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REDUCTIONS OF A GENERALIZED INCOMPLETE
GAMMA FUNCTION, RELATED KAMPÉ DE FÉRIET

FUNCTIONS, AND INCOMPLETE WEBER INTEGRALS

ALLEN R. MILLER

ABSTRACT. We derive several reduction formulas for spe-
cializations of a certain generalized incomplete gamma func-

tion and its associated Kampé de Fériet function F 0:2;1
2:0;0[x, y].

Reductions of specializations of incomplete Weber integrals of

modified Bessel functions and related functions F 1:0;0
1:0;1[x, y],

F 0:1;0
1:0;0[x, y] heretofore also unavailable are deduced.

1. Introduction. One of a class of generalized incomplete gamma
functions may be defined by

(1.1) Γ(ν, x; z) ≡
∫ ∞

x

tν−1e−t−z/t dt,

where the parameters ν, x and argument z are arbitrary complex num-
bers. When the argument z vanishes, Γ(ν, x; z) reduces to the ordinary
incomplete gamma function Γ(ν, x) of classical analysis. Although sev-
eral authors (see [1], [2], [6], [8]) have studied this particular generaliza-
tion, it appears that the last word concerning properties of the latter
has not been said. Indeed, Veling [8] has recently recorded without
explicit proof the reduction formula for nonnegative integers n

(1.2a) Γ(n, z; z2) = zn[Kn(2z) + e−2zUn(2z)],

where

(1.2b)

Un(z) ≡ Kn(z)
[
I0(z) + 2

n−2∑
j=0

Ij+1(z)
]

− (−1)nIn(z)
[
K0(z)− 2

n−2∑
j=0

(−1)jKj+1(z)
]
,
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and it is understood that a summation makes no contribution when its
upper limit is less than its initial index value; the functions Iω(z) and
Kω(z) are modified Bessel functions.

In Sections 2 and 3 we shall give two not very difficult derivations
of equation (1.2a) and also derive in two different ways the analogous
result for nonnegative integers n

(1.2c) Γ(−n, z; z2) = z−n[Kn(2z)− e−2zUn(2z)].

Veling’s derivation of equation (1.2a) was evidently inspired by the
technique of finding independent solutions of certain recurrence rela-
tions derived from Γ(ν, x; z) which also produced mutatis mutandis the
result (see [1, Eq. (6.1)])

z−αΓ(α, x; z2) = Kα(2z)erfc
(√

x − z√
x

)

+ [Kα(2z) + (−1)α−(1/2)πIα(2z)]erfc
(√

x+
z√
x

)

+ 2e−x−z2/x

α−(3/2)∑
j=0

(
x

z

)j+(1/2)

(1.3a)

· [Kα(2z)Ij+(1/2)(2z)

+ (−1)α+j+(1/2)Iα(2z)Kj+(1/2)(2z)],

where α ∈ {−(1/2), (1/2), (3/2), . . .}.
The first derivation that we shall give for equations (1.2) is similar
to the one that produced equation (1.3a) and the analogous result for
zαΓ(−α, x; z2), namely (see [6, Eqs. (6.2)],

zαΓ(−α, x; z2) = Kα(2z) erfc
(√

x − z√
x

)

− [Kα(2z) + (−1)α−(1/2)πIα(2z)] erfc
(√

x+
z√
x

)

− 2e−x−z2/x

α−(3/2)∑
j=0

(
z

x

)j+(1/2)

(1.3b)

· [Kα(2z)Ij+(1/2)(2z)

+ (−1)α+j+(1/2)Iα(2z)Kj+(1/2)(2z)],
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where α ∈ {−(1/2), (1/2), (3/2), . . .}.
In Section 4 we shall employ equations (1.2) and (1.3) to deduce
several reduction formulas for specializations of the Kampé de Fériet
function F 0:2;1

2:0;0[x, y]; for an introduction to the infinite series which
represent these functions see, for example, [7, pp. 26 27]. Furthermore,
as we proceed in the sections that follow, the interconnections between
the functions and integrals mentioned in the abstract of this paper will
become more apparent.

2. Derivation of equations (1.2). Recalling the definitions of the
two incomplete Weber integrals (cf., e.g., [5, Eq. (1.1)])

Ke2
µ,ω
(a, z) ≡

∫ z

0

eat2tµKω(t) dt, Re (1 + µ ± ω) > 0

and

Ie2
µ,ω
(a, z) ≡

∫ z

0

eat2tµIω(t) dt, Re (1 + µ+ ω) > 0,

we have from [6, Eqs. (6.1)] upon letting ν = 1, x = z/2,

Γ
(

n+ 2,
z

2
;
z2

4

)

= 2
(

z

2

)n+2{
Kn+2(z)− 12(−1)

nΓ
(
0,

z

2

)
In+2(z)

− e−z/2

z

[
Kn+2(z)Ie2

1,0

(
− 1
2z

, z

)

− (−1)nIn+2(z)Ke2
1,0

(
− 1
2z

, z

)](2.1a)

+ e−z
n∑

j=0

[Kn+2(z)Ij+1(z)+(−1)n+jIn+2(z)Kj+1(z)]
}
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and

Γ
(
− n − 2, z

2
;
z2

4

)

= 2
(
2
z

)n+2{1
2
(−1)nΓ

(
0,

z

2

)
In+2(z)

+
e−z/2

z

[
Kn+2(z)Ie2

1,0

(
− 1
2z

, z

)

− (−1)nIn+2(z)Ke2
1,0

(
− 1
2z

, z

)](2.1b)

− e−z
n∑

j=0

[Kn+2(z)Ij+1(z)+(−1)n+jIn+2(z)Kj+1(z)]
}

,

where n = −1, 0, 1, . . . .
Next the two incomplete Weber integrals in equations (2.1) are
evaluated by using [6, Eqs. (7.2) and (7.3)]; thus,

Ie2
1,0

(
− 1
2z

, z

)
=
1
2
ze(1/2)z[1− e−zI0(z)]

(2.2a)

and

Ke2
1,0

(
− 1
2z

, z

)
=
1
2
ze(1/2)z

[
Γ
(
0,
1
2
z

)
− e−zK0(z)

]
.

(2.2b)

Finally, combining equations (2.1) and (2.2), replacing z by 2z and n
by n− 2 yields equations (1.2) which are valid a fortiori also for n = 0.

3. Reduction formulas for Ie2
n+1,n
(±1/2z, z) and Ke2

n+1,n
(±1/2z, z).

We shall give a second derivation of equations (1.2) now utilizing hereto-
fore unavailable reduction formulas for the incomplete Weber inte-
grals Ie2

n+1,n
(±1/2z, z) and Ke2

n+1,n
(±1/2z, z) for nonnegative integers

n which are deduced below.

It has already been shown that, in order to compute respectively the
integrals Ie2

ν+n+1,ν+n
(−a, z) andKe2

ν+n+1,ν+n
(−a, z) for Re (ν) > −1 and
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nonnegative integers n, it is essentially sufficient to know the values of
Ie2

ν+1,ν
(−a, z) and Ke2

ν+1,ν
(−a, z) for 0 < Re (ν + 1) ≤ 1, see [6, Eqs.

(5.4)]. Thus, setting ν = 0 in the latter gives for nonnegative integers
n

Ie2
n+1,n

(−a, z) =
(
1
2a

)n[
Ie2

1,0
(−a, z)− e−az2

2a

n∑
k=1

(2az)kIk(z)
](3.1a)

and

Ke2
n+1,n

(−a, z) =
(
− 1
2a

)n[
Ke2

1,0
(−a, z)− e−az2

2a

n∑
k=1

(−2az)kKk(z)
]

+
1
2

e1/4a

(2a)n+1

[
n!Γ

(
− n,

1
4a

)
− (−1)nΓ

(
0,
1
4a

)]
.(3.1b)

Now letting a = 1/2z in these results and employing equations (2.2)
yields respectively for nonnegative integers n

Ie2
n+1,n

(
− 1
2z

, z

)
=
1
2
zn+1e−(1/2)z

[
ez − I0(z)− 2

n∑
k=1

Ik(z)
](3.2a)

and

Ke2
n+1,n

(
− 1
2z

, z

)
= −1
2
(−z)n+1e−(1/2)z

·
[
(−1)nn!ezΓ

(
− n,

1
2
z

)
(3.2b)

− K0(z)− 2
n∑

k=1

(−1)kKk(z)
]
.

The generalized incomplete gamma function may be written essen-
tially in terms of two incomplete Weber integrals. Thus, setting ν = n,
and respectively x = 2/z and x = z/2 in [6, Eqs. (4.6) and (4.7)], we
arrive at

(3.3a)

Γ
(
− n,

z

2
;
z2

4

)
= n!

(
2
z

)n

Γ
(
− n,

z

2

)
In(z)

− 2n+1 e−(1/2)z

z2n+1

{
In(z)Ke2

n+1,n

(
− 1
2z

, z

)

− Kn(z)Ie2
n+1,n

(
− 1
2z

, z

)}
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and

(3.3b)

Γ
(

n,
z

2
;
z2

4

)
=

(
z

2

)n[
2Kn(z)− n!Γ

(
− n,

z

2

)
In(z)

]

+ 21−n e−(1/2)z

z

{
In(z)Ke2

n+1,n

(
− 1
2z

, z

)

− Kn(z)Ie2
n+1,n

(
− 1
2z

, z

)}
,

where n is a nonnegative integer.

Now substitute the results for the incomplete Weber integrals given
by equations (3.2) into equations (3.3). Noticing in each result that
the two terminal summation terms cancel, replacing z by 2z, and
finally adjusting each summation index gives equations (1.2). This
then completes the second derivation of equations (1.2).

Evidently, once one of Γ(±n, z; z2) is obtained, the other may be
deduced immediately since, from [6, Eq. (1.2)] or equations (3.3), upon
equating the terms in braces, it is readily seen for n an integer that

z−nΓ(n, z; z2) + znΓ(−n, z; z2) = 2Kn(2z).

Reduction formulas for the incomplete Weber integrals of modified
Bessel functions Ie2

n+1,n
(1/2z, z) and Ke2

n+1,n
(1/2z, z) for nonnegative

integers n may also be obtained. Indeed, again employing [6, Eqs. (7.2)
and (7.3)] we find that

Ie2
1,0

(
1
2z

, z

)
= −1
2
ze−(1/2)z[1− ezI0(z)]

and

Ke2
1,0

(
1
2z

, z

)
= −1
2
ze−(1/2)z

[
Γ
(
0,−1
2
z

)
− ezK0(z)

]
.

Now setting a = −1/2z in equations (3.1) and using the above results,
we arrive at
(3.4a)

Ie2
n+1,n

(
1
2z

, z

)
=
1
2
(−z)n+1e(1/2)z

[
e−z−I0(z)−2

n∑
k=1

(−1)kIk(z)
]
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and

(3.4b) Ke2
n+1,n

(
1
2z

, z

)

= −1
2
zn+1e(1/2)z

[
(−1)nn!e−zΓ

(
− n,−1

2
z

)
−K0(z)− 2

n∑
k=1

Kk(z)
]
,

where n is a nonnegative integer.

In addition to the reduction formulas for incomplete Weber in-
tegrals given by equations (3.2) and (3.4), reduction formulas for
Ie2

n+3/2,n+1/2
(−(1/4)a, z), Ke2

n+3/2,n+1/2
(−(1/4)a, z) are derived in [6].

Thus a total of six nontrivial reduction formulas for incomplete Weber
integrals of modified Bessel functions now exist; and at this point it
appears that a search for others will probably not prove fruitful.

The specialization n = 0 of equation (3.2a) or equation (2.2a) has
evidently been known for some time and may be deduced from results
in Luke’s treatise on integrals of Bessel functions, see [4, p. 271 et seq.]
and in particular [4, p. 272, Eq. (6)], where pertinent attributions are
cited.

4. Reduction formulas for F 0:2;1
2:0;0[x, y]. Finding reduction formu-

las for Kampé de Fériet functions and other functions represented by
generalized hypergeometric series in two and more variables is a daunt-
ing task as there is generally no a priori method, except in a few trivial
and obvious cases, for determining if a particular function is even ca-
pable of reduction. However, it is sometimes the case that a particular
Kampé de Fériet function may be identified in some way with a func-
tion of known reducibility. As an example of this, we make the obser-
vations below that certain specializations of F 0:2;1

2:0;0[x, y] may be written
in terms of the generalized incomplete gamma function Γ(ν, x; z); and
so reductions of the latter will yield reductions of the former.

In particular, we have respectively from [6, Eqs. (2.7), (2.8) and (3.5)]
the following:

(4.1a) F 0:2;1
2:0;0


 : 1, ν; 1;

−(1/x)z2, z2

1, 1 + ν : ; ;




= xνex{Γ(1− ν, x)Γ(1 + ν)z−νIν(2z) + νΓ(−ν, x; z2)},
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(4.1b) F 0:2;1
2:0;0


 : 1, ν; 1;

−(1/x)z2, z2

2, 1 + ν : ; ;




=
xνex

z2
{Γ(1− ν, x)Γ(1 + ν)z1−νIν−1(2z)− νΓ(1− ν, x; z2)},

and

(4.1c) F 0:2;1
2:0;0


 : 1, 1; 1;

−(1/x)z2, z2

2, n+ 2 : ; ;




=
xex

z2

{
(n+ 1)

n∑
j=1

(−n)j
z2j

Γ(j, x) +
(n+ 1)!

zn
In(2z)Γ(0, x)

− (−1)n (n+ 1)!
z2n

Γ(n, x; z2)
}

,

where n = −1, 0, 1, . . . and the parameter ν in equations (4.1a) and
(4.1b) is not a negative integer. The Kampé de Fériet functions in
equations (4.1a) and (4.1b) may also be written in terms of incomplete
Weber integrals, see [6], and the results alluded to are specializations
of much more general results, see [6].

Now set x = z in equations (4.1) and, furthermore, ν = n in equation
(4.1a) and ν = n + 1 in equation (4.1b); then, using the results
for Γ(±n, z; z2) given by equations (1.2), we deduce for nonnegative
integers n respectively:

(4.2a) F 0:2;1
2:0;0


 : 1, n; 1;

−z, z2

1, n+ 1 : ; ;




= −ne−zUn(2z) + ez{n!Γ(1− n, z)In(2z) + nKn(2z)},

(4.2b) F 0:2;1
2:0;0


 : 1, n+ 1; 1;

−z, z2

2, n+ 2 : ; ;




= (n+ 1)
ez

z
{n!Γ(−n, z)In(2z)− Kn(2z) + e−2zUn(2z)},
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and

(4.2c) F 0:2;1
2:0;0


 : 1, 1; 1;

−z, z2

2, n+ 2 : ; ;




=
ez

z

{
(n+ 1)

n∑
j=1

(−n)j
z2j

Γ(j, z) +
(n+ 1)!

zn
In(2z)Γ(0, z)

}

− (−1)n (n+ 1)!
zn+1

{ezKn(2z) + e−zUn(2z)},

where Un(2z) is given by equation (1.2b).

Finally, letting α ∈ {−(1/2), (1/2), (3/2), . . .} and setting respec-
tively ν = ±α in equation (4.1a), ν = 1 ± α in equation (4.1b), we
obtain the following four reduction formulas:

(4.3a) F 0:2;1
2:0;0


 : 1, α; 1;

−(1/x)z2, z2

1, 1 + α : ; ;




= α(x/z)αex{Γ(α)Γ(1− α, x)Iα(2z) + zαΓ(−α, x; z2)},

(4.3b) F 0:2;1
2:0;0


 : 1,−α; 1;

−(1/x)z2, z2

1, 1− α : ; ;




= −α(z/x)αex{Γ(−α)Γ(1 + α, x)I−α(2z) + z−αΓ(α, x; z2)},

(4.4a) F 0:2;1
2:0;0


 : 1, 1 + α; 1;

−(1/x)z2, z2

2, 2 + α : ; ;




=
1 + α

z

(
x

z

)1+α

ex{Γ(1 + α)Γ(−α, x)Iα(2z)− zαΓ(−α, x; z2)},

(4.4b) F 0:2;1
2:0;0


 : 1, 1− α; 1;

−(1/x)z2, z2

2, 2− α : ; ;




=
1− α

z

(
x

z

)1−α

ex{Γ(1− α)Γ(α, x)I−α(2z)− z−αΓ(α, x; z2)},
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where α ∈ {−(1/2), (1/2), (3/2), . . .} and where zαΓ(−α, x; z2) and
z−αΓ(α, x; z2) are given respectively by the right side of equations
(1.3a) and (1.3b).

Other reduction formulas for the Kampé de Fériet function F 0:2;1
2:0;0[x, y]

may be obtained by noting the easily shown identity for nonnegative
integers p:

(4.5)

F 0:2;1
2:0;0


 : 1, ν + p; 1;

x, y
1 + p, 1 + ν + p : ; ;




=
ν + p

ν

p!
xp

F 0:2;1
2:0;0


 : 1, ν; 1;

x, y
1, 1 + ν : ; ;




−
p−1∑
j=0

ν + p

ν + j

xj−p

j! 1F2[1; 1 + j, 1 + ν + j; y].

Thus, for example, in equation (4.5) replace x by −x−1z2, y by z2,
and set p = 1. Then 1F2[1; 1, 1 + ν; z2] reduces to 0F1[−; 1 + ν; z2]
which is proportional to Iν(2z). Now noting the well-known functional
relation Γ(ν+1, z) = νΓ(ν, z)+zν exp(−z), we see that equation (4.2b),
with ν = n, and equations (4.4a) and (4.4b), with ν = ±α, may be
obtained respectively from equation (4.2a) and equations (4.3a), (4.3b)
when the latter are used together with equation (4.5).

5. Reduction formulas for F 1:0;0
1:0;1[x, y] and F 0:1;0

1:0;0[x, y]. There is
a connection between the incomplete Weber integral Ie2

µ,ν
(a, z) and the

Kampé de Fériet function F 1:0;0
1:0;1[az2, z2/4] which may be exploited to

obtain reduction formulas for the latter. Thus, from [5, Eq. (3.4)], we
have for Re (1 + µ+ ν) > 0

(5.1)

F 1:0;0
1:0;1


 (1 + µ+ ν)/2 : ; ;

az2, z2/4
(3 + µ+ ν)/2 : ; 1 + ν;




=
2ν(1 + µ+ ν)Γ(1 + ν)

z1+µ+ν
Ie2

µ,ν
(a, z).
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Now substituting µ = n + 1, ν = n, n = 0, 1, 2, . . . , a = ±1/2z in
equation (5.1), utilizing respectively equations (3.4a), (3.2a) and then
replacing z by 2z in the result, we deduce for nonnegative integers n

F 1:0;0
1:0;1


n+ 1 : ; ;

z, z2

n+ 2 : ; n+ 1;




=
1
2
(n+ 1)!

(
− 1

z

)n+1

ez

{
e−2z − I0(2z)− 2

n∑
k=1

(−1)kIk(2z)
}(5.2a)

and

F 1:0;0
1:0;1


 n+ 1 : ; ;

−z, z2

n+ 2 : ; n+ 1;




=
1
2
(n+ 1)!

(
1
z

)n+1

e−z

{
e2z − I0(2z)− 2

n∑
k=1

Ik(2z)
}

.

(5.2b)

Furthermore, if in equation (5.1) we substitute µ = n + 3/2, ν =
n+1/2 for n = −1, 0, 1, . . . and replace a by −a/4, we may then utilize
the previously mentioned reduction formula for Ie2

n+3/2,n+1/2
(−a/4, z)

given in [6, Eq. (5.9a)] to obtain, upon replacing z by 2z in the result,

F 1:0;0
1:0;1


n+ 3/2 : ; ;

−az2, z2

n+ 5/2 : ; n+ 3/2;




=
Γ(n+ 5/2)
2z2

(
1

az2

)n+(1/2)

(5.2c)

·
{

e1/a

a

[
erf

(
z
√

a+
1√
a

)
+ erf

(
z
√

a − 1√
a

)]

− 2
√

z

a
e−az2

n∑
k=0

(az)kIk+(1/2)(2z)
}

,

where n = −1, 0, 1, . . . .
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Three analogous reduction formulas for F 0:1;0
1:0;0[x, y] may also be ob-

tained by using equations (5.2) and the Kummer-type transformation

F 0:1;0
1:0;0


 : 1; ;

−x, y
α+ 1 : ; ;




= e−xF 1:0;0
1:0;1


 α : ; ;

x, y
α+ 1 : ; α;




which is a specialization of [5, Eq. (3.6)].

In conclusion, we mention that although reduction formulas for
Kampé de Fériet functions occur sparsely in the literature, enough are
known so that attempts have been and are being made to collect them in
tabular form; see [7, p. 28 et seq.] and [3]. Thus, the reduction formulas
for F 0:2;1

2:0;0[x, y], F 1:0;0
1:0;1[x, y] and F 0:1;0

1:0;0[x, y] obtained herein should, for
example, be of value in the compilation of such tables.
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