal{A}(r+x)} \subset \mathcal{A}$ has no unit as well, cf. the proof of $\left[\mathbf{1 5}\right.$, Theorem 2]. Set $b_{i}=(r+x) a_{i}(r+x) \in \mathcal{D}$. Then, from (3.1), we get that for $i=1, \ldots, n$,

$$
\begin{aligned}
\left\|a_{i}-b_{i}\right\|= & \left\|a_{i}(1-r-x)+(1-r-x) a_{i}(r+x)\right\| \\
\leq & \left\|a_{i}(1-r)\right\|+\left\|a_{i}(1-r)\right\|\|x\|+\left\|(1-r) a_{i}\right\| \\
& +\|x\|\left\|(1-r) a_{i}\right\|\|r+x\| \\
\leq & \frac{4 \varepsilon}{5}
\end{aligned}
$$

Now for any $\left(a_{1}+\lambda_{1}, \ldots, a_{n}+\lambda_{n}\right)^{T} \in \operatorname{Lg}_{n}\left((\mathcal{A} \otimes \mathcal{B})^{+}\right)^{n}$, there are a nonunital hereditary C^{*}-subalgebra $\mathcal{D} \subset \mathcal{A}$ and $\left(b_{1}+\lambda_{1}, \ldots, b_{n}+\right.$ $\left.\lambda_{n}\right)^{T} \in \operatorname{Lg}_{n}\left((\mathcal{A} \otimes \mathcal{B})^{+}\right)^{n}$ such that $\left\|a_{i}-b_{i}\right\| \leq(4 \varepsilon / 5), i=1, \ldots, n$, by the above argument. Noting that $\mathcal{D} \cong \mathcal{D} \otimes \mathcal{K}$ by [16, Theorem 1.2], where \mathcal{K} is the algebra of all compact operators on the separable Hilbert space H over the field \mathbf{C}, we obtain that there is a $\left(c_{1}+\mu_{1}, \ldots, c_{n}+\right.$ $\left.\mu_{n}\right)^{T} \in \operatorname{Lg}_{n}\left((\mathcal{D} \otimes B)^{+}\right)$such that $\left\|\left(b_{i}+\lambda_{i}\right)-\left(c_{i}+\mu_{i}\right)\right\| \leq(\varepsilon / 5), 1 \leq$ $i \leq n$, by [11, Theorem 6.4]. Consequently, $\left\|\left(a_{i}+\lambda_{i}\right)-\left(c_{i}+\mu_{i}\right)\right\| \leq \varepsilon$, $1 \leq i \leq n$. This means that $\operatorname{tsr}(\mathcal{A} \otimes \mathcal{B}) \leq 2$. So $\operatorname{gsr}(\mathcal{A} \otimes \mathcal{B}) \leq$ $\operatorname{csr}(\mathcal{A} \otimes \mathcal{B}) \leq \operatorname{tsr}(C([0,1]) \otimes \mathcal{A} \otimes \mathcal{B}) \leq 2$ by $[\mathbf{9}$, Lemma 2.4]. Finally we have that $i_{\mathcal{A} \otimes \mathcal{B}}$ is an isomorphism by Corollary 2.2. \square

Let \mathcal{A} be a nonunital C^{*}-algebra. We denote by $M(\mathcal{A})$ the multiplier algebra of \mathcal{A}, cf. $[\mathbf{1 0}]$ and $S M(\mathcal{A})=M(\mathcal{A} \otimes \mathcal{K})$ the stable multiplier
algebra of \mathcal{A}. Set $S Q(\mathcal{A})=M(\mathcal{A} \otimes \mathcal{K}) / \mathcal{A} \otimes \mathcal{K}$ (the stable corona algebra of \mathcal{A}).

The following proposition gives a simple proof of $U(S Q(\mathcal{A}) \otimes \mathcal{B}) \cong$ $K_{1}(S Q(\mathcal{A}) \otimes \mathcal{B})$ for certain \mathcal{A} and \mathcal{B} obtained by Thomsen for the quasi-unitary group, cf. [14, Theorem 4.9].

Proposition 3.3. Let \mathcal{A} be a C^{*}-algebra with unit 1 or a countable approximate identity consisting of projections and \mathcal{B} a nuclear C^{*} algebra. Then $i_{S Q(\mathcal{A}) \otimes B}$ is an isomorphism.

In order to prove this proposition, we need a lemma.

Lemma 3.1. Let \mathcal{A} be a unital C^{*}-algebra which contains a pair of orthogonal isometries. Then $i_{\mathcal{A}}$ is surjective.

Proof. Let 1 be a unit of \mathcal{A} and S_{1}, S_{2} two isometries in \mathcal{A} such that $S_{1} S_{1}^{*}+S_{2} S_{2}^{*}=p$ is a projection in \mathcal{A}. For $n \geq 2$, set $T_{1}=S_{1}^{n-1}$, $T_{2}=S_{1}^{n-2} S_{2}, \ldots, T_{n-1}=S_{1} S_{2}, T_{n}=S_{2}$. Then it is easy to verify that $T_{i}^{*} T_{i}=1$ and $T_{j}^{*} T_{i}=0, i \neq j, i, j=1, \ldots, n$. So $q_{n}=\sum_{i=1}^{n} T_{i} T_{i}^{*}$ is a projection in \mathcal{A}. Set

$$
\begin{aligned}
& X=\left[\begin{array}{cccc}
T_{1} & T_{2} & \cdots & T_{n} \\
0 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 0
\end{array}\right] \in M_{n}(\mathcal{A}) \\
& Y=\left[\begin{array}{cc}
X & 1_{N}-X X^{*} \\
0 & X^{*}
\end{array}\right] \in \mathcal{U}_{2 n}(\mathcal{A}) .
\end{aligned}
$$

Then $X^{*} X=1_{n}$ and

$$
\begin{equation*}
Y \operatorname{diag}\left(u, 1_{n}\right) Y^{*}=\operatorname{diag}\left(b, 1_{2 n-1}\right) \tag{3.2}
\end{equation*}
$$

where $u=\left(u_{i j}\right) n \times n \in \mathcal{U}_{n}(\mathcal{A})$ and $b=\sum_{i, j=1}^{n} T_{i} u_{i j} T_{j}^{*}+1-q_{n} \in \mathcal{U}(\mathcal{A})$. Since

$$
Y=\left[\begin{array}{cc}
1_{n} & X \\
0 & 1_{n}
\end{array}\right]\left[\begin{array}{cc}
0 & 1_{n}-2 X X^{*} \\
1_{n} & 0
\end{array}\right]\left[\begin{array}{cc}
1_{n} & X^{*} \\
0 & 1_{n}
\end{array}\right]\left[\begin{array}{cc}
1_{n} & 0 \\
-X & 1_{n}
\end{array}\right] \in \mathcal{U}_{2 n}^{0}(\mathcal{A})
$$

it follows from (3.2) that $[u]=i_{\mathcal{A}}([b])$ in $K_{1}(\mathcal{A})$.

Corollary 3.1. Let \mathcal{A} be a unital purely infinite simple C^{*}-algebra and \mathcal{B} a nuclear C^{*}-algebra. Then $i_{\mathcal{A} \otimes \mathcal{B}}$ is surjective.

Proof. Obviously, $\mathcal{A} \otimes \mathcal{B}$ contains a pair of orthogonal isometries if \mathcal{B} is unital since \mathcal{A} has this property by the definition of the purely infinite simple C^{*}-algebra. Thus the assertion follows.

If \mathcal{B} is nonunital, then from the following split exact sequence of C^{*} algebras

$$
\begin{equation*}
0 \longrightarrow \mathcal{A} \otimes \mathcal{B} \longrightarrow \mathcal{A} \otimes \mathcal{B}^{+} \longrightarrow \mathcal{A} \longrightarrow 0 \tag{3.3}
\end{equation*}
$$

and Remark 2.1, we get that the diagram of exact sequences

is commutative. Since $i_{\mathcal{A} \otimes \mathcal{B}^{+}}$is surjective and $i_{\mathcal{A}}$ is injective by [3, Lemma 1.8], we can deduce from (3.4) that $i_{\mathcal{A} \otimes \mathcal{B}}$ is surjective.

Proof of Proposition 3.3. We first assume that \mathcal{B} has unit $1_{\mathcal{B}}$. Since $\operatorname{gsr}(\mathcal{A} \otimes \mathcal{K} \otimes \mathcal{B}) \leq \operatorname{csr}(\mathcal{A} \otimes \mathcal{K} \otimes \mathcal{B}) \leq 2$ by [13, Theorem 3.10], we have that $\mathcal{A} \otimes \mathcal{K} \otimes \mathcal{B}$ has 1-cancellation. Applying Lemma 2.2 to the exact sequence of C^{*}-algebras,

$$
0 \longrightarrow \mathcal{A} \otimes \mathcal{K} \otimes \mathcal{B} \xrightarrow{j \otimes i d_{\mathcal{B}}} M(\mathcal{A} \otimes \mathcal{K}) \otimes \mathcal{B} \xrightarrow{\pi \otimes i d_{\mathcal{B}}} S Q(\mathcal{A}) \otimes \mathcal{B} \longrightarrow 0,
$$

we obtain the following commutative diagram of exact sequences of groups

Now the hypotheses on \mathcal{A} and \mathcal{B} indicate that $U(S M(\mathcal{A}) \otimes \mathcal{B}))=0$ by [7, Theorem 2.5]. Thus $i_{S Q(\mathcal{A}) \otimes \mathcal{B}}$ is injective by (3.5).

Since $\mathbf{C} 1 \otimes L(H) \subset S M(\mathcal{A})$ where $L(H)$ is the algebra of all linear bounded operators on H, we can pick two isometries S_{1}, S_{2} in $L(H)$ such that $S_{1} S_{1}^{*}+S_{2} S_{2}^{*}=I_{H}$. Thus $S Q(\mathcal{A}) \otimes \mathcal{B}$ contains isometric $T_{i}=\left(\pi \otimes i d_{B}\right)\left(1 \otimes S_{i} \otimes 1_{\mathcal{B}}\right), i=1,2$, with $T_{1} T_{1}^{*}+T_{2} T_{2}^{*}=1 \otimes 1_{\mathcal{B}}$. So $i_{S Q(\mathcal{A}) \otimes \mathcal{B}}$ is surjective by Lemma 3.3.

If \mathcal{B} has no unit, then replacing \mathcal{A} by $S M(\mathcal{A})$ in (3.3), we also get that $i_{S Q(\mathcal{A}) \otimes B}$ is an isomorphism.

Remark 3.1. We have known from [15, Corollary 2.5] that if \mathcal{A} is a σ unital purely infinite simple C^{*}-algebra, then $S Q(\mathcal{A})$ is a unital purely infinite simple C^{*}-algebra. In this case $i_{S Q(\mathcal{A}) \otimes \mathcal{B}}$ is an isomorphism if \mathcal{B} is a nuclear C^{*}-algebra. We also notice that, using the same method as that in the proof of $\left[\mathbf{1 4}\right.$, Theorem 4.3], we can prove that $i_{\mathcal{O}_{n} \otimes \mathcal{B}}$ is an isomorphism where $\mathcal{O}_{n}, 2 \leq n \leq \infty$, is the Cuntz algebra and \mathcal{B} is any C^{*}-algebra. Combining these facts with Corollary 3.1 and Proposition 3.2, we could raise a question: Is $i_{\mathcal{A} \otimes \mathcal{B}}$ always injective for any unital purely infinite simple C^{*}-algebra and any nuclear C^{*}-algebra \mathcal{B} ?

Acknowledgment. The author wishes to thank the referee for his (or her) kindly pointing out some errors in the paper and making helpful suggestions for the paper.

REFERENCES

1. B. Blackadar, K-theory for operator algebras, Springer-Verlag, New York, 1986.
2. L.G. Brown and G.K. Pedersen, C^{*}-algebras of real rank zero, J. Funct. Anal. 99 (1991), 131-149.
3. J. Cuntz, K-theory for certain C^{*}-algebras, Ann. of Math. 113 (1981), 181-197.
4. D. Husemoller, Fiber bundles, McGraw-Hill, New York, 1966; reprinted Springer-Verlag, New York, 1976.
5. H. Lin, Approximation by normal elements with finite spectra in C^{*}-algebras of real rank zero, Pacific J. Math. 173 (1995), 443-489.
6. H. Lin and S. Zhang, On infinite simple C^{*}-algebras, J. Funct. Anal. 100 (1991), 221-231.
7. J.A. Mingo, K-theory and multipliers of stable C^{*}-algebras, Trans. Amer. Math. Soc. 299 (1987), 397-411.
8. G. Nagy, Some remarks on lifting invertible elements from quotient C^{*} algebras, J. Operator Theory 21 (1989), 379-386.
9. V. Nistor, Stable range for tension products of extensions of \mathcal{K} by $C(X)$, J. Operator Theory 16 (1986), 387-396.
10. G.K. Pedersen, C^{*}-algebras and their automorphism groups, Academic Press, London, 1970.
11. M.A. Rieffel, Dimensional and stable rank in the K-theory of C^{*}-algebras, Proc. London Math. Soc. 46 (1983), 301-333.
12. - The homotopy groups of the unitary groups of non-commutative tori, J. Operator Theory 17 (1987), 237-254.
13. A.J.L. Sheu, A cancellation theorem for modules over the group C^{*}-algebras of certain nilpotent Lie groups, Canad. J. Math. 39 (1987), 365-427.
14. K. Thomsen, Non-stable theory for operator algebras, K-Theory 4 (1991), 245-267.
15. Yifeng Xue, The connected stable rank of the purely infinite simple C^{*} algebras, Proc. Amer. Math. Soc. 127 (1999), 3671-3676.
16. S. Zhang, C^{*}-algebras with real rank zero and their multiplier algebras, I, Pacific J. Math. 155 (1992), 169-197.

Department of Mathematics, East China University of Science and Technology, Shanghai 200237, P.R. China

[^0]: Received by the editors on April 30, 1998, and in revised form on February 23, 1999.

 1991 AMS Mathematics Subject Classification. 46L80, 46M20, 19K35.
 Key words and phrases. U-group, 1-cancellation, 1-projective loop, general stable rank of C^{*}-algebras, purely infinite simple C^{*}-algebras, K-groups of C^{*} algebras.

